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Abstract

We provide a catalog of atmospheric parameters for 1,806,921 cool dwarfs from Gaia Data Release 3 (DR3) that
lie within the range covered by LAMOST cool dwarf spectroscopic parameters: 3200 K < Teff < 4300 K,
−0.8 < [M/H] < 0.2 dex, and 4.5 < log g < 5.5 dex. Our values are derived based on machine-learning models
trained with multiband photometry corrected for dust. The photometric data comprise optical data from the Sloan
Digital Sky Survey r, i, and z bands, near-infrared data from the Two Micron All Sky Survey J, H, and K bands,
and mid-infrared data from the ALLWISE W1 and W2 bands. We used both random forest and light gradient
boosting machine machine-learning models and found similar results from both, with an error dispersion of 68 K,
0.22 dex, and 0.05 dex for Teff, [M/H], and log g, respectively. Assessment of the relative feature importance of
different photometric colors indicated W1−W2 as most sensitive to both Teff and log g, with J−H being most
sensitive to [M/H]. We find that our values show a good agreement with the Apache Point Observatory Galactic
Evolution Experiment, but are significantly different to those provided as part of Gaia DR3.

Unified Astronomy Thesaurus concepts: Late-type dwarf stars (906); M dwarf stars (982)

1. Introduction

Cool dwarfs with low mass and low luminosity constitute
more than 70% of the objects in the Galaxy. The determination
of their stellar atmosphere parameters (APs) is vital for
exploring the stellar formation, composition, and evolution
history of the Galaxy (e.g., Bochanski et al. 2007). However,
the estimation of the APs of cool dwarfs is difficult because of
their complex atmosphere along with convective mixing. With
ongoing improvements in atmosphere modeling for low-mass
stars and advancements in the number of observations made
and variety of instruments used, the measurement of the APs of
cool stars has been carried out increasingly precisely.

Observations such as Jones et al. (1996) used the PHOENIX
synthetic spectra to infer the APs of a few M dwarfs by
comparing them with observed spectra. Casagrande et al. (2008)
obtained the effective temperatures (Teff) and bolometric
luminosity of the M dwarfs based on the empirical relationship
between the flux ratio in different bands and both the Teff and the
metallicity. Du et al. (2021) estimated the APs of M-type stars
using an updated pipeline LASPM from low-resolution spectra,
while Ding et al. (2022; hereafter, D22) applied the ULySS
package with MILES interpolator model spectra to estimate the
APs of M dwarfs. Furthermore, Li et al. (2021; hereafter, L21)
published a stellar AP catalog of LAMOST M dwarfs using the
SLAM machine-learning (ML) algorithm (Zhang et al. 2020).

The increasing availability of near-infrared spectra has also
been utilized to determine precise APs of M dwarfs (e.g.,
Rojas-Ayala et al. 2010; Cristofari et al. 2022; Haqq-Misra
et al. 2022). Rojas-Ayala et al. (2012) calibrated the H2O–K2
index of K-band spectra of M dwarfs and estimated the Teff and

[M/H] of these objects based on NaI, CaI, and H2O–K2
indexes.
Gaia is a satellite launched by the European Space Agency,

with the goal of providing precise 3D maps and space motions
of approximately one billion stars in our Galaxy (Gaia
Collaboration et al. 2016a, 2016b; Cropper et al. 2018). In
2022, Gaia Data Release 3 (DR3) published complete data
products (Gaia Collaboration et al. 2023), which include
photometry in G, GBP, and GRP, objects with various types, and
mean low-resolution (BP/RP) spectra and high-resolution
Radial Velocity Spectrometer (RVS) spectra. With the BP/
RP spectra, the APs of 470,759,263 sources within G< 19 mag
were measured (Andrae et al. 2023), while with the RVS
spectra, the APs of 5,591,594 objects were measured, most of
which are AFGK stars (Recio-Blanco et al. 2023). Figure 1
shows diagrams with the distribution of the Gaia DR3 cool
dwarfs. The left panel is the Hertzsprung–Russell (H-R)
diagram of all Gaia DR3, color coded by number density.
The objects below the blue dashed lines are considered to be
cool dwarfs, whose Kiel diagrams (log g versus Teff) obtained
from BP/RP and RVS spectra are shown in the middle and
right panels, respectively.
The AP distributions shown in the middle and right plots of

Figure 1 are not consistent with each other. Nor are they
consistent with the expectation of these dwarfs being objects
largely on the main sequence and so approximately over-
lapping with standard isochrones. There are known problems
with the external calibration of BP/RP spectra for cool objects
that may impact the middle plot, e.g., Sarro et al. (2023). Given
that cool dwarfs are relatively faint and in the narrow band of
RVS spectra, we might anticipate the issues with the derivation
of parameters in the right-hand plot that indicate the distinct
selection of log g= 5.0, as well as vertical features in the
temperature selection that appear unphysical. We further
cleaned the sample using quality flags (e.g. vbroad, vrad) and
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made calibrations that were recommended by Recio-Blanco
et al. (2023). However, there is a slight improvement because
the remaining data points are too few to get a reliable statistical
result. Thus, we guess that the RVS spectra are not sufficient in
wavelength range to determine the APs for very cool dwarfs,
which will hopefully be improved for the Gaia DR4. We also
note the AP estimation using Gaia BP/RP spectra by Zhang
et al. (2023), who develop a data-driven model to estimate the
APs of 220 million objects in Gaia, though limited to
Teff> 4000 K.

High-resolution spectroscopy can provide precise stellar APs,
but the number of objects that can be observed is limited. The
high-resolution Sloan Digital Sky Survey (SDSS)/Apache Point
Observatory Galactic Evolution Experiment (APOGEE) DR164

published 22,991 cool dwarfs benefiting from infrared spectra
that suffer less from line blending in the inferences of APs than
optical spectra. However, an ongoing problem is the difference
between the synthetic and observed spectra. Passegger et al.
(2016) used new synthetic spectra based on the PHOENIX grid
to determine APs from high-resolution spectroscopic observa-
tions. However, the [Fe/H] reported from earlier estimations in
some cases disagree with the new work by more than 3σ. The
degeneracy of stellar APs is a significant issue. Rajpurohit et al.
(2018) determined Teff, [Fe/H], and log g for 292 high-
resolution spectra using the BT-Settl model, although the χ2

map in Figure 3 of Rajpurohit et al. (2018) shows degeneracy
between different parameter combinations.

On the other hand, low-resolution surveys can collect
hundreds of thousands of cool dwarf spectra that should be
representative of the larger sample of M dwarfs. LAMOST
DR95 has released a stellar AP catalog of M stars, comprising
more than 0.6 million M dwarfs and benchmarked against other
sources. Here we use these as the ground truth for ML to derive
the APs of Gaia DR3 cool dwarfs with multiband photometry.

Multiband photometry provides a robust sampling of the
spectral energy distribution to compensate for the lack of local
information in spectra. Additionally, selection effects can be
avoided when using multiband photometry. Compared to
spectroscopy, multiband photometry can ensure the accuracy of
AP estimation, although its precision may be relatively low.
Furthermore, photometry can detect fainter objects and provide

a more consistent data distribution. In recent years, several
ground- and space-based surveys have released a vast amount
of photometry in the Milky Way, such as SDSS (York et al.
2000), Pan-StaRRS (Kaiser et al. 2002), the Two Micron All
Sky Survey (2MASS; Skrutskie et al. 2006), the Wide-field
Infrared Survey Explorer (WISE; Wright et al. 2010), Sky-
Mapper (Bessell et al. 2011), SAGA (Casagrande et al.
2014), Gaia (Gaia Collaboration et al. 2016a), SAGE (Zheng
et al. 2018), and J-PLASS (Yang et al. 2022).
Taking advantage of multiband photometry and ML

methods, we use optical and infrared photometry along with
APs derived from LAMOST spectra to infer the stellar APs for
cool dwarfs. Two different ML algorithms were used to train
models for APs to ensure consistency and performance when
testing and deriving parameters. The paper is organized as
follows. Section 2 presents a detailed description of the cool
dwarf sample, photometry surveys, and the data processes for
the training sample. Section 3 describes the ML algorithms,
model construction of APs, and feature importance analysis.
Section 4 presents an AP catalog of cool dwarfs in Gaia DR3.
Finally, the main conclusions are summarized in Section 5.

2. Data

In this section, we select cool dwarfs from Gaia DR3 to
estimate their APs. Multiband photometry was used as input for
our ML algorithms. The training sample was selected from
LAMOST M dwarfs that had precise APs from two previous
works.

2.1. Cool Dwarf Sample Selection

We select an appropriate sample of cool dwarfs from Gaia
DR3 based on the dashed black lines in the color–magnitude
diagram presented in Figure 2. Our rationale for this is based on
finding simple but appropriate cuts indicated by the gray
contours in the training sample. To construct these dashed
black lines, we plot the LAMOST training sample presented in
Section 2.4 as gray contours. First, we performed a linear fit on
the training sample, indicated by the blue dashed line in
Figure 2. Then this blue dashed line was shifted up and down
by a magnitude to create two parallel black dashed lines
enclosing the training sample. The magnitude limits for this
training sample are set between MG= 7–11. These choices are
based on noticing the change of the contour shape for MG

Figure 1. Distributions of Gaia objects and their APs. The left panel represents the H-R diagram of Gaia DR3 objects. The blue dashed lines provide preliminary
bounds for our subsample of “cool dwarfs” based on the position of the vertical and horizontal blue lines at (1.3, 5). The middle panel plots the Kiel diagram (Teff vs.
log g) based on parameters assigned using BP/RP spectra of the objects selected by the blue dashed lines in the left panel from Andrae et al. (2023), as well as
PARSEC isochrones with an age of 6 Gyr and [M/H] of 0, −0.25, −0.5, and −1.0 dex. The right panel depicts the same Kiel diagram for objects with parameters
based on RVS spectra from Recio-Blanco et al. (2023), along with the same isochrones used in the middle panel.

4 https://www.sdss.org/dr16/irspec/parameters/
5 http://www.lamost.org/dr9/v1.0/doc/lr-data-production-description
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< 7 mag and that the last training set contour extends only
slightly beyond MG= 11. As shown in both panels of Figure 2,
the box composed of black dashed lines is the selected region.
We note that approximately 0.1 million sources with
BP−RP > 2.9 mag lie beyond a significant density of training
sample sources. For these objects, their APs will have an
additional column labeled “flag” to caution others when
utilizing these APs.

The bottom panel of Figure 2 shows a zoom-in for MG

between 4 and 13 mag, where the green and magenta objects
are the Gaia sources with APs from RVS (587 sources) and
BP/RP spectra (1,534,957 sources), respectively. Additionally,
we used other criteria to exclude unreliable photometry and
exclude unresolved binary stars. These criteria are as follows:

1. Gmag/error_Gmag > 20, BPmag/error_BPmag > 20,
and RPmag/error_RPmag > 20;

2. Photometry error in each band less than 0.08 mag;

3. RUWE < 1.4; and
4. parallax/error_parallax > 5.

The basis for criterion 1 is to enable accurate photometry and
astronomy (L21), as well as criteria 2 and 4 (Lin et al. 2022).
Criterion 3 is for the avoidance of binary stars, which are likely
to provide blended photometry (Gaia Collaboration et al.
2023), which also will be applied to the training sample.
We thus find 1,806,921 cool dwarfs from Gaia DR3 that

overlap with the parameter space of our LAMOST training
sample. Compared to spectroscopic data, only a small fraction
of these stars already have APs from LAMOST. A comparison
of the overlap between the Gaia cool dwarfs and LAMOST
samples is shown in Figure 3.

2.2. Photometric Band Selection

To connect the APs of the LAMOST–Gaia matching
cool dwarfs to those without LAMOST APs, we selected the
multiband photometry from the optical to the infrared band as
input data. SDSS is a 2.5 m telescope located at the Astronomical
Observatory in Apache, New Mexico (York et al. 2000). There
are five narrow bands u, g, r, i, and z (centered on 3551, 4686,
6166, 7480, and 8932Å), ranging from the optical to the near-
infrared wavelength range. However, many cooler dwarfs are too

Figure 2. Color–magnitude diagram of Gaia stars and selected stars. Top: the
background displays Gaia DR3 objects, while the training sample is plotted as
gray contours with logarithmic scaling and fitted with a blue dashed line. The
oblique black dashed lines are created by shifting the blue line up and down by
1.0 mag. The two horizontal black lines represent the absolute G magnitudes of
7 and 11 mag, respectively. Bottom: a zoom-in panel of the top panel with MG

between 4 and 13 mag with the addition of Gaia sources with APs. The green
points are the sources with APs from RVS spectra, while the magenta points
are the objects with APs from BP/RP spectra that lie within the black dashed
selection box.

Figure 3. Source number comparison between Gaia cool dwarfs (in gray) and
those with spectroscopic APs from LAMOST (in blue) for MG (top) and G
(bottom) photometry.
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faint to appear in the u and g bands, and so only the r, i, and z
bands are considered. 2MASS is a near-infrared digital imaging
survey of the entire sky conducted by the University of
Massachusetts and IPAC at 1.25, 1.65, and 2.17 μm (Neugebauer
& Leighton 1969). 2MASS can uniformly scan the entire sky in
three near-infrared bands, J (1.25 μm), H (1.65μm), and K
(2.17μm). WISE is an all-sky survey from 3 to 25 μm that aims
to provide a vast repository of knowledge about the solar system,
the Milky Way, and the Universe (Wright et al. 2010). It was
launched on 2009 December 14 and updated the last data on 2013
March 21. The WISE source catalog contains the attributes of
563,921,584 resolved and point-like objects detected in the Atlas
intensity images, with four bands W1, W2, W3, and W4 (3.4, 4.6,
12, and 22 μm). To ensure the quality of the photometry, we set
the error of each band to less than 0.08mag. We also exclude
some possible extended sources with the flag 2MASS gal_contam
and mp_glag= 0 and the flag ALLWISE ext_flag= 0 (Lin et al.
2022). We obtained a final Gaia cool dwarf sample of 1,806,921
objects by matching the multiband photometry in TOPCAT with
a radius of 3″. We do not include G, BP, and RP magnitudes as
part of the training set in order to provide a solution that is
independent. In particular, we avoid the use of BP and RP, since
potentially they are part of the discrepancy presented in the middle
plot of Figure 1.

The data features used for this work include photometry in
eight bands (r, i, z, J, H, K, W1, and W2). As an example, we
show the spectra of HD 213893, which is classified as M0 type
and plotted in Figure 4 from optical to infrared. The top panel
shows the optical spectra from SDSS, with relative system
response (RSR) curves of five bands provided by SDSS.6

Prominent spectral features appear in the r, i, and z bands, such
as the Na D line and molecular bands (CaH, TiO, and VO;

Lépine et al. 2003). The bottom panel presents the spectrum
with a wavelength of 0.8–5.5 μm and a resolution of R ≈ 2000,
which is from the 3.0 m NASA Infrared Telescope Facility
(Rayner et al. 2003). The corresponding RSR lines are
presented according to the introductions to 2MASS7 and
WISE.8 It can be seen that the flux density is high in the
infrared range. Considering the accuracy in the W1 and W2
bands of WISE (Yuan et al. 2013), we adopted W1 and W2
photometry, although the spectral features are weaker in the
far-infrared band. Therefore, photometry in the r, i, z, J, H, K,
W1, and W2 bands was employed to the represent the features
of our data.

2.3. Extinction Correction

The 3D dust map method (Green 2018) consists of 2D maps
(Planck Collaboration et al. 2014) and 3D maps (Green et al.
2018, 2015) applied to correct the extinction. In addition to the
sky position of each point, reliable distance is also needed in
the 3D dust map method. Here, we used the parallax from Gaia
to compute the distance, which is considered to be useful to a
distance of 4 kpc and contains all our objects. The extinction
coefficients in different bands (Yuan et al. 2013; Casagrande
et al. 2014; Casagrande & VandenBerg 2018a, 2018b; Lin et al.
2022) were used to transform to the corresponding bands.
Furthermore, the absolute magnitudes in multiple bands were
also computed.

2.4. Training Sample

To obtain AP labels of cool dwarfs, we used recent works of
the AP estimation of LAMOST M dwarfs, crossmatching the
two catalogs of L21 and D22. In the L21 catalog, the Teff and
[M/H] are trained by APOGEE APs. Meanwhile the Teff, [M/
H], and log g are all shown in the D22 catalog, trained by the
ULySS package.
Figure 5 shows the comparison between the LAMOST

training sample (D22) and the APOGEE sample (L21). The Teff
and [M/H] of the training sample have good agreement with
APOGEE, which is expected, because the parameters are
obtained from models trained by the APOGEE data. The log g
distribution has a scatter of 0.16 dex and bias of 0.01 dex. The
log g is larger than 4.5. The AP distribution of our training
sample is shown in the bottom panels of Figure 5. The
distribution of Teff is ranging from 3200 to 4300 K, with a peak
at 4000 K. The [M/H] is centered at −0.25 dex, ranging from
−1 dex to 0.5 dex. Thus we find that there is no significant
difference in the parameters determined by L21 and D22. Since
the L21 Teff and [M/H] values are directly tied to the APOGEE
scale, we adopt these and the log g values from D22. By
selecting a signal-to-noise ratio (S/N) in the i band > 20 and
3σ clipping, we obtain a sample of 94,904 LAMOST objects
with APs. These APs are the output labels of the models that
will be trained.

3. Model Construction

To estimate the APs of Gaia cool dwarfs, we trained two ML
models (random forest, RF, and light gradient boosting machine,
LGB) using photometry in eight bands (r, i, z, J, H, K, W1, and

Figure 4. Example spectra of HD 213893 shown from 0.4 to 5 μm. The top
panel shows an optical spectrum observed by SDSS, with RSR lines in the u, g,
r, i, and z bands plotted. The bottom panel shows the infrared spectrum from
SpeX, which covers the J, H, K, W1, and W2 bands.

6 http://classic.sdss.org/dr7/instruments/imager/index.php

7 https://irsa.ipac.caltech.edu/data/2MASS/docs/releases/allsky/doc/
sec6_4a.html
8 https://wise2.ipac.caltech.edu/docs/release/allsky/expsup/
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W2) and the APs of LAMOST/APOGEE M dwarfs (Teff, log g,
and [M/H]). The feature contribution during model building was
analyzed by the SHAP method.

3.1. Algorithms

As a part of the ML, the RF method integrates multiple
decision trees to determine the result of the final vote of each tree
(Breiman 1996a, 1996b). It runs efficiently on large databases
and can handle thousands of input variables without deleting the
variables. With the development of ML, RF has extensively
worked in different fields as well as in astronomy for APs. For
example, Bai et al. (2019) predicted the effective temperature for
Gaia DR2 data by applying RF with an rms of 191 K.

In the gradient boosting family of ML models, LGB was
proposed by the Microsoft DMTK team with a performance
that exceeds other boosting decision tree tools (Ke et al. 2017).
The histogram algorithm is applied to LGB, which occupies
less memory and has a lower computational cost. Additionally,
LGB uses a leafwise strategy to grow trees. The leaves with the
largest split gain will be found and then split and looped.
Compared to levelwise, leafwise can reduce more errors and
get better accuracy when the number of splits is the same.
However, overfitting will occur when the data size is small.
Thus, there are several parameters in the algorithm to avoid
overfitting in the training process, including the learning rate,
max_depth (the defined depth of the tree), num_leaves

(leaf number in the tree), lambda_l1 (L1 regularization term),
and lambda_l2 (L2 regularization term). A detailed description
of LGB can be accessed at https://lightgbm.readthedocs.io/
en/latest/. The LGB algorithm has been used in the detection
of exoplanets (Malik et al. 2022), searches for cataclysmic
variables (Hu et al. 2021), forecasts of solar flares (Ribeiro &
Gradvohl 2021), as well as the prediction of stellar APs (Liang
et al. 2022).

3.2. Feature Testing

In order to decide whether data features should use magnitudes
or colors, the sample was divided into training and testing data,
with fractions of 0.8 and 0.2, respectively. Table 1 lists the bias
and scatter between the predicted and true APs of the testing data
set for both RF and LGB. For the Teff model, the σ of RF and
LGB using colors is less than 70 K, which is better than that using
magnitudes (see Table 1). The colors are more sensitive to Teff,
which is also actually known and has been applied to estimate the
Teff of different objects (Casagrande et al. 2021). Nonetheless, for
the [M/H] and log g, the use of colors or magnitudes provides
approximately the same scatter and bias. In order to be self-
consistent with the Teff, colors are also applied to be the features
for the estimation of the [M/H] and log g values. By comparing
the performance of the test data, colors (r− i, i− z, z− J, J−H,
H−K, K−W1, and W1−W2) were adopted for use as the data
features.

Figure 5. The upper row shows density plots comparing APs of the LAMOST training sample with those from APOGEE. The histograms inside each plot show the
difference between the two samples. The bias (μ) and scatter (σ) are annotated inside each panel. The bottom row shows histogram distributions for the Teff (left), [M/
H] (middle), and log g (right) of our training sample.
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Using colors as features, Figure 6 shows the comparison of
the predicted and true values of the testing data. The APs
estimated by RF show a similar result to those with LGB. In the
top panels, the predicted Teff has a good agreement with that of
the testing sample, having a bias of –0.5 K and a scatter of
69 K. The density distribution of [M/H] has a slightly larger
scatter of 0.2 dex. The log g distribution has a scatter of
0.05 dex without systematic bias. The residuals of the predicted
and true values are shown in the bottom panels of Figure 6,
with the photometric color error of W1−W2 for Teff and log g
and color J−H for [M/H]. The points with different
photometric errors are randomly distributed around the residual

APs. Thus, the effect of the photometric error on estimating
APs is not considered further.

3.3. Feature Importance Analysis

It is instructive to analyze the importance of features on the
APs of cool dwarfs. We applied a Python package shap to
compute the Shapley Additive exPlanations (SHAP) value of
each feature (Lundberg & Lee 2017), which can create an
explanation for the feature contribution to the model. The
SHAP values of each feature are calculated and plotted in a
SHAP summary graph. The vertical axis shows features
ordered by their importance for modeling. The color is the
feature value of the training sample. The horizontal axis
indicates the SHAP value of each feature, which is positive
and negative. The larger the absolute SHAP value of a
feature, the larger the influence of this feature during model
building.
We find similar results from both the RF and LGB methods,

but here we only present the SHAP graph for RF in terms of
Teff, [M/H], and log g in Figure 7. The top panel is the SHAP
graph for the Teff model, color coded by the feature values. The
color W1−W2 has the largest positive relationship to the
SHAP value, which means W1−W2 is the most sensitive to
variations in Teff. In the middle panel of the [M/H] model, the
near-infrared bands play a more important role during model
building.
The three most important colors J−H, W1−W2, and

H− K are all in the infrared bands, indicating that the infrared
photometry is key to estimating the [M/H]. Schmidt et al.
(2016) have also explored the colors J− K and W1−W2 as
promising metallicity indicators for the Teff and log g of the M
dwarfs. In the log g SHAP graph, the color W1−W2 is the
most effective feature, followed by the z− J and J−H. The
three most important features for AP estimation are summar-
ized in Table 2. It can be found that the near- and mid-infrared

Figure 6. Comparison diagrams of the testing samples for the true and predicted values in terms of Teff (left), [M/H] (bottom), and log g (right). The top panels show
the comparisons of the predicted values from RF and the true values, color coded by the number density of the test samples. The bottom panels indicate the difference
between the predicted and true values, color coded by the photometric color error of W1 − W2 for Teff and log g and color J − H for [M/H].

Table 1
Testing Results of the Two Methods Using Both Features of Magnitudes and

Colors

Feature =Magnitude

RF LGB

μ σ μ σ

Teff 0.441 72 −5.14 80
[M/H] −0.004 0.22 −0.006 0.23
log g −0.003 0.054 −0.003 0.057

Feature = Color

RF LGB
μ σ μ σ

Teff −0.5 69 5.7 68
[M/H] 0.004 0.23 0.006 0.22
log g 0.0 0.054 0.003 0.053

Note. Here, the magnitudes are absolute for extinction in the r, i, z, J, H, K,
W1, and W2 bands, and the colors are r − i, i − z, z − J, J − H, H − K,
K − W1, and W1 − W2. The μ and σ present the bias and scatter of the
sample.
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photometry is more sensitive to the stellar AP variation. The
importance of infrared photometry for M dwarfs has long been
known—e.g., Glass (1975) introduced M dwarfs in JHK colors
being quite distinct from M giants causing the dominating
water opacity. Almendros-Abad et al. (2022) found that the H
broad band is the most relevant feature for the estimation of the
log g of M dwarfs using near-infrared spectroscopy. Thus, our
finding of the significance of infrared photometry for the
determination of APs for M dwarfs is in line with expectations.

4. Parameterization for Gaia Cool Dwarfs

In this section, we estimate the APs of Gaia DR3 cool dwarfs
using the trained RF and LGB models in Section 3. We provide
a catalog of APs for 1,806,921 cool dwarfs in Gaia DR3. We
compare our estimated APs to those provided by the Gaia DR3
release based on Gaia BP/RP spectra and RVS spectra.

4.1. AP Catalog from Photometry

In this section, we determine the APs for Gaia cool dwarfs
using the models trained in Section 3. We provide a stellar AP
catalog of 1,806,921 cool dwarfs, containing multiband
photometry, Teff, [M/H], and log g by RF and LGB, and the
corresponding uncertainties. Here, the uncertainty is derived
from the multiple recalculations based on the Monte Carlo
method. We trained 100 different models using randomly
selected subtraining samples. Then the 100 APs for each object
are predicted by repeated ML models applied to compute the
dispersion as the uncertainty of this object. The field
descriptors of the catalog are listed in Table 3 and an example
section of the catalog is shown in Table 4. The complete
catalog is accessible from China-VO at doi:10.12149/101330.
In the catalog, the uncertainties of our APs are provided to

demonstrate the computed error. The density distribution of the
uncertainties for Teff, [M/H], and log g as a function of the
distance is shown in Figure 8. These stars are within 3 kpc and
have uncertainties of Teff, [M/H], log g less than 65 K,
0.08 dex, and 0.05 dex, respectively. Objects with larger
uncertainties are the later M spectra types, which is not

Figure 7. Feature importance graph during model building for Teff (top), [M/
H] (middle), and log g (bottom). The color is the feature value, the x-axis is the
SHAP value, and the y-axis for each feature is ordered by their contribution to
model construction.

Table 2
The Three Most Important Features That Are Sensitive to Teff, [M/H], and log

g during the Modeling Process

Teff [M/H] log g

First W1 −W2 J − H W1 − W2
Second r − i W1 − W2 z − J
Third i − z H − K J − H

Table 3
Observed and Derived Parameters for Our Catalog of Gaia Cool Dwarfs

Column Unit Description

source_id Gaia DR3 source ID
RAdeg deg R.A.
DEdeg deg Decl.
Mrmag mag Absolute SDSS r-band magnitude (1)
Mimag mag Absolute SDSS i-band magnitude (1)
Mzmag mag Absolute SDSS z-band magnitude (1)
MJmag mag Absolute 2MASS J-band magnitude (1)
MHmag mag Absolute 2MASS H-band magnitude (1)
MKmag mag Absolute 2MASS K-band magnitude (1)
MW1mag mag Absolute ALLWISE W1-band magnitude (1)
MW2mag mag Absolute ALLWISE W2-band magnitude (1)
Teff-RF K Effective temperature from RF
e_Teff-RF K Uncertainty in Teff-RF (2)
[M/H]-RF dex Metal abundance from RF
e_[M/H]-RF dex Uncertainty in [M/H]-RF (2)
logg-RF dex Surface gravity from RF
e_logg-RF dex Uncertainty in log g-RF (2)
Teff-LGB K Effective temperature from LightGBM
e_Teff-LGB K Uncertainty in Teff-LGB (2)
[M/H]-LGB dex Metal abundance from LGB
e_[M/H]-LGB dex Uncertainty in [M/H]-LGB (2)
logg-LGB dex Surface gravity from LGB
e_logg-LGB dex Uncertainty in log g-LGB (2)
flag boundary of BP − RP = 2.9 (3)

Note. (1) The photometry in each band is the absolute magnitude for reddening
and extinction. (2) The uncertainties of the APs are the dispersion of 100
predicted values, from models trained by 100 randomly selected subtraining
samples. (3) The flag is the boundary of BP − RP = 2.9 mag, flag = 1, while
BP − RP > 2.9, otherwise flag = 0.
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surprising since this is where the training set is comparatively
smaller.

Figure 9 presents the Kiel diagram of our catalog. We also
show the PAdova and TRieste Stellar Evolution Code
(PARSEC) theoretical tracks, at an age of 6 Gyr, and different

[M/H] values from PARSEC version 1.2S (Bressan et al. 2012;
Chen et al. 2015). The points in the left panel (predicted by RF)
overlap with four isochrones with [M/H]= 0, –0.25, –0.5, and
–1.0 dex, and the same isochrones are in the right panel
(predicted by LGB). It can be seen that the APs of LGB are less

Figure 8. Density distribution of the uncertainties of Teff (left), [M/H] (middle), and log g (right), along with the distance, color coded by spectra type. Here, the error
of the APs is the dispersion of 100 predicted values by repeating modeling using 100 subtraining samples.

Figure 9. Kiel diagram of our catalog: log g as a function of Teff color coded by [M/H]. The solid lines indicate PARSEC isochrones with an age of 6 Gyr and various
[M/H]s. The left panel shows the H-R diagram of our catalog predicted by RF, plotting four isochrones with the age of 6 Gyr and [M/H] of 0, −0.25, −0.5, and
−1.0 dex. The right panel indicates the H-R diagram of our catalog predicted by LGB, with the isochrones the same as in the left panel.

Table 4
The Stellar AP Catalog of Gaia Cool Dwarfs

Gaia DR3 SourceID Teff-RF [ ]M H -RF log g-RF Teff-LGB [ ]M H -LGB log g-LGB

352221678055936 3950 −0.12 4.80 3936 −0.23 4.80
354523780537216 3662 −0.34 4.92 3645 −0.40 4.91
357792251311232 3653 −0.14 4.93 3618 −0.18 4.93
360541030376576 4180 −0.29 4.67 4157 −0.26 4.64
361296944678016 3837 −0.01 4.81 3827 −0.02 4.84
363014931564416 4180 −0.36 4.64 4073 −0.35 4.66
363461608162048 3667 −0.4 4.91 3656 −0.38 4.91
363495967900032 3771 −0.32 4.87 3770 −0.32 4.86
363560391977856 3417 −0.12 4.99 3438 −0.13 4.96
367138100139136 3813 −0.29 4.86 3813 −0.23 4.84

Note. The complete table can be accessed from China-VO at doi:10.12149/101330.
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scattered than those of RF. Nonetheless, the greater scatter of
the LGB APs may actually be more physically realistic, given
the expected scatter in the APs of the objects.

4.2. Parameter Comparisons

In this section, we compare our estimated APs with three
catalogs, including APs from high- and low-resolution spectra
of Gaia DR3, as well as APOGEE spectra.

4.2.1. Comparison with APs from APOGEE Spectra

APOGEE is one of the parts of SDSS. The stellar APs and
metal abundances are determined by the APOGEE Stellar
Parameters and Abundances Pipeline (ASPCAP), which
analyzes the spectra of the APOGEE targets (Gunn et al.
2006; Holtzman et al. 2018). ASPCAP first obtains stellar
parameters by fitting the entire spectrum; second, the individual
element abundance is decided by fitting a limited spectrum
associated with the element. ASPCAP is known to have the
potential to allow eight parameters, including effective
temperature Teff, surface gravity log g, etc. We crossmatched
our sample with the APOGEE DR16 stellar AP catalog and
selected cool dwarfs by following these criteria:

1. ASPCAPFLAG= 0 and STARFLAG= 0;
2. S/N of APOGEE > 30;
3. Teff_error < 150 K, log g_error < 0.08 dex, and [M/H]

_error < 0.02 dex;
4. 3σ clipping for Teff, [M/H], and log g; and
5. 3200 K < Teff < 4200 K and log g > 4.5 dex.

Figure 10 shows the predicted APs compared with APOGEE
DR16. As both RF and LGB yield similar results, we only
display the APs from RF for comparison with the APOGEE
DR16 data. The Teff distribution has a good agreement, with a
bias of −3 K and a scatter of 55 K. This agreement was
expected, since our training sample was labeled by APOGEE
high-resolution spectra. The [M/H] distribution has a bias of
−0.03 dex and a scatter of 0.13 dex, while the log g estimation
has a bias of 0.01 dex and a scatter of 0.11 dex. Overall, the
APs of this work are in good agreement with APOGEE DR16.

4.2.2. Comparison with APs from BP/RP Spectra

We performed a crossmatch of Gaia DR3 APs from BP/RP
spectra, APs with our catalog in TOPCAT, and excluded
sources without APs. Additionally, we selected objects of Teff
< 4300 K, log g > 4 dex, and [M/H] from −1.0 to 0.1 dex to
ensure a valid comparison. A total of 1,599,278 objects were
included and are displayed in Figure 11. The yellow points
represent RF APs from the multiband photometry in our work,
while the gray points represent the results from BP/RP spectra
of Gaia DR3. The gray points suggest a wide variety of artifacts
in the Gaia DR3 APs that appear to be unphysical. In contrast,
our work provides estimations for cool dwarfs that appear to be
much more in line with those expected based on models, e.g.,
in Figure 9.

4.2.3. Comparison with APs from RVS Spectra

In addition to the APs from low-resolution BP/RP spectra,
Gaia DR3 also provides the APs from high-resolution spectra.
In this study, we select common objects between RVS and our
catalog. After performing the matching process, we were left

Figure 10. AP comparisons between APOGEE DR16 and the RF values for
this work for Teff (top), [M/H] (middle), and log g (bottom). The difference
histogram between this work and APOGEE is plotted inside each panel. The x-
axis represents the residual, and the y-axis represents the number of
occurrences.
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with 839 objects for comparison. Figure 12 illustrates the AP
comparison between RVS and this work. It is immediately
obvious from the figure that there are significant discrepancies
relative to our expectations based, for example, on the models
in Figure 9. The differences here can be attributed to the
accuracy of log g decreasing as Teff decreases (Recio-Blanco
et al. 2023).

The σ could be increasing in generating the APs, which is
probably caused by two reasons. On the one hand, the ML
method prefers to trend the high distribution of the training
sample. A bigger scatter would exist if the parameter
distribution differed from the training sample. On the other

hand, the APs of cools dwarfs from Gaia need to be used
carefully. The limitations cannot be avoided, such as the low
resolution of the spectra, the deficiency of the wavelength
band, and the lack of a template for cool dwarfs.

5. Summary

In this work, we have developed estimation models for Teff,
[M/H], and log g for cool dwarfs by applying ML methods to
optical and infrared photometric data. The main contributions
of this paper are summarized as follows.

1. We selected 94,904 objects from the stellar AP catalogs
of LAMOST and APOGEE M dwarfs, with Teff ranging
from 3200 to 4300 K, [M/H] ranging from −0.1 to
0.5 dex, and log g larger than 4.5 dex. Using multiband
photometry from optical and infrared surveys, two ML
methods (RF and LGB) were applied to construct models
to predict stellar APs. The parameters showed relative
little sensitivity to the chosen ML method and present a
best dispersion of 68 K, 0.22 dex, and 0.053 dex for Teff,
[M/H], and log g, respectively.

2. We used the SHAP values to analyze the importance of
the features during the model building for the APs.
According to the SHAP value diagram, it is found that
color W1−W2 is the most sensitive feature for both Teff
and log g, and that J−H color is most important for [M/
H]. Infrared photometry plays a crucial role in building
our AP models.

3. On the basis of the above work, we have presented a
stellar AP catalog of Gaia DR3 cool dwarfs. There are a
total of 1,806,921 objects with photometry in eight bands
and stellar APs (Teff, [M/H], and log g), as well as their
corresponding uncertainties. Comparing our catalog of
APs with those from Gaia DR3 BP/RP spectra and RVS
suggests a number of issues with the Gaia DR3 APs for
cool dwarfs.
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