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Abstract

Neutron stars show a steady decrease in their rotational frequency, occasionally interrupted by sudden spin-up
events called glitches. The dynamics of a neutron star after a glitch involve the transfer of angular momentum from
the crust (where the glitch is presumed to originate) to the liquid core, causing the core to spin up. The crust–core
coupling, which determines how quickly this spin-up proceeds, can be achieved through various physical
processes, including Ekman pumping, superfluid vortex-mediated mutual friction, and magnetic fields. Although
the complex nature of these mechanisms has made it difficult to study their combined effects, analytical estimations
for individual processes reveal that spin-up timescales vary according to the relative strength of Coriolis, viscous,
and mutual friction forces, as well as the magnetic field. However, experimental and numerical validations of those
analytical predictions are limited. In this paper, we focus on viscous effects and mutual friction. We conduct
nonlinear hydrodynamical simulations of the spin-up problem in a two-component fluid by solving the
incompressible Hall–Vinen–Bekarevich–Khalatnikov equations in the full sphere (i.e., including r= 0) for the first
time. We find that the viscous (normal) component accelerates due to Ekman pumping, although the mutual
friction coupling to the superfluid component alters the spin-up dynamics compared to the single-fluid scenario.
Close to the sphere’s surface, the response of the superfluid is accurately described by the mutual friction timescale
irrespective of its coupling strength with the normal component. However, as we move deeper into the sphere, the
superfluid accelerates on different timescales due to the slow viscous spin-up of the internal normal fluid layers.
We discuss potential implications for neutron stars, and requirements for future work to build more realistic
models.

Unified Astronomy Thesaurus concepts: Hydrodynamical simulations (767); Neutron stars (1108); Neutron star
cores (1107); Rotation powered pulsars (1408); Stellar interiors (1606)

1. Introduction

Neutron stars are the densest objects in the Universe and are
directly observable across the electromagnetic spectrum, e.g.,
as radio pulsars, gamma-ray pulsars, or as X-ray binaries. Their
rotation rates can be measured with great precision, revealing a
remarkably stable spin-down trend that is traditionally
attributed to the loss of rotational energy caused by the
emission of electromagnetic radiation (M. F. Ryba &
J. H. Taylor 1991a, 1991b; V. M. Kaspi et al. 1994). One of
the most exciting aspects of neutron stars is that, in terms of
their high densities, these compact objects are cold and thus
quantum mechanics strongly influences their interiors. In
particular, the neutrons and protons in the fluid core of the
star, as well as the neutrons permeating the inner part of the
solid crust, form Cooper pairs. This allows them to condense
into a BCS-type superfluid state (or, in the case of the protons,
a superconducting state) which impacts on the large-scale
stellar dynamics (see, e.g., N. Chamel 2017b; B. Haskell &
A. Sedrakian 2018). Specifically, macroscopic superfluidity
affects the neutron star rotation. In roughly 15% of isolated
neutron stars with characteristic ages younger than 107 yr, the
secular spin-down trend is interrupted by glitches, i.e.,
instances where the rotation frequency of the star suddenly

increases (see, e.g., C. M. Espinoza et al. 2011; M. Yu et al.
2013; J. R. Fuentes et al. 2017; D. Antonopoulou et al. 2022;
M. Millhouse et al. 2022). These glitches have fractional sizes
of ΔΩ/Ω∼ 10−10−10−5 (where Ω is the star’s rotation
frequency and ΔΩ the glitch size) and have been associated
with the macroscopic manifestation of superfluidity inside
neutron stars. Although the global and mesoscopic flow
patterns in the interior of a neutron star are unknown,
laboratory experiments using superfluid helium and ultracold
gases have shown that such quantum condensates rotate by
forming an array of quantized vortices whose areal density
determines the spin rate of the whole superfluid body (e.g.,
W. F. Vinen 1961; Z. Hadzibabic et al. 2006; V. Schweikhard
et al. 2007; G. P. Bewley et al. 2008). These findings have
motivated the development of several vortex-based models for
the origin of glitches (see, e.g., the review by B. Haskell &
A. Melatos 2015).
In the standard superfluid glitch model (e.g., P. W. Anderson

& N. Itoh 1975), the observed spin-up is explained as follows:
While the outer crust (and all the stellar components that are
tightly coupled to it) slows down owing to electromagnetic
energy losses, the neutron superfluid does not. This is due to
the fact that bulk superfluid spin-down corresponds to a
decrease in areal vortex density, achieved by vortices moving
radially outwards and annihilating at the outer boundary of the
superfluid region. However, in the inner crust, vortices can
become pinned to the lattice nuclei, effectively preventing the
neutron superfluid from spinning down and building up an
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angular momentum reservoir over time. Once the difference
between the stellar spin rate and that of the neutron superfluid
in the inner crust exceeds a critical threshold, vortices unpin
catastrophically and transfer their excess angular momentum to
the crust. Angular momentum conservation is thus responsible
for the increase in crustal rotation rate, producing what we
observe as a glitch.

However, during a glitch the redistribution of angular
momentum is not only limited to the crust. In fact, angular
momentum is also transferred to the multicomponent fluid core,
causing the innermost neutron star regions to spin up as well
(V. Graber et al. 2018; E. Gügercinoğlu & M. A. Alpar 2020;
P. M. Pizzochero et al. 2020). This process is extremely
important, as the resulting fluid motions control the relaxation
and recovery phase of the neutron star after a glitch, and may
excite oscillation modes and nonaxisymmetric perturbations,
triggering gravitational waves (GWs; M. F. Bennett et al. 2010;
A. Passamonti & N. Andersson 2011; R. Prix et al. 2011;
P. D. Lasky 2015; G. Yim & D. I. Jones 2020; G. Yim et al.
2024). Recent calculations have suggested that GWs triggered
by glitches might be marginally detectable with Advanced
LIGO at design sensitivity, while they are likely detectable for
third-generation detectors such as the Einstein Telescope
(J. Moragues et al. 2023). Therefore, understanding the global
dynamics of multicomponent fluids and core–crust coupling
following a glitch is of great relevance.

Before discussing previous research on the spin-up of
superfluids, it is helpful to comment on the classic spin-up
problem of a (single-component) viscous fluid first. Imagine a
container filled with water that is rotating uniformly. If the
container is suddenly accelerated, the interior fluid is observed
to spin up on a timescale that is much shorter than what it
would be due to viscous diffusion. This phenomenon, known
as Ekman pumping (e.g., H. P. Greenspan & L. N. Howard
1963; E. R. Benton & A. Clark 1974), proceeds as follows: A
viscous boundary layer forms on a timescale comparable to the
rotation period of the container. While the interior fluid initially
continues to rotate at the original container speed, the fluid in
the boundary layer rotates at the new (and larger) container
speed. Low-angular-momentum fluid entering the boundary
layer from the interior is subsequently replaced by fluid with
greater angular momentum (convected inward to conserve
mass) in such a way that the interior fluid achieves solid-body
rotation at the new container’s speed.

Superfluids are more complex than classical fluids. Based on
initial studies of superfluid helium, their hydrodynamics (valid in
the limit where length scales in the flow are longer than the
average separation between vortex lines) are typically described
using two separate components (L. Tisza 1938; L. Landau 1941;
C. F. Barenghi et al. 1983). The first component is a pure
superfluid of zero viscosity, and the second component is a
“normal fluid” (the thermal excitations of the superfluid) which
has a finite viscosity. The relative fraction of these two
components depends strongly on temperature T, as the normal
component vanishes as we approach T→ 0 while the superfluid
fraction disappears at the critical temperature Tc. Both
components are coupled by a friction force that arises from the
scattering of thermal excitations off the normal cores of the
vortex lines (an effect referred to as mutual friction).

D. S. Tsakadze & S. D. Tsakadze (1973, 1975) and
J. S. Tsakadze & S. J. Tsakadze (1980) investigated the spin-
up (and spin-down) of a vessel filled with He II (superfluid 4He

that exists at temperatures below the “lambda point,” Tλ=
2.17 K) for different temperatures, rotation rates, and container
spin changes. Unlike for the normal fluid, they found that the
spin-up of a superfluid occurs on much longer timescales that
have a tendency to decrease with increasing temperature. A
detailed theoretical interpretation of Tsakadzes’ results was
given by A. Reisenegger (1993), who studied the laminar spin-
up of He II confined between two parallel planes (see also
C. A. van Eysden & A. Melatos 2011, 2013, for a treatment of
the same problem using different geometries). At low
temperatures, the spin-up process is dominated by the mutual
friction between the superfluid vortex lines and a viscous
boundary layer coupled to the container. This friction produces
an Ekman-like circulation that transports the vortex lines and
angular momentum inwards. In contrast, at higher tempera-
tures, much closer to Tλ, the spin-up mechanism is dominated
by Ekman pumping in the normal fluid. The superfluid also
spins up because it is coupled to the normal fluid by the mutual
friction force.
A comprehensive numerical study of two-component spin-

up in the context of superfluid neutron stars was conducted in a
series of papers by C. Peralta et al. (2005, 2006, 2008),
focusing on understanding the global flow pattern and a range
of superfluid instabilities in differentially rotating spherical
shells. Note that in the context of neutron stars, the two
components do not correspond to an inviscid superfluid
component and the finite-temperature condensate of excitations
as in He II. Instead, mature neutron stars, whose internal
temperatures fall well below the critical temperatures for the
onset of neutron and proton superfluidity (e.g., W. C. G. Ho
et al. 2015), are typically decomposed into a neutron superfluid
and a normal conducting particle conglomerate that combines
the electrons and protons, i.e., superconductivity is ignored
(e.g., N. Andersson et al. 2006; K. Glampedakis et al. 2011).
Using the same numerical model as C. Peralta et al. (2005),
G. Howitt et al. (2016) investigated the recovery phase after an
induced glitch. They found that the crust’s angular velocity can
evolve in different ways, depending on the strength of the
mutual friction force and the location where the glitch is
originated.
Besides the investigations mentioned above, the specific

problem of the spin-up of a two-component superfluid in non-
plane-parallel geometries remains relatively unstudied, even
experimentally. Furthermore, previous direct numerical simula-
tions in three dimensions have been limited to simulating
shells, i.e., the coordinate singularity at r= 0 is avoided by
making a “cutout” in the center of the sphere, forcing the use of
additional boundary conditions at the inner surface of the shell.
While the full impact of a core cutout on the global solution is
unclear, it certainly affects the flow morphology and spin-up
timescales. Determining this effect requires extensive computa-
tional calibration, experimentation, and simulations on the full
sphere. Using new techniques in the open-source pseudo-
spectral framework Dedalus (D. Lecoanet et al. 2019; G. Vasil
et al. 2019; K. J. Burns et al. 2020), we have performed the first
numerical simulations of spherical spin-up that includes r= 0
without the need for a cutout.
In Section 2, we describe the set of equations that model the

hydrodynamics of a two-component superfluid, and discuss the
relevant timescales involved in the spin-up problem. In
Section 3, we present the physical model and the numerical
code used to perform the simulations. In Section 4, we show
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our main results. We first discuss the spin-up of a single-
component fluid in spherical geometry and then address the
two-component setup, focusing specifically on the timescale at
which the interior flow spins up. Finally, we conclude in
Section 5 with a discussion.

2. Multifluid Hydrodynamics

2.1. Equations of Motion

We model the neutron star as a system of two coupled fluids:
a superfluid of neutrons of mass density ρs and velocity us, and
a normal (viscous) fluid of protons and electrons of density ρn
and velocity un.

4 While the electrons remain in a normal state,
protons are expected to undergo a transition into a super-
conducting state soon after the neutron star is born
(J. Sauls 1989). However, we ignore this effect to keep the
analysis as simple as possible. For the same reason, we also
assume that both fluids are incompressible (i.e., ρs and ρn are
constants) and have zero temperature. Finally, under real
conditions inside neutron stars, protons and neutrons are also
coupled via the so-called entrainment effect, in which the
momentum of one species is partly carried along by the other
species (G. Mendell 1991; A. D. Sedrakian & D. M. Sedrak-
ian 1995). Neglecting the entrainment is likely a reasonable
approximation in the star’s outer core (see, e.g., B. Carter et al.
2006), while entrainment significantly impacts on the stellar
crust (e.g., N. Andersson et al. 2012; N. Chamel 2013, 2017a;
J. A. Sauls et al. 2020). Since we are interested in the spin-up of
the bulk interior fluid, we neglect entrainment in what follows.

Under the model assumptions described above, the fluid
equations that capture the hydrodynamics of the system are
similar to the Hall–Vinen–Bekarevich–Khalatnikov (HVBK)
equations used to study laboratory superfluid helium
(H. E. Hall & W. F. Vinen 1956a, 1956b; C. F. Barenghi &
C. A. Jones 1988):

˜ ( )m n
r

  ¶
¶

+ ⋅ = - + +
u

u u u
F

t
, 1n

n n n n
p

2 MF

˜ ( )m
r

 ¶
¶

+ ⋅ = - -
u

u u
F

t
, 2s

s s s
s

MF

( ) ⋅ = = ⋅u u0 , 3n s

where ρ= ρs+ ρn is the total density, ν is the kinematic
viscosity of the normal fluid, and m̃s n, denotes the chemical
potential of the superfluid (subscript s) and normal component
(subscript n), respectively. The pressure gradients and gravita-
tional acceleration are taken to be constant and absorbed within
the chemical potential terms. While this is not ideal in the full
sphere, we adopt this assumption to reduce the complexity of
our problem and compare our results with previous work
(C. A. van Eysden & A. Melatos 2013). The mutual friction
force FMF (responsible for coupling both fluids) arises from the
interaction between the quantized superfluid vortex lines and
the normal fluid. We present and discuss the mutual friction
force in Section 2.2.

2.2. Coupling Due to Mutual Friction

Several mechanisms have been suggested to couple the
superfluid and the normal particle conglomerate in the neutron
star interior. For example, both components are connected via
the dissipative scattering of electrons off of the vortex magnetic
field (J. A. Sauls et al. 1982; M. A. Alpar et al. 1984;
N. Andersson et al. 2006). Another possibility is the magnetic
interaction between vortices and quantized flux tubes provided
that protons form a type-II superconductor (see, e.g., M. Rud-
erman et al. 1998; B. Link 2003; T. Sidery & M. A. Alpar
2009; A. Sourie & N. Chamel 2020). In the following, we
focus on the former mechanisms due to the similarities of the
underlying prescription with laboratory superfluid helium. In
particular, the resulting mutual friction force can be derived by
balancing the forces acting on each individual vortex, namely
the Magnus force exerted by the neutrons and the resistive
force exerted by the scattered electrons. The mutual friction force
further depends on the configuration of the vortices (C. Peralta
et al. 2005). Vortex lines have a tendency to resist bending,
which results in a tension force that can be included in
Equation (2), and affects the form of FMF (E. L. Andronikashvili
& Y. G. Mamaladze 1966; R. N. Hills & P. H. Roberts 1977).
For simplicity, we ignore vortex tension and vortex tangles
triggered by any source of superfluid turbulence (C. J. Gorter &
J. H. Mellink 1949; W. I. Glaberson et al. 1974; N. Andersson
et al. 2007), and adopt the form that characterizes a (locally)
straight array of vortices. In this approximation, the mutual
friction force is given by

[ ( ˆ ( )) ( )] ( )w w wr= ´ ´ + ¢ ´ F u u , 4s s s sn s snMF

where = -u u usn s n, ωs=∇× us, and  and ¢ are
dimensionless coefficients related to the drag force experienced
by individual neutron vortices. Dynamically, the term propor-
tional to  is dissipative, whereas the second term proportional
to ¢ is conservative (N. Andersson et al. 2006). Calculations of
mutual friction from electron scattering in neutron stars
suggests ¢ » 2, with ~ ´ - 4 10 4 (G. Mendell 1991;
N. Andersson et al. 2006).
We can get an estimate of the crust–core coupling timescale

by calculating the body-averaged torque due to mutual friction
(e.g., M. Antonelli et al. 2022). For simplicity, let us assume
that the neutron superfluid and the normal component rotate
uniformly with angular velocities Ωs and Ωn around the z-axis,
respectively, so that the corresponding fluid velocities at a
given position r are us=Ωs× r and un=Ωn× r. Using
spherical coordinates (r, θ, f), the mutual friction force reads

( ˆ ˆ ˆ ) ( )r q q= - W DW + ¢ - ¢f  F e e er2 sin cos , 5s s sn r zMF

where DW = W - Wsn s n. We can then determine the cross
product as

( ˆ ˆ ) ( )r q q´ = W DW - ¢q f r F e er2 sin cos . 6s s snMF
2

The torque due to mutual friction is obtained by volume-integrating
Equation (6). Note that since ˆ ˆ ˆf f= - +fe e esin cosx y, the
component µ ¢ vanishes when performing the integration over
f. Similarly, since ˆ ( ˆ ˆ ) ˆq f f q= + -qe e e ecos cos sin sinx y z, only

4 We assume that protons and electrons are locked together due to
electromagnetic coupling (G. Mendell 1991).
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the êz component of the torque survives. Therefore,

ˆ

ˆ ( )

ò
ò r q

= ´

=- W DW

=- W DW





N r F

e

e

dV

r dV

I

,
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2 , 7

V

s sn
V

s z

s sn s z

MF MF

2 2

where we identified the integral in the second line as the
moment of inertia of the superfluid of neutrons Is (recall that in
spherical coordinates, the perpendicular distance to a point at r
from the axis of rotation is q=r̂ r sin ). Note that (as we
would expect) the torque only depends on the dissipative part
of the mutual friction and not on the conservative part, i.e., the
contribution from ¢ is zero. Finally, since NMF∼ΔL/τMF,
where D ~ DWL Is sn is the change in the angular momentum
due to the applied torque, from Equation (7) we extract the
characteristic mutual friction spin-up timescale:

( )⎛
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⎝

⎞
⎠
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W
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-
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2
80 s
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. 8

s
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rot
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1

As expected, the larger the friction coefficient , the shorter the
coupling timescale.

For comparison, the Ekman time of the normal component is

( )t ~
W

1

Ek
, 9

n
Ek

where Ek= ν/2ΩnR
2 is the Ekman number (assuming the

characteristic length to be the radius R of the star). For
electron–electron scattering in the outer core of a neutron star,
the viscosity is given by
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(E. Flowers & N. Itoh 1979; C. Cutler & L. Lindblom 1987;
N. Andersson et al. 2005), where xn= ρn/ρ is the mass fraction
of the normal component (which is equivalent to the proton
mass fraction, given that in the interiors of neutron stars the
mass density of the electrons is negligible in comparison to that
of the protons), and T is the temperature. Then, for typical
conditions in neutron stars, we estimate the Ekman number as
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and the Ekman timescale as
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3. Experiment and Numerical Methods

We use hydrodynamical simulations to investigate the mutual
friction coupling in a two-component fluid, and the global flow

pattern after the spin-up due to a glitch. In doing so, we model
the following situation: Imagine a sphere containing a neutron
superfluid and a normal fluid of protons and electrons. Both
components initially rotate with the same angular frequency Ω0

around the vertical axis. Then, we suddenly increase the rotation
rate of the normal component at the surface of the sphere to
Ω0(1+ ε), where ε= 1 is the change in the rotation frequency
(see Figure 1). We set out to answer the question: How does the
neutron superfluid respond to such sudden acceleration, i.e., to a
glitch initiated in the solid crust of a neutron star?
Unlike previous works that have investigated similar

problems on spherical shells (e.g., C. Peralta et al. 2005,
2006, 2008; G. Howitt et al. 2016), we adopt the entire
spherical domain (i.e., including the singularity at r= 0) for the
first time. We nondimensionalize the system of equations
presented in Section 2 using the initial rotation frequency W-

0
1

and the star’s radius R, as units of time and length, respectively.
Under this choice, the evolution of the flow is characterized by
the Ekman number Ek, the mass fraction of each component
(xs= ρs/ρ and xn= ρn/ρ), and the coefficients of mutual
friction  and ¢ .
In the bulk of a typical neutron star, the Ekman number is

very small (i.e., Ek∼ 10−9; see Equation (11)). Consequently,
viscous boundary layers with a characteristic scale of
d ~n R Ek are very small (i.e., of order δν∼ 30 cm for
R∼ 10 km), demanding high spatial resolutions to fully resolve
them. As this is beyond the limitations of current computational
capabilities, we restrict our study to Ek∼ 10−4

–10−3. We also
take xs= 0.95 and xn= 0.05, which are similar to the values
expected for neutron star interiors and superfluid helium (see,
e.g., C. F. Barenghi et al. 1983; K. Glampedakis et al. 2011;
V. Graber et al. 2017). We further adopt ¢ »  2, with 
ranging from 10−3 to 1, in order to explore the regimes of weak
mutual friction (most likely relevant for neutron stars; see
Section 2.2) and strong mutual friction (relevant for laboratory
experiments with superfluid helium; J. S. Tsakadze &
S. J. Tsakadze 1980; C. F. Barenghi et al. 1983). At this point
we also highlight that we do not find differences in our results
when changing the ratio ¢  or neglecting ¢ , which suggests
that ¢ does not play a dominant role in the spin-up dynamics

Figure 1. Illustration of our simplified model for the spin-up of a two-
component fluid following a glitch. As discussed in the text, both components
coexist everywhere inside the sphere, and initially both rotate with the same
angular frequency Ω0 around the z-axis. At t0, we force the azimuthal velocity
of the normal component to follow ( )e qW + R1 sin0 , i.e., the rotation
frequency increases by a factor ε with respect to the initial value.
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(as also found by C. A. van Eysden & A. Melatos 2013).
Finally, we use a relative glitch size of ε= 10−3. While larger
than observed glitches (e.g., C. M. Espinoza et al. 2011;
A. Basu et al. 2022), we opt for this value to reduce
computation times of steady flow patterns.

The boundary conditions satisfied by the normal fluid
component at the star’s surface (r= R= 1) are impenetrable
and no-slip, i.e., un,r= un,θ= 0 and ( )e q= W +fu R1 sinn, 0 .
For the neutron superfluid, the boundary conditions depend on
the interaction between vortex lines and the surface (see, e.g.,
C. Peralta et al. 2005, for an extensive discussion on this topic).
For simplicity, we impose impenetrable and stress-free
boundary conditions (us,r= ∂r(us,θ/r)= ∂r(us,f/r)= 0).

We solve Equations (1)–(3) along with the boundary
conditions using the pseudo-spectral solver Dedalus (K. J. Burns
et al. 2020). The variables are represented in spherical harmonics
for the angular directions and Jacobi polynomials for the radial
direction. All our simulations have = =L N 255max max , where
Lmax is the maximum spherical harmonic degree, and Nmax is
the maximal degree of the Jacobi polynomials used in the
radial expansion. Therefore, the number of radial, latitudinal,
and longitudinal points are (Nr, Nθ, Nf)= (256, 256, 512),
respectively. For time stepping, we use a second-order semi-
implicit Backward Differentiation Formula (BDF) scheme
(SBDF2; D. Wang & S. J. Ruuth 2008), where the linear and
nonlinear terms are treated implicitly and explicitly, respectively.
To ensure numerical stability, the size of the time steps is set by
the Courant–Friedrichs–Lewy (CFL) condition, using a safety
factor of 0.2 (based on trial and error). To prevent aliasing errors,
we apply the “3/2 rule” in all directions when evaluating
nonlinear terms.

4. Analysis and Results

Since our simulations, to the best of our knowledge, are the
first to treat the spin-up problem in the full sphere, we first
investigate the spin-up of a purely viscous (normal) flow due to
Ekman pumping in Section 4.1. Then, in Section 4.2, we
investigate the spin-up of a two-component fluid in detail. In
what follows, all numerical results are presented in dimension-
less form.

4.1. Spin-up of a Purely Viscous Fluid

Once the surface of the sphere has been suddenly
accelerated, a viscous boundary layer forms, wherein the
flow rotates faster than in the interior of the fluid (far away
from the boundary). For our experiment with a viscous
single-component fluid, we set Ek= 5× 10−3 which corre-
sponds to a boundary layer of thickness δν∼ 0.07R. This
layer acts as a source of angular momentum and accelerates
the bulk of the fluid by the process of Ekman pumping
outlined previously.

Figure 2 highlights the evolution of the azimuthal flow
(top panels), and the rotation frequency ( )qW =t r, ,n

( ) ( )q qfu t r r, , sinn, (bottom panels), following the initial
acceleration of the boundary. Both quantities are displayed
at different times, relative to the initial corotation state.
We find that the angular momentum is first distributed to the
equatorial region and then recirculated inwards. As the
evolution progresses, the azimuthal velocity becomes axisym-
metric with constant magnitude over cylindrical surfaces as

a direct consequence of the Taylor–Proudman theorem
(J. Proudman 1916; G. I. Taylor 1917). As a result, we find

( )e q W +fu r1 sinn, 0 , i.e., a state of solid-body rotation
with Ωn≈Ω0(1+ ε).
As discussed in Section 2.2, the spin-up timescale of a viscous

flow due to Ekman pumping is ( )t ~ W1 EkEk 0 , which is
» W-14 0

1 in our example. Because the fluid accelerates first at the
equator and the velocity then becomes constant over cylindrical
surfaces, we can follow the spin-up behavior in time by
calculating the rotation frequency at fixed colatitude θ= π/2 (the
equator) for different radial locations. Our results are shown in
the left panel of Figure 3. We find that close to the surface (blue
curves), the flow accelerates on a timescale that is much shorter
than that for the interior layers (purple curves). However, as
expected, the bulk of the fluid spins up to the new angular
velocity within an Ekman timescale (dashed vertical line).
Finally, the meridional streamlines of the viscous flow exhibit a
single cell in each semi-hemisphere (symmetric with respect to

Figure 2. Azimuthal component of the velocity and rotation frequency (both
with respect to the initial state) at different times after the sudden change in the
boundary’s rotation rate (top and bottom panels, respectively). The results
show the spin-up of a purely viscous fluid with Ekman number Ek = 5 × 10−3.
As expected, the spin-up occurs due to Ekman pumping and angular
momentum is distributed from the equator to the interior, with the azimuthal
velocity being constant on cylindrical surfaces at fixed radius.
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the equator but circulating in opposite directions), remaining
similar at all times (see middle and right panels of Figure 3).

4.2. Spin-up of a Two-component Fluid

The spin-up of a two-component fluid, where one comp-
onent is superfluid, differs from that of a purely viscous fluid
because the normal (viscous) fluid and superfluid components
coexist and interact with each other. Yet, the initial evolution of
the system is qualitatively similar: Once the normal component
of the flow is suddenly accelerated at the surface, the interior
layers spin up due to Ekman pumping. As soon as differential
rotation builds between the two fluids, the superfluid comp-
onent couples to the normal flow due to mutual friction,
accelerating on a much longer timescale that depends on the
magnitude of the friction coefficient  and the Ekman number
Ek. In all our simulations the system reaches a steady state
where the normal component and the superfluid corotate with
the same angular frequency across the entire spherical domain.

Figure 4 shows the evolution of the azimuthal superfluid
flow (relative to the initial state) at different times after the
initial acceleration of the boundary. We only display the
superfluid and exclude the normal component since it evolves
in a qualitatively similar way to the purely viscous case
discussed in Section 4.1. As for spin-up via Ekman pumping in
a viscous flow, the superfluid’s azimuthal velocity becomes
axisymmetric, reaching a state of solid-body rotation with
Ωs≈Ω0(1+ ε). Time series of the angular frequency at
different radial locations show that close to the surface (blue
curves) the superfluid accelerates on a timescale that is
consistent with mutual friction, while it takes longer for the
interior layers (purple curves) to spin up (see Figure 5). We
note that near the center, we observe small oscillations in the
angular frequency, which may result from the more complex
flow pattern near r= 0, and interactions between the superfluid
and the normal component. Nonetheless, the oscillations fade
away over time and do not affect our measurements of the spin-
up time (see below) of the innermost layers.

Figure 6 displays poloidal streamlines for two special cases
using Ek= 5× 10−3, where » 0.003 (weak coupling, upper
panels) and » 0.75 (strong coupling, lower panels). We first
note that in the weak-coupling regime, the flow pattern of the
superfluid and normal component seem to evolve indepen-
dently from each other (due to the small mutual friction).
However, in the strong-coupling regime, the superfluid is
dragged along with the normal component, so that both flow
patterns exhibit similar structures at all times. In general, the
meridional circulation of the system is complex and resembles
structures reported in previous studies using spherical shells
(e.g., C. Peralta et al. 2005, 2006, 2008). We also observe that,
unlike for the spin-up of the purely viscous fluid, where a

Figure 3. Left panel: change in the rotation frequency of a viscous fluid, ΔΩn = Ωn − Ω0, as a function of time since the imposed change at the boundary. Ωn is
measured at the equator and at different radial locations (distinguished by different colors as shown in the plot). The results presented in this figure correspond to a run
using Ek = 5 × 10−3, where the Ekman timescale is t » W-14Ek 0

1 (dashed vertical line). At later times, the fluid reaches solid-body rotation withΔΩn ≈ εΩ0 = 10−3.
We do not show results for r closer to 0 because small fluctuations in the azimuthal flow velocity introduce plotting artifacts when calculating the rotation frequency
via ( )qW = fu r sinn n, . Middle and right panels: meridional streamlines at different times. The single-cell patterns in the northern and southern hemispheres circulate
in opposite directions and persist across the simulation.

Figure 4. Azimuthal component of the superfluid velocity with respect to the
initial state at different times during the spin-up. Results are shown for the run
using Ek = 5 × 10−3 and » 0.01. The spin-up occurs on longer timescales
compared to the viscous case owing to mutual friction. Angular momentum is
distributed from the equator to the interior, with the azimuthal velocity being
constant on cylindrical surfaces at fixed radii.
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single meridional circulation cell persists per semi-hemisphere
at all times (see Figure 3), the interaction between the normal
and superfluid components causes the flow pattern to contain
multiple circulation cells with smaller Taylor vortices
(R. Hollerbach 1998) emerging and disappearing intermit-
tently, particularly at early times after the acceleration of the
boundary. Once both components of the fluid achieve solid-
body rotation, the profile of the meridional circulation becomes

steady in time. However, only in the weak-coupling regime
does the flow pattern transition to a single cell, similar to the
purely viscous case.
We are interested in characterizing the spin-up timescale of

the superfluid, tspin-up, in the interior of the star. Since the fluid
rotates with constant angular frequency over cylindrical
surfaces in radius, we focus on the equatorial plane at different
radial locations. Then, to measure tspin−up, we create time series
of ΔΩs (such as the ones displayed in Figure 5), and fit a
function of the form ( )eDW = - - -e1s

t tspin up to extract the
timescale.
Figure 7 shows the results for all our simulations. At the

surface (r= R), we find that, regardless of the value of  and
Ek, there is an excellent agreement between our measurements
and the timescale τMF expected from mutual friction. Close to
the surface, within the viscous boundary layer of the normal
component (r≈ 0.97R–R, blue markers), the mutual friction
timescale continues to capture the spin-up behavior well for
low values of , while small deviations are observed for
 0.1. In general, deviations from τMF become significant in

the interior regions, particularly when the coupling strength
between the normal and superfluid components increases. This
is expected, since at larger  the dynamics of the superfluid
become strongly influenced by the normal component. Note
that for the regions far from the boundary (r� 0.9R) there
seems to be a change in the slope of the curves around » 0.1.
As we discuss later, this could be related to a change in the
coupling regime.
Comparing the left and right panels in Figure 7 constructed

from runs with two different Ekman numbers (Ek= 5× 10−3

and Ek= 5× 10−4, respectively), we also find that the spin-up
timescale of the interior layers of the superfluid becomes longer
for smaller Ek. Consequently, the deviations from τMF become
more noticeable. This makes sense because the smaller the
viscosity (or the smaller the Ekman number), the longer it takes
for Ekman pumping to occur, delaying first the spin-up of the
interior layers of the normal fluid, and subsequently the spin-up
of the bulk of the superfluid.
These results suggest that tspin-up for the interior layers

(r� 0.9R) is not solely a function of . Instead, the timescale
should also depend on the Ekman number (Ek) and/or the
radial position r within the sphere. In particular, the fact that the
spin-up time of the interior layers in the simulations shows a
similar slope as a function of  for both values of Ek (as
discussed above, this is true for  0.1 but not for smaller
values of ) suggests a power-law relationship of the form

( ) [ ( )] ( ) ( )t t~ » Da g a g
-

- - t r C L r C R , 13spin up Ek Ek

where C, α, and γ are constants, and we estimate the relevant
length scale L(r) for calculating the Ekman time for a fluid
layer at r as L(r)≈ΔR= R− r.
When fitting Equation (13) to our measured spin-up

timescales, we find that α≈ 0.85 and γ≈ 0.5 are the best
parameters to describe the data when  0.1 (the strong-
coupling regime), regardless of the value of the Ekman number
(see Figure 8). This dependence with the Ekman time provides
reasonable fits even for values down to » 0.01, but only for
the small Ek runs (bottom panel of Figure 8). The
proportionality constant is C= 3.2 for Ek= 5× 10−3 and
C= 4.6 for Ek= 5× 10−4. The characterization of the time-
scale for  0.1 is complicated due to the large dispersion in
the measurements. A possible reason for this dispersive

Figure 5. Change in the rotation frequency of the superfluid component,
ΔΩs = Ωs − Ω0, as a function of time since the imposed acceleration of the
boundary. Ωs is measured at the equator and at different radial locations
(distinguished by different colors as highlighted in the plot). Results are shown
for the run using Ek = 5 × 10−3 and » 0.01, where the Ekman and mutual
friction timescales are t » W-14Ek 0

1 and t » W-43MF 0
1 (dashed vertical line),

respectively. At later times, the fluid reaches solid-body rotation with
ΔΩs ≈ εΩ0 = 10−3.

Figure 6. Meridional streamlines for the normal (orange) and superfluid
(green) components. Results are shown at two particular times, for runs at
Ek = 5 × 10−3 using » 0.003 and ≈0.75, to illustrate how the strength of
coupling between the two components influences the flow pattern. Note that the
streamlines are similar for the strong-coupling regime (bottom panels), and
different for the weak-coupling regime (upper panels).
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behavior could be that weaker coupling between the superfluid
and the normal component weakens the dependence of tspin-up
with Ek, such that a function of the form of Equation (13) is no
longer valid in this regime. This, together with the fact that
τEk∝ΔR, with ΔR being smaller closer to the surface, causes
the ratio between the two timescales to increase as we move

toward the surface. Moreover, the dispersion for low  values
is also smaller for the smaller Ek case. This could be due to the
fact that transport of angular momentum by viscous diffusion
and not Ekman pumping might be an additional factor that
modifies the dynamical coupling timescales of the two-fluid
system. This scenario could be tested with additional simula-
tions at even smaller values of Ek to see whether the dispersion
decreases further. However, such explorations were beyond the
scope of this paper and we leave this for future work.

5. Discussion

5.1. Summary of Our Results

In this work, we have studied the spin-up dynamics of a two-
component system, composed of a superfluid and a normal
(viscous) fluid, in the context of neutron star glitches. Unlike
previous work, which was limited to conducting simulations of
spherical shells—imposing artificial boundary conditions on
the inner surface and potentially altering the dynamics—we
solve the nonlinear HVBK equations for such a superfluid
system for the entire sphere, including r= 0, for the first time.
We confirm that in the absence of the superfluid component,
the spin-up of a purely viscous fluid occurs due to the
phenomenon of Ekman pumping, and the bulk of the fluid
responds to the sudden acceleration of the surface of the sphere
on a timescale ( )t ~ W1 EkEk 0 (see left panel in Figure 3).
The resulting meridional flow is characterized by a single cell
in each semi-hemisphere of the sphere which persists at all
times (see middle and right panels in Figure 3).
The spin-up of a two-component fluid is more complex and

involves different timescales. The normal component of the
fluid spins up due to Ekman pumping, but only the surface
layers accelerate on an Ekman time τEk. The interior flow
responds on a time span that is longer than τEk. This is because
the mutual friction force, which couples the normal and the
superfluid component, drives an exchange of angular momen-
tum from the normal component to the superfluid component.

Figure 7. Spin-up timescale, tspin-up, of the superfluid component as a function of the mutual friction coefficient  . Panels (a) and (b) show results for simulations at
Ek = 5 × 10−3 and Ek = 5 × 10−4, respectively. Colors distinguish between measurements at different radial locations in the interior flow (0.2R–0.9R, purple scale)
and locations within the viscous boundary layer of the normal component (0.97R–1R, blue scale). We also show the spin-up timescale of the superfluid expected from
mutual friction (solid line) and the Ekman and viscous spin-up timescales of the normal component (dashed and dotted lines). We do not show results for r closer to 0
because small fluctuations in the azimuthal flow velocity introduce plotting artifacts when calculating the rotation frequency ( )qW = fu r sins s, (see text).

Figure 8. Ratio between tspin-up and ( )t Da REk (where ΔR = R − r corresponds
to the characteristic length scale used to determine the Ekman time at a given r)
as a function of the mutual friction coefficient . Panels (a) and (b) show
results for simulations at Ek = 5 × 10−3 and Ek = 5 × 10−4, respectively. As
discussed in the text, α = 0.85 allows one to superpose the measurements of
the spin-up timescales at different radial locations r for  0.1. The black
solid lines are straight lines of slope −1/2 in log–log space to illustrate the
dependence on  for  0.1.
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This consequently delays the response of the internal normal fluid
layers, while also causing the superfluid to spin up on multiple
timescales (Figure 5). The surface layers of the superfluid
accelerate on a mutual friction timescale ( )t ~ W1 2MF 0 , while
the interior superfluid layers spin up on a much longer
timescale, depending on the strength of the coupling
coefficient  and the Ekman number (Figure 7). Unlike the
purely viscous case, the resulting meridional flow patterns of
both components are complex and characterized by multiple
cells that appear and disappear as the system evolves
(Figure 6). However, once the system reaches a steady state,
the flow pattern becomes more similar to the purely viscous
case, particularly in the weak-coupling regime.

When measuring the spin-up timescale of the interior layers
of the superfluid, we have further found two different spin-up
regimes, depending on the value of  (Figure 8). When the
coupling between the normal and the superfluid component is
strong (  0.1), the spin-up time of the interior flow at a
radial location r follows ( ) ( )tµ D-

-t r Rspin up Ek
0.85 1 2, where

τEk(ΔR) is the Ekman time for a layer of thickness ΔR= R− r
(see Equation (13)). On the other hand, when the coupling
between both components is weak (  0.1), we have found
no clear relation between the spin-up timescale of the interior
layers as a function of radius, Ek, or . However, it is worth
noting that deviations from Equation (13) in the weak-coupling
regime are much smaller for simulations using the lower
Ekman number Ek= 5× 10−4 (compare the two panels of
Figure 8 at low values of ).

5.2. Comparison to Previous Work

Comparison with previous work is difficult because, to our
knowledge, the specific problem discussed in this paper has not
been previously investigated using numerical simulations.
Similar studies have focused on instabilities and flow patterns
in superfluid Couette flow within spherical shells, as explored
in a series of papers by C. Peralta et al. (2005, 2006, 2008). The
profiles of the meridional circulation observed in our simula-
tions resemble those reported in these studies, where multiple
cells and Taylor vortices appear in both the normal and
superfluid components of the flow. While previous work
showed these structures to persist over time, likely due to a
nonzero mutual friction force sustained by an imposed
differential rotation, our simulations evolve toward a steady
state of solid-body rotation. Consequently, the complex flow
patterns observed initially disappear when the system is
evolved long term.

The spin-up of a two-component fluid in the full sphere was
also investigated analytically by C. A. van Eysden & A. Mel-
atos (2013), neglecting the nonlinear terms of the HVBK
equations. Interestingly, they also observed a regime separation
depending on the strength of the mutual friction coupling
between the normal and superfluid components. When ~ 1,
the superfluid and normal components are strongly coupled,
and any differential velocity between the components is
removed by mutual friction on a short timescale, so that
both components are locked together and accelerate on an
Ekman pumping timescale. Alternatively, for ~ Ek 1 ,
C. A. van Eysden & A. Melatos (2013) find no Ekman
pumping in the superfluid component, and the system spins up
via mutual friction on a complex combination of the mutual
friction and the Ekman timescales (although not explicitly
given in their work). However, the measured timescales in our

simulations differ from the predictions in C. A. van Eysden &
A. Melatos (2013). For instance, even in the strong-coupling
regime, the superfluid spins up over a timescale that is longer
than the Ekman timescale and aligns well with Equation (13).
These discrepancies are not surprising because their analytic
calculations neglect the nonlinear dynamics of the system.
Nonetheless, it is encouraging that our simulations agree, at
least partially, with their results. For example, the regime
separation at ~ Ek corresponds to » 0.07 (0.02) for
Ek= 5× 10−3(5× 10−4) in our simulations. When comparing
with Figure 8, these values of  accurately delimit the validity
of Equation (13), and the beginning of the large dispersion in
the measured spin-up timescales of the interior layers appearing
in the weaker-coupling regime.

5.3. Limitations and Future Work

While our choices for relevant numerical parameters were
motivated by neutron star physics, the assumptions and
approximations in our model and simulations limit the direct
applicability of our results to real neutron stars. For instance,
we have neglected density stratification and magnetic fields.
Spin-up in a stratified fluid is different because buoyancy may
inhibit the radial motion of fluid elements, limiting the extent of
secondary circulations such as the Ekman flow (e.g., A. Clark
et al. 1971; A. Clark 1973). While the HVBK equations can be
easily generalized to a stratified and fully compressible two-
component fluid, numerical solutions are computationally
challenging. This difficulty arises because the compression
and expansion of the fluid generate sound waves, which usually
propagate much faster than typical fluid flows inside neutron
stars. As a result, much smaller computational time steps are
needed to resolve these waves in numerical simulations.
Moreover, taking into account magnetic fields would require
adding the Lorentz force to the momentum equation of the
normal component as well as solving the magnetic induction
equation. As a result, the coupling between the surface and
interior flows could occur on shorter timescales (e.g.,
G. Mendell 2001).
In addition, the Ekman numbers considered in this work are

significantly larger compared to real values in neutron stars.
This could introduce two complications. First, as shown in
Figure 8, viscous diffusion can modify the spin-up timescale in
the deep interior of the star. Second, the normal component’s
flow in our simulations is laminar. However, turbulence can
easily develop in real neutron stars (N. Andersson et al. 2007;
B. Haskell et al. 2020). On one hand, turbulence can trigger
differential rotation in the fluids, while it would also cause
superfluid vortices to become tangled. Vortices would thus no
longer remain straight (as explicitly assumed in our mutual
friction force in Equation (4)), requiring the incorporation of
vortex tension and potentially more suitable forms of coupling
between the superfluid and the normal component (e.g.,
C. J. Gorter & J. H. Mellink 1949; M. Antonelli & B. Hask-
ell 2020; T. Celora et al. 2020). All these effects could give the
spin-up process a completely different character to what we
discussed above.
As a result, we encourage future work on the spin-up of

superfluids, either in the laboratory or with numerical
simulations. Improvements in numerical modeling by relaxing
some of the assumptions above are needed to interpret the rich
set of observations of glitches in neutron stars.
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