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Continual learning (CL) has emerged as an important avenue of research in recent years, at the intersection of
Machine Learning (ML) and Human–Robot Interaction (HRI), to allow robots to continually learn in their
environments over long-term interactions with humans. Most research in CL, however, has been robot-centered
to develop CL algorithms that can quickly learn new information on systematically collected static datasets.
In this article, we take a human-centered approach to CL, to understand how humans interact with, teach, and
perceive CL robots over the long term, and if there are variations in their teaching styles. We developed a
socially guided CL system that integrates CL models for object recognition with a mobile manipulator robot
and allows humans to directly teach and test the robot in real time over multiple sessions. We conducted
an in-person study with 60 participants who interacted with the CL robot in 300 sessions with 5 sessions
per participant. In this between-participant study, we used three different CL models deployed on a mobile
manipulator robot. An extensive qualitative and quantitative analysis of the data collected in the study
shows that there is significant variation among the teaching styles of individual users indicating the need for
personalized adaptation to their distinct teaching styles. Our analysis shows that the constrained experimental
setups that have been widely used to test most CL models are not adequate, as real users interact with and
teach CL robots in a variety of ways. Finally, our analysis shows that although users have concerns about CL
robots being deployed in our daily lives, they mention that with further improvements CL robots could assist
older adults and people with disabilities in their homes.
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1 Introduction
We envision a future of general purpose assistive robots that can help users with a variety of
tasks in dynamic environments, such as homes, offices, shopping malls, and so on [37, 43, 47, 51,
55]. It would be necessary that such assistive robots are personalized to their users’ needs and
their environments [5, 30, 52, 55]. However, over the long term, users’ needs, preferences, and
environments will continue to change, which makes it impossible to pre-program the robot with
all the tasks it might be required to perform. A solution to this problem is to allow people to
continually teach their robots new tasks and changes in their environments on the fly, an approach
known as continual learning (CL) [8, 9].

CL has been extensively studied in recent years to allow robots to learn over long periods of
time [8, 24, 45, 49, 58]. As it is imperative for a robot to learn and understand the objects in its
environment [62, 64], the majority of research in CL has focused on machine learning (ML)
models for object recognition in recent years [6, 24, 29, 46, 69]. Most of these techniques were tested
on static object recognition datasets with a large number of training images for each object class.
In real-world environments, however, robots will need to learn from individual interactions with
their users who might be unwilling to provide a large number of training examples for each object.

In the past few years, robotics researchers developed CL techniques that can learn from only a
few training examples per object, an approach known as few-shot class incremental learning
(FSCIL) [3, 8, 60, 70]. Although FSCIL techniques produced promising results on object data
collected from real robots, they were only tested with systematically collected “non-social” datasets
by their experimenters [8, 9, 22]. Overall, most research in CL has been robot-centered or algorithm-
focused, i.e., developing efficient CL algorithms that can learn from static datasets. However, in the
real world, robots will learn from real users who might be unfamiliar with robot programming and
learning. Therefore, an equally important area of research in CL is human-centered, to understand
how human users interact with, teach, and perceive CL robots over the long term. Although human-
centered AI has been argued to be a vital component for intelligent and autonomous robots [21],
this concept is yet to be investigated within the domain of CL robots. To the best of our knowledge,
we know of no other work involving long-term user studies where users teach modern CL models
deployed on robots in real time over multiple interactions.

In this article, we have a human-centered focus to uncover the diversity and evolution of human
teaching when interacting with a CL robot over repeated sessions. We developed a system for
socially guided CL (SGCL) that integrates a graphical user interface (GUI) with CL models
of object recognition deployed on the Fetch mobile manipulator robot [67]. We conducted a long-
term between-participant study (N = 60) where participants interacted with and taught everyday
household objects to a mobile manipulator robot (Fetch) that used three different CL models. We
conducted 300 interactive sessions with 60 participants, where each participant taught a total of 25
objects to the CL robot in 5 sessions, with 5 objects per session. We analyzed the data collected
in the study to characterize various aspects of human teaching of a CL robot in an unconstrained
manner. Our results highlight the variation in the teaching styles of different users, as well as
the influence of the robot’s performance on users’ teaching styles over multiple sessions. Our
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results indicate that the constrained experimental setups traditionally used to test most CL models
are inadequate, as real users teach CL robots in a variety of ways. Finally, our results show that
although users have concerns regarding the CL robot, most users can envisage personalized CL
robots in the future, in particular for assisting older adults and people with disabilities in their
homes.

A preliminary version of this work was presented in [4]. This article substantially extends [4] in
several ways. First, to get a deeper understanding of the teaching style of the users for different
CL models, we have reported results for a third condition with the joint train (JT) CL model. A
total of 20 more participants were recruited in this condition who interacted with the CL robot
with the JT model for 100 sessions. We redid all the experimental and statistical evaluations in
Section 5 to incorporate all three conditions, which provided further insights into the interactions
and teaching styles of the participants. We report detailed findings of the study in the updated
discussions section (Section 6). Second, we report an analysis of the open-ended questions asked
during audio interviews with each of the participants at the end of the study. Specifically, we
transcribed all the audio files and performed semantic, thematic, and word-cloud analyses on the
transcribed data. These analyses showed participants’ perceptions toward CL robots deployed
in everyday environments and suggestions for future improvement of these robots. A detailed
discussion of the audio data analyses is reported in Section 6. Finally, the article contains a more
complete background and related work discussion and provides a more detailed explanation of the
methodology.

2 Related Work
In this section, we first present an overview of modern CL methods mostly tested without human
users, and then introduce current approaches to robot teaching, highlighting the need for a human-
centered approach at the intersection of CL and human–robot interaction (HRI).

2.1 CL
The standard CL problem for an object recognition task is defined as: Suppose a CL model M gets
a stream of labeled training datasets �1, �2, ... over multiple increments, where �C = {(GC8 , ~C8 ) :
1 ≤ 8 ≤ |�C |} is the dataset in the C th increment, GC8 is the 8 the data point in �C with label ~C8 . !

C is
the set of object classes in the Cth training dataset, where ! 9 ∩ !: = ∅,∀9 ≠ : . During the testing
phase, if the model M is given the increment label when predicting the class label of a data point,
this setup is known as task-incremental learning [18, 36, 41]. In contrast, for the CIL setup, the
model M is tested in increment C on data points belonging to any of the previous classes (!1, ..., !C )
without access to the increment label [16, 32, 49, 69]. For example, consider that object classes
{apple, orange} are taught to the CL model in increment 1, and classes {banana, cup} are taught in
increment 2. In this case, 1 and 2 represent the increment labels, which are provided at test time
in a task-incremental setup but not in CIL, i.e., in a task-incremental setup, at test time, the CL
model will be provided with a test image and an increment label providing information about the
increment in which the model was trained on the test object’s class, whereas in a CIL setup, the
model is only provided with a test image similar to the traditional classification setting. Although
task-incremental setup can have some real-world applications, CIL is a more realistic CL setup for
most human-in-the-loop robot learning applications, as robot users might not be willing to (or
even remember) the increment label when asking the robot to predict the class label of an object.
Therefore, we mainly review CIL works in this article.
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2.1.1 CIL. One of the primary challenges faced by CIL techniques, and CL approaches in
general, is catastrophic forgetting [23, 44]. Catastrophic forgetting1 occurs when a CL model
forgets previously learned knowledge when learning new information [49]. To address this issue,
various research directions have been explored in the past to develop CIL models that can mitigate
catastrophic forgetting [7, 16, 29, 49, 69]. One common strategy employed by existing CIL methods
to avoid catastrophic forgetting is to store a portion of training samples from previous classes
and then retrain the model on a mixture of the stored data and new data [16, 49, 69]. However,
this approach faces scalability issues, especially when dealing with a large number of classes or
long sequences of data, as storing and managing data from previous classes can quickly exhaust
memory capacity, limiting performance in real-world applications. To address the memory storage
problem, some CL approaches use regularization techniques [36, 41] without using any data
from previously learned classes. Although these approaches alleviate the memory burden, their
performance tends to be significantly inferior to methods that store old class data. Another set
of approaches relies on generative replay to avoid storing raw data and instead generate old data
using stored class statistics [6, 34, 46, 57, 68]. While generative methods offer memory efficiency,
their performance can deteriorate drastically, especially when learning over longer sequences or
dealing with complex datasets. In addition to the memory and performance concerns, one of the
major issues faced by all CIL approaches is their performance degradation when dealing with
limited training data [7, 60, 63]. This limitation makes them unsuitable for scenarios where the
learning process must be based on a limited number of examples, such as when learning from
human users who might be unwilling or unable to provide hundreds or thousands of images per
object class.

2.1.2 FSCIL. In recent years, CL researchers have made significant progress in developing FSCIL
models that can learn from just a few training examples per class [7, 60, 63]. In FSCIL, CL models are
trained on a large number of base classes with a large dataset in the first increment, enabling them to
learn a good general representation of the data. In subsequent increments, the model leverages the
representation learned from the base classes to learn new classes with only a few training images
per class [7, 12, 26, 59, 60, 70]. More formally, in an FSCIL setup, a CL modelM receives a stream of
labeled training datasets �1, �2, ... over multiple increments, where �C = {(GC8 , ~C8 ) : 1 ≤ 8 ≤ |�C |}
is the dataset in the Cth increment, GC8 is the 8 the data point in �C with label ~C8 . !

C is the set of
object classes in the C th training dataset, where ! 9 ∩ !: = ∅,∀9 ≠ : . �1 is the large-scale training
dataset of base classes to learn a good representation for the model, and �C , ∀C > 1 is the few-shot
training set of new classes. After training on �C , M is tested to recognize all encountered classes
in !1, ..., !C . For �C , ∀C > 1, this setting with � classes and a few  training samples per class is
known as the �-way  -Bℎ>C FSCIL. Note that few-shot learning [19], unlike FSCIL, is not trained
on a stream of �-F0~  -Bℎ>C tasks, and the ML model is required to classify test images belonging
to the new � classes only, and not the base classes.

In prior research, FSCIL approaches were only tested on static, datasets captured in constrained
setups (e.g., Modified National Institute of Standards and Technology [40]) and not on physical
robots that might not have perfect data available. Although a few FSCIL approaches [8, 22, 64]
have been developed for learning on real robots, none of these FSCIL approaches were tested with
real participants. Instead, they were tested on datasets that were captured by the experimenters
on robots in systematically controlled setups. Real users, however, might not be aware of the
underlying CL models and might provide imperfect or inconsistent data during teaching or testing.

1Note that the term catastrophic forgetting is mainly used in ML literature to describe the phenomenon of an ML model
forgetting most past knowledge. However, when interacting with real users, the perception of forgetting might be far from
“catastrophic.”
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Understanding how human users perceive CL systems on robots is crucial to ensure that these
systems are user-friendly, intuitive, and reliable.

2.2 Human–Robot Teaching
Human-centered research for robot learning throughHRI has been relatively limited, with only a few
user studies conducted in the past to explore the characteristics of human teaching with simulated
and real robots. However, most of these studies were performed in Wizard of Oz setups, where
the robot did not actually learn from human teaching [20, 33, 48]. While interactive reinforcement
learning through HRI has been explored for learning manipulation tasks, kitchen-related tasks, and
understanding natural language descriptions of images from humans [10, 14, 38, 56], most of these
studies were primarily focused on testing the performance of reinforcement learning models for
robot manipulation or investigating users’ perceptions toward these models, rather than examining
patterns of human teaching. Furthermore, these studies were limited to single interaction sessions
with users, not fully capturing the dynamics and evolution of human teaching over time. Thomaz
et al. [62] conducted a study on object learning where a robot learned object names and simple
affordances from interactions with human participants. Human participants taught six simple
objects, such as blocks and spheres, to a social robot, which used a support vector machine-based
method for learning these objects. While this study showed significant performance differences
when ML models learned from human teachers compared to systematically collected datasets, it
was also conducted in a single interaction session with participants. For CL robots, understanding
how human teaching evolves over the long term is crucial to develop more effective and adaptive
learning systems. In contrast, to the best of our knowledge, we conducted the first long-term user
study at the intersection of continual ML and HRI. The study aims to understand patterns of human
teaching in the context of CL robots over multiple interactions. By conducting a multi-session
study, we can gain valuable insights into how human teaching strategies evolve and adapt over
time when teaching CL robots.

2.3 ResearchQuestions and Hypotheses
Based on the unique ways people interact with and teach robots [31, 35, 61], we consider the
following research questions (RQs):

RQ1: How do different users label objects when teaching a CL robot over multiple sessions?
RQ2: How does a CL robot’s performance affect the way users teach over multiple sessions?
RQ3: Do users change the way they teach a CL robot over multiple sessions?
RQ4: Is there a difference in teaching style and robot performance for expert and non-expert

users?
RQ5: How do human users perceive a CL robot for everyday applications?
We analyze the data collected in our study to answer the five research questions and test the

associated hypotheses.The following hypotheses are guided by previous research that was discussed
Sections 2.1, and 2.2: Prior HRI research showed that users’ interactions and perceptions toward a
robot are correlated with the performance of the robot and the time and effort spent in interacting
with the robot. Also, there might be differences in how different users interact with the robot,
especially if they had prior experience programming robots. Further, prior CL research showed
that CL models can forget previous knowledge over time, and thus their performance decreases.
However, there is a difference in the rate of forgetting for different CL models. Finally, prior HRI
research showed that the novelty effect can wear off in long-term interaction studies, therefore
users’ excitement to interact with the robot would decrease.

Note, H=.< is the <th hypothesis related to the research question =, e.g., H1.3 is the third
hypothesis to answer RQ1.
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Fig. 1. (Left) Experimental layout for the SGCL setupwith the participant and the robot. (Right) Corresponding
real-world setup. Cam. 1, camera 1.

H1.1: Labeling strategies for objects vary among different users.
H2.1: Classification performance of the robot affects the teaching style of the participants over

multiple sessions.
H2.2: Users teach a robot that forgets previous objects differently than a robot that remembers

previous objects.
H2.3: Users teach a robot that retrains on all previous objects differently than a robot that does

not train on all previous objects.
H3.1: Teaching styles of users change over multiple sessions regardless of the CL model.
H4.1: CL robots taught by expert users perform better than the ones taught by non-expert users.
H4.2: There is a difference between the teaching styles of expert and non-expert users.

As RQ5 is related to the open-ended questions asked to the participants, we do not have
formal hypotheses for this question. However, we expected that participants would perceive
the robot to be useful for everyday applications, particularly for older adults and people with
disabilities.

3 SGCL System
We investigated human teaching patterns when interacting with a CL robot to teach an object
recognition task. In this experiment, in each session, the user taught the robot household objects in
a table-top environment and then tested the robot to find and point to the requested object on the
table. Figure 1 shows the table-top experimental setup for this study. The setup and the task are
straightforward which makes it clear what the user should do to teach the robot different objects,
and what the robot should do to find the learned objects during the testing phase.

For this setup, we developed a CL system for the object recognition task, which integrates CL
models with a Fetch mobile manipulator robot [67], as well as a GUI for interactive and transparent
learning from human users. Figure 2 shows our system for the object recognition task. In this
system, the user interacts with the robot through the GUI on an Android tablet (Figure 3). Formally,
in each session (or increment) C , the user teaches the robot !C number of objects by placing them
in front of the robot and labeling them using the GUI. The images of !C objects are captured by
the robot and then pre-processed using the object detection module. Combined with the labels
of the images from the user, a dataset �C = {(GC8 , ~C8 ) : 1 ≤ 8 ≤ |�C |} is generated, where GC8 is the
8th image in the dataset with the class label ~C8 . The CL model M is then trained on the dataset
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Red, Green, Blue (RGB)

Fig. 2. Our complete SGCL system. Processed RGB images from Fetch’s camera are sent to the GUI for
transparency and also passed on to the CL model. The user sends object names to the CL model either for
training the CL model or finding an object. The arm trajectory planner takes point cloud data, processed
RGB data, and predicted object labels from the CL model as input and sends the arm trajectory for the Fetch
robot to point to the object.

�C . Note that unlike traditional CL setups (such as, CIL and FSCIL described in Sections 2.1), the
number of images per object class in a session is not fixed as it is dependent on the number of times
the user teaches an object to the robot. Further, there can be an overlap in the object classes taught
in different sessions depending on how the user labels the objects. For example, the user can name
two different cups with different names, such as “green cup” and “red cup,” or they can name both
of the cups as “cup.”

After teaching, the user can test the robot by asking it to find objects on the table through the
GUI. The robot passes the pre-processed images to the CL model to get the predicted object labels.
If the object requested by the user is found, the robot finds the three-dimensional (3D) location
of the object on the table and points to the object using its arm. Note that the user has flexibility
in terms of the total number of objects to be tested in an increment, as well as which objects to
test (old or new objects). Due to this flexibility in SGCL, results for CL models were quite different
from the results on static datasets (see Section 5 for details). Our code for the complete systems is
available at https://github.com/aliayub7/cl_hri.

3.1 CL Models
The goal of our study is to do an in-depth analysis of how users interact with and teach CL models
over long-term interactions, with one of the questions being if the performance of the model
has an effect on the teaching style of the users. For such an analysis, it is imperative to choose a
meaningful baseline. The naïve fine-tuning (FT) approach [7, 49] has been used as the baseline on
static “non-social” datasets in the CL literature.Therefore, we chose to test FT as our study’s baseline
model. In this approach, a convolutional neural network (CNN) [25] is trained on the image
data of the object classes in each increment (i.e., in an interactive session with the user). The model
does not train on any of the objects learned in the previous increments (sessions), and therefore, it
catastrophically forgets the previously learned objects. More details about this model can be found in
[7, 49, 69].
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Fig. 3. The GUI used to interact with the robot. The RGB camera output with bounding boxes is on the top
left. The buttons at the bottom can be used to teach objects to the robot and ask it to find objects in the
testing phase. The top right of the GUI shows information sent by the robot to the user.

For the second model, we consider a state-of-the-art CL approach specifically designed for FSCIL
in robotics applications [8]. This approach termed centroid-based concept learning (CBCL) uses
a CNN pre-trained on the ImageNet dataset [53] to extract feature vectors for the images of objects
in each increment C . CBCL then clusters the feature vectors of all the object classes in the increment
C and generates a set of centroids �~ = {2~1 , ..., 2

~
=~
} for each object class separately, where =~ is the

total number of centroids for class ~. CBCL mitigates forgetting by generating separate clusters for
different classes in increment C .

For the classification of a new object, CBCL finds the distance of the feature vector of the test
object from the centroids of the learned object classes. CBCL then uses a weighted voting scheme
to find the most common class among the closest centroids to the test feature vector. The most
common class is predicted as the object class for the test feature vector. More details about CBCL
can be found in [7].

Finally, for the third model, we consider the batch learning (called JT in this article) approach
that stores the image data of the object classes from previous increments and retrains using stored
data when learning new objects. JT has been used in CL literature as a theoretical upper bound
for CL on static datasets. JT trains a CNN model on a combined image dataset of the new and old
object classes in each increment, and therefore, its training time continues to increase with each
increment. Note that the only difference between JT and FT is that FT trains only on the objects
taught in an increment, whereas JT trains on all the objects taught so far in each increment. More
details about JT can be found in [16, 49].

Note that all of these models were only tested on systematically collected object datasets by
experts in prior research [8, 42, 49] and have never been trained or tested in real-time with human
participants. In this article, we integrate FT, CBCL, and JT in a fully autonomous system that allows
users to experience these different ML models in real time through the Fetch mobile manipulator
robot [67].
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4 Method
4.1 Artifacts—Fetch Mobile Manipulator Robot
As manipulator robots with RGB-D cameras are suited for the recognition and manipulation of
objects, we use the Fetch mobile manipulator robot [67] in our experimental setup (Figure 1). The
Fetch robot is equipped with a 7 df arm, a mobile base, an RGB camera, a depth sensor, and a Lidar
sensor. The robot’s sensors play a crucial role in enabling 3D perception, simultaneous localization
and mapping, and obstacle detection in the world. In our specific setup, we do not require the robot
to manipulate objects or move its base but ask it to point to requested objects using its arm. This
intentional design choice allows us to focus solely on CL, which primarily involves the process
of learning and recognizing objects. To ensure the safety of human participants in our study, we
conducted a thorough safety analysis that was approved by the University of Waterloo’s Human
Research Ethics board. In addition, we implemented various mitigating strategies to minimize
potential risks. For example, before moving its arm, the robot always reminded the participant to
stay at a safe distance. Further, the experimenter was observing the entire interaction and could
disable the robot remotely using an emergency stop button if there was a risk of collision with
the participant. As a result, the robot was deemed safe to be used in conjunction with human
participants during our research study.

To handle the possibility of multiple objects present on the table within the robot’s camera view,
we employ additional processing steps for the RGB images. These images are passed through a
generic object detector [50] to identify regions within the image that are likely to contain objects
(refer to Figure 3). To refine the detected regions and eliminate any overlapping detections, we apply
non-max suppression [28], resulting in an accurate representation of distinct objects. Additionally,
we leverage the depth perception of objects to filter out any detected objects that do not reside on
the table. This helps exclude background objects and any instances where a participant may be
interacting with the robot (as illustrated in Figure 3). The resulting regions of interest, representing
objects detected on the table, are cropped into separate images and then forwarded to the CL model.

4.2 GUI
To facilitate interactive and open-ended teaching of different objects for the users, we developed a
GUI deployed on an Android tablet. A screenshot of the GUI is presented in Figure 3. The GUI’s top
left section displays the pre-processed camera output from the robot, featuring bounding boxes
that indicate detected objects. This visual representation serves as a transparency device so that
the participants can understand what the robot perceives on the table. Located at the bottom left of
the GUI is a toggle button that can be pressed to initiate a teaching session with the robot. When
pressed, the button turns green, signifying that the system has entered the teaching phase. During
this phase, participants can input the name (class label) of the objects in the space below the toggle
button and save an image of the object by using the save button adjacent to the input area. On the
bottom right of the GUI, another toggle button is situated, enabling participants to commence the
testing phase. Similar to the teaching button, this button turns green once pressed. In the testing
phase, participants can enter the name (class label) of the object they want the robot to locate
on the table in the space below the toggle button. By pressing the “Find Object” button next to
the input area, participants can instruct the robot to search for the specified object on the table.
Lastly, the top right section of the GUI displays messages communicated by the robot to the user
during the session. These messages are also vocalized using a text-to-speech module available
in robot operating system.

We intentionally opted not to utilize a natural language processing (NLP)-based interaction
system for teaching objects due to the inherent challenges associated with designing an open-ended
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NLP system, as highlighted in [17]. Such systems involve speech-to-text and natural language
understanding phases, which introduce potential errors and could divert participants’ attention
from the primary focus of our research study: the CL of household objects. Our objective was to
investigate participants’ interactions, teaching styles, and perceptions of the CL system rather
than evaluate the robot’s communicative capabilities. By avoiding the complexities of an NLP-
based system, we aimed to maintain a streamlined research environment, improve robustness, and
minimize potential distractions from the main research goal.

4.3 Participants
We recruited 63 participants (35 female (F); 28 male (M), all students) from the University of
Waterloo, between the ages of 18 and 37 years (` = 23.12, f = 4.04).Three out of 63 total participants
did not complete the five sessions for the study; therefore, we report results for 60 participants
who completed the study. All three conditions were randomly assigned 20 participants each (ages:
` = 22.7, f = 4.58, 9 F, 11 M for CBCL condition, ages: ` = 24.53, f = 4.03, 10 F, 10 M for FT
condition, ages: ` = 22.2, f = 2.96, 15 F, 5 M for JT condition). Analysis of the pre-experiment
self-assessment survey showed that 35% of the participants were familiar with robot programming,
55% reported that they had previously interacted with a robot, 5% were familiar with the Fetch
mobile manipulator robot, and 8% had previously participated in an HRI study. For the rest of the
article, we call participants with prior robot programming experience “experts” and the rest of the
participants “non-experts.” Experts and non-experts were randomly assigned to each of the three
conditions. A Chi-square test between the previous programming experience of the participants and
the assigned condition (X2 (1) = 2.45, ? = 0.29) confirmed that there is no statistically significant
correlation between these two variables; and therefore, the distribution is not significantly different
from uniform. All procedures were approved by the University of Waterloo Human Research Ethics
Board.

4.4 Procedure
We conducted five repeat sessions with each participant in a robotics laboratory on campus, with
each session lasting approximately 20–30 minutes. All sessions were video-recorded for further
analysis. Participants were randomly assigned to one of the three experimental conditions, each
utilizing a different CL model: CBCL, FT, or JT. Before their first session, participants were asked
to complete an online consent form and a pre-experiment survey using the Qualtrics platform
[1]. Upon completing the survey and the consent form, the experimenter provided a brief oral
introduction to the experiment and greeted the participant. The participant was told to consider
the Fetch robot as their personal household robot, with the opportunity to teach the robot various
household objects over a period of 5 days, gradually accumulating a repertoire of 25 objects.
Subsequently, the participant was directed to the designated study area within the laboratory and
was given an Android tablet equipped with the GUI shown in Figure 3. They were informed that
initially, they would run a demo session with a robot, allowing them to familiarize themselves with
the process of teaching and testing the robot. The participant was made aware that the robot would
not be learning any of the objects presented in front of the camera during this demonstration phase.

The experimenter provided a detailed explanation of the session structure to the participant,
outlining that each session with the robot would consist of two phases: a teaching phase and a
testing (i.e., finding an object) phase. To illustrate this, the experimenter utilized a blue cup as a
demonstration object (which would not be used later in the study) and placed it on the table. The
participant was then directed to stand in the designated area facing the table and instructed to
initiate a teaching session by pressing the “Toggle Teaching Session” button on the GUI. Once
pressed, the button turned green, accompanied by a message displayed on the tablet from the robot
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stating, “Entered teaching mode. You can now start teaching me objects.” The robot vocalized the
same message through its speakers. Next, the experimenter asked the participant to type the name
of the object into the text box located below the toggle button. The participant was informed that
they had the freedom to choose any name for the object. After naming the object, the participant
was instructed to save it by pressing the “Save Object” button situated next to the text box. Upon
pressing the button, the robot stated, “[OBJECT NAME TYPED IN THE TEXT BOX] has been
saved.” The experimenter also informed the participant that they could save each object multiple
times by placing it at different locations on the table and varying its angles. They further mentioned
that a similar procedure can be used to teach the other four objects in the session. The participant
was further informed that once they had saved all five objects in a session, they could end the
teaching phase by pressing the toggle button again. When deactivated, the button turned grey,
and the robot stated, “I am learning the objects, please wait.” Subsequently, the robot stated, “Left
teaching mode,” indicating that it had completed the learning process and exited the teaching mode.
The experimenter clarified to the participant that the robot would now process and learn the objects
demonstrated during the session and would later communicate when it had finished learning and
exited the teaching mode.

The experimenter proceeded to explain the testing phase to the participant. They instructed
the participant to initiate the testing phase of the session by pressing the “Toggle Finding Object
Mode” button on the GUI. Once pressed, the button turned green, accompanied by the robot’s
statement, “Entered finding mode.” The experimenter then placed two additional objects on the
table alongside the demo object, resulting in a total of three objects on the table. Participants were
informed that during the testing phase, they had the option to place one or up to three (a suggestion,
not a requirement) objects on the table. The experimenter mentioned that after placing the objects
on the table, the participant could enter the name of the object they wanted the robot to find in the
text box located below the toggle button. Specifically, the experimenter requested the participant to
type “cup” in the text box to instruct the robot to find that particular object on the table. Once the
participant finished typing, they were instructed to press the “Find Object” button. Upon pressing
the button, the robot responded, “I will point to the cup now. Please make sure that you are at a safe
distance from me.” Subsequently, the robot moved its torso and arm to point at the cup on the table.
Upon completion, the robot stated, “I am done.” The experimenter highlighted that the participant
could ask the robot to find objects taught in the current session and previous sessions by placing
them on the table and utilizing the “Finding Object Mode.” The experimenter then requested the
participant to press the “Toggle Finding Object Mode” button once again to exit the testing phase.
When deactivated, the button turned grey, and the robot announced, “Left finding mode.” Note that
during the demo phase, the robot was able to find the object every time, however, when participants
tested the robot on their own, the robot did make errors and could not find objects. In those cases, the
robot stated, “I cannot find [OBJECT NAME TYPED IN THE TEXT BOX],” and did not move its arm.

After the completion of the demonstration phase, lasting ∼5 minutes, the experimenter provided
a paper sheet to the participant, serving as a memory aid. The participant was instructed to write
down the names of the objects taught in the current session on the sheet.The experimenter collected
and retained the paper sheet, returning it to the participant at the beginning of each subsequent
session. This practice allowed participants to recall the object names when needed for instructing
the robot to find those objects in subsequent sessions.2 Subsequently, the experimenter retrieved

2It is important to note that in real-world scenarios, participants would not need to rely on a written sheet, as they would
have ongoing interactions with the objects. However, in our setup, due to the limited duration and time gaps between
sessions, it was necessary to provide a means for participants to remember the object names. On average, the time between
the first and last session was 25.3 days, with a maximum of 52 days. Additionally, the average duration between any two
consecutive sessions was 6.2 days, with a maximum of 29 days.
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Fig. 4. The 25 objects used in our study. Note that the visual similarity of some objects and their size variation
make this a challenging task.

the tablet from the participant and loaded the program for the actual session on the tablet. Once
prepared, the experimenter returned the tablet to the participant. Simultaneously, the experimenter
placed five objects to be taught in the session on one side of the table. At this point, the experimenter
informed the participant that they could commence their session and begin the process of teaching
the five objects.

The experimenter then moved to a secluded area, and the participant began teaching the robot
the five designated objects. Once the teaching phase was completed, the participant transitioned
to the testing phase, during which they instructed the robot to find objects from both the current
session and previous sessions. Note that the teaching and testing phases were not fixed for all
participants, because the participants had flexibility in terms of how they wanted to teach the
robot. For example, participants could reteach any objects that the robot misclassified during the
testing phase, and this could be repeated as many times as they desired. Once the testing phase
concluded, the experimenter returned from the secluded area and expressed gratitude, saying,
“Thank you for coming today. We have a few questions about your experience today. Could you
please answer them on this tablet?” To facilitate this, the experimenter provided a separate tablet
to the participant, containing questionnaires in the Qualtrics [1] format. Results from the post-
experiment questionnaire data are reported in a separate work [2]. Following the completion of the
questionnaires, the experimenter thanked the participant for their participation. Subsequently, the
participant scheduled their next session.

In the subsequent four sessions, which lasted ∼20–30 minutes each, the same procedure was
followed with a few variations. The objects taught during each session were different, and a total of
25 objects were used throughout the five sessions. Figure 4 shows the 25 objects utilized in our
study. During sessions 3–5, participants were informed that they had the option to bring up to
two objects of their choice to teach the robot. In such cases, some objects from our predefined set
(Figure 4) were replaced with the participants’ objects. However, the total number of objects taught
remained consistent at 25 over the five sessions. Further, participants did not engage in a demo
interaction in the subsequent four sessions. At the conclusion of the final session, participants were
requested to participate in a brief interview aimed at capturing their experience with the robot.
These interviews were audio-recorded for further analysis. Participants were compensated with
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$30 CAD if they completed all five sessions. Alternatively, if participants did not complete all five
sessions, they received $6 CAD per session completed.

4.5 Measures
We used both qualitative and quantitative measures to analyze the data for the three conditions.
We analyzed the object names given by the participants to different objects using the image data
stored for objects during teaching sessions. We report the variety and frequency of labels used
by the participants for each object. This measure was used to help answer RQ1 about the labeling
styles of different users. We also coded the video recordings to calculate the frequency of teaching
by the participants in all five sessions, and if they re-taught any objects to the robot in case the
robot was not able to correctly find them on the table, to help answer RQ2 about the effect of the
robot’s performance on users’ teaching styles.

We also analyzed the performance of three CL approaches. Classification accuracy per session
(increment) has been commonly used in the CL literature [49, 60] for quantifying the performance
of CL models for object recognition tasks. Therefore, for each session, during the testing phase, we
recorded the total number of objects tested by the participant and the total number of objects that
were correctly found by the robot. Using this data, we calculated the accuracy A of the robot in
each session as

A =
=D<14A > 5 >1 942CB 2>AA42C;~ 5 >D=3 8= Cℎ4 B4BB8>=

=D<14A > 5 >1 942CB C4BC43 8= Cℎ4 B4BB8>=
. (1)

We use the accuracy of the models to determine the teaching quality of the participants in each
condition and over multiple sessions. This measure was used to help answer RQ2 related to the
performance of the robot and its effect on the teaching styles of the users. Further, using the image
data stored for the objects, we calculated the average number of times each object was taught by
the participants in each session to determine the effort spent by the participants in teaching the
robot. We also analyze how the above-mentioned variables are affected by the sessions, choice of
the CL model, and previous robot programming experience of the participants, to help answer
RQs 3 and 4 that are related to the effect of session and previous programming experience of the
participants on their teaching styles.

For the open-ended interviews, one of the questions is quantitative asking participants about
rating the teaching and testing process ranging from 1 (boring) to 5 (exciting). For the remainder of
the questions, we perform aspect-based sentiment analysis on the data collected from the open-
ended audio interviews to understand user perceptions toward the CL robot. We use the Python
natural language toolkit (NLTK) [13] for sentiment analysis for each open-ended question
(Table 1) across 60 participants. The output of the NLTK sentiment analysis provides a compound
variable with values ranging from –1 to 1, where values closer to 1 show highly positive sentiment,
values closer to 0 show neutral sentiment, and values closer to –1 show highly negative sentiment.
Finally, we analyze participants’ responses using the six-step thematic analysis (TA) method
developed by Braun and Clarke [15]. We first generate category codes after analyzing the data, and
then determine themes in the data where a theme is accepted if we find the corresponding category
codes at least 30 times across three conditions. Themes and category codes are then reviewed and
revised. Two of the authors independently conducted the TA on the dataset. We also perform word
cloud analysis of the open-ended responses to visualize the most common words in the responses.
These measures were used to help answer RQ5 about user perceptions of the robot for everyday
applications.
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Table 1. List of Open-EndedQuestions asked to the Participants

No. Keyword Questions
1 robot_perception What do you think about this robot or system?
2 robot_house How do you feel about this robot in your house?
3 assist_friend Would you consider the robot for a relative or friend?
4 concern_robot What concerns would you have about this robot assisting with

daily tasks?
5 suggestion_improvement What things should robot developers focus on to make this robot

to be used in households?
6 pre-defined_objects Would it be better for the robot to come with a pre-defined set of

objects or should the users be able to directly teach the objects
in their homes?

Keywords are added to refer to the questions in a meaningful way.

5 Results
In this section, we present the results of our analysis in terms of different labeling strategies and
teaching styles of the participants. We also report the effect of participants’ teaching styles on the
robot’s performance, and vice versa.

5.1 Object Labeling by Human Teachers
Table 2 shows the number of different labels given to the 25 objects by 60 participants in the study.
To identify each object we add a generic name for each object in the table. For example, for the
plastic apple used in our study, we identify it as an apple in the table. Overall, there was a significant
variation in the labeling of objects by the participants, ranging from 5 (for Banana) to 18 (for Honey)
different labels for objects. Among such labels, some were quite simple and generic, such as Honey,
Bowl, Milk, and so on whereas some were quite specific, such as Almost Empty Yellow Honey Jar,
Light Green Flat Bowl, Empty Milk Carton, and so on. We also report the most common label given
to each object and the percentage of participants that chose that label. The consensus among the
participants for labeling the objects varied from 30% for Red Cup to 90% for Banana. Overall, only
6 out of 25 objects had a label with high consensus among the participants (≥80% participants).

We also noticed some unique labeling strategies by the participants. Some of the participants
labeled different objects in different sessions using the same label. For example, multiple participants
gave the label Cup to Green Cup in Session 1, Red Cup in Session 2, and Mug in Session 3. In total,
16 out of 60 participants (26.7%) gave the same label to at least two different objects. Further, some
participants gave multiple labels to the same objects. For example, one participant labeled Milk as
both Milk Box and Milk Pouch. Overall, there were 13 out of 60 participants (21.7%) that gave more
than one label to at least one object.

We also noticed that some participants gave unexpected labels to the objects. One participant
gave Chinese labels to objects, such as Niunai for Milk, Yuanzhubi for Pen, and so on. Another
participant gave German labels to some objects, such as Kugelschreiber for Pen, Buch for Book,
Tacker for Stapler, and so on. A few participants also gave labels that did not match the objects.
For example, one participant labeled Red Cup as Mary, Glue as Tom, Apple as Mars, and so on. In
such cases, we noticed that some participants forgot in later sessions how they labeled different
objects. Therefore, they asked for the robot’s help to identify the object associated with the labels.
For example, in their session 2, one participant asked the robot to find “Tom,” and the robot pointed
at Glue, thus helping the participant recognize that they had named Glue “Tom.”
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Table 2. The Number of Different Labels Given by the Participants to All 25 Objects in the
Study Together with the Most Common Label for Each Object with the Percentage of

Participants That Chose This Label

Object Number of
Different
Labels

Most Common
Label

Examples

Green cup 11 Cup (67%) Green cup, plastic cup
Honey 18 Honey (50%) Container, bottle of honey
Bowl 12 Bowl (67%) Green bowl, tiny bowl
Glue 8 Glue (75%) Tom, glue stick
Spoon 8 Spoon (85%) Aquamarine spoon, plastic

utensil
Apple 7 Apple (85%) Toy apple, red apple
Banana 5 Banana (90%) Plastic banana, ban
Red cup 15 Red cup (30%) Red, santa cup

Blue marker 11 Marker (62%) Text marker, expo
Orange 7 Orange (83%) Org, toyo orange
Mug 8 Mug (74%) Makbei, tea cup
Fork 7 Fork (75%) Aquamarine fork, teal fork

Sharpie 9 Sharpie (49%) Marker, pen, black sharpie
Plate 12 Plate (70%) Green tray, big plate
Stapler 7 Stapler (88%) Punch, pin
Book 5 Book (89%) Novel, interesting book

Red marker 6 Red marker (45%) Red pen, dry erase, expo
marker

Blue pen 10 Pen (57%) Ball pen, Kugelschreiber,
Yuanzhubi

Pepsi 9 Pepsi (56%) Pepsi can, soda, Kele
White bottle 11 Water bottle (50%) Bottle, Shuibei, sipper
Coca cola 8 Coke (41%) Coke can, cola

Milk 8 Milk (73%) Milk box, cow juice
Phone 5 Phone (76%) Cell, mobile
7Up 15 7Up (43%) 7Up can, soft drink

Water bottle 8 Water (46%) Water bottle, plastic bottle

Examples of labels given by the participants for each object are shown in the last column. Objects are ordered
from top to bottom as they were taught in five sessions with five objects per session. Note that the first column
shows some reference names for the objects to be able to identify them individually in the paper.

5.2 Participants’ Teaching Styles and Robot Performance
We performed a three-way ANOVA with three independent variables: the three conditions (CBCL,
FT, and JT), session number, and previous robot programming experience of the participants. The
ANOVA was performed to understand the effect of the three independent variables on the teaching
style of the participants and the robot’s performance in the testing phase. The dependent variables
were the following:

—Classification accuracy: The accuracy of the robot to find correct objects in the testing phases
of 300 sessions with 60 participants (calculated using Equation (1)).
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Table 3. Results (? Values and Effect Sizes) of the Three-Way ANOVA Using Session Number, Continual
Learning Model, and Previous Programming Experience as Independent Variables

p Values
Accuracy Number

of Images
Teaching
Phases

Reteaching Old
Objects

Programming experience 0.5772 0.0845 0.4399 0.8533 0.5517
Session number <0.0001 0.0257 0.3903 0.0939 0.0153

CL model <0.0001 0.3748 0.8394 0.3097 0.4634
Programming experience: Session number 0.5607 0.0534 0.5083 0.4564 0.2803

Programming experience: CL model 0.856 0.0868 0.6896 0.669 0.1634
CL model: Session number 0.0011 0.2624 0.6151 0.4653 0.1185

Programming experience: CL 0.9111 0.0993 0.3127 0.2818 0.0256
model: Session number

Effect Sizes
Accuracy Number

of Images
Teaching
Phases

Reteaching Old
Objects

Programming experience 0.0027 0.0424 0.0091 0.0003 0.0027
Session number 0.0714 0.008 0.0034 0.0199 0.0403

CL model 0.2467 0.0267 0.0053 0.0211 0.0117
Programming experience: Session number 0.007 0.0065 0.0026 0.0083 0.0139

Programming experience: CL model 0.0027 0.0702 0.0112 0.0072 0.0276
CL model: Session number 0.0674 0.0063 0.005 0.0177 0.0375

Programming experience: CL 0.0074 0.009 0.0079 0.0232 0.0542
model: Session number

Columns for the accuracy of the models, number of images per object, number of teaching phases, reteaching misclassified
objects, and old objects show ? values (top table) and effect sizes (bottom table) for the dependent variables. We use
generalized eta [39] to calculate effect sizes. Significance levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? < 0.001; ∗∗∗∗? < 0.0001) are
in bold.

—Number of images per object: The average number of images per object shown by the partici-
pants to teach the robot in each session.

—Number of teaching phases: The average number of times participants started a teaching phase
in each session. Participants were not confined to teaching objects in a single teaching phase,
and they could start multiple teaching phases in a session to teach objects to the robot.

—Reteaching misclassified objects: The average number of times participants retaught misclas-
sified objects in each session. If an object was misclassified in the testing phase, it could be
retaught to the robot by the participants.

Table 3 represents the ? values and significance levels for the ANOVA. For classification accuracy,
we see a significant effect based on the session number and the choice of the CL model (CBCL, FT,
or JT condition) and the interaction between the session number and the CL model. For the number
of images taught per object, we noticed a significant effect based on the previous programming
experience of the participants and the interaction between the CL model and the programming
experience. For the number of teaching phases per session, we noticed a significant effect based
on the previous programming experience of the participants. Finally, for reteaching misclassified
objects, we saw a significant effect of the choice of the CL model.

We noticed that the data for sub-groups for some dependent variables were not normally dis-
tributed. Although ANOVAs are fairly robust to outliers, we still performed a follow-up ANOVA
with transformed values using the Box-Cox transformation [54]. Results for the transformed values
were mostly consistent with the ones for the original values, with some differences. Post hoc Tukey’s
honestly significant difference (HSD) tests on significant ANOVAs for transformed values were
consistent with significant ANOVAs for original values.
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Fig. 5. Boxplot for accuracy for three conditions with different CL methods (CBCL, FT, and JT). Significance
levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? < 0.001; ∗∗∗∗? < 0.0001) are indicated on bars between columns.

5.2.1 Model Accuracy. We performed the post hoc Tukey’s HSD test for the significant ANOVAs
for model classification accuracy as the dependent variable. Figure 5 shows the average classification
accuracy of the CL robot over five sessions. The accuracy is significantly affected by the choice of
the CL model. For the first session, all three models have similar accuracy (` = 0.53, f = 0.19 for
CBCL; ` = 0.52, f = 0.18 for FT; ` = 0.59, f = 0.18 for JT). For the next four sessions, there is a
statistically significant difference between FT and CBCL, and between FT and JT: when comparing
FT (` = 0.29, f = 0.13) to CBCL (` = 0.54, f = 0.16) with ? = 0.0004, and to JT (` = 0.61, f = 0.20)
with ? < 0.0001 for session 2, comparing FT (` = 0.22, f = 0.13) to CBCL (` = 0.54, f = 0.15) with
? < 0.0001 and to JT (` = 0.48, f = 0.19) with ? = 0.0006 for session 3, comparing FT (` = 0.24,
f = 0.13) to CBCL (` = 0.53, f = 0.20) with ? < 0.0001 and to JT (` = 0.46, f = 0.19) with
? = 0.0018 for session 4, and comparing FT (` = 0.26, f = 0.14) to CBCL (` = 0.55, f = 0.19) with
? < 0.0001 and to JT (` = 0.51, f = 0.20) with ? = 0.0010 for session 5. No statistically significant
difference is seen between JT and CBCL for any of the sessions (more details in Table 7). Further,
when considering the two models separately, significant differences are seen between the first and
the subsequent sessions for FT only.

As evident from the ANOVA, there was no statistically significant difference in classification
accuracy for expert and non-expert users (based on their previous programming experience).
Therefore, we did not perform a post hoc Tukey’s HSD test for this variable.

5.2.2 Number of Images Per Object. We performed the post hoc Tukey’s HSD test for the signifi-
cant ANOVAs for the number of images as the dependent variable. Figure 6 details the difference
between the three CL models and expert and non-expert participants in terms of the number of
images taught per object. In accordance with ANOVA, there is no statistically significant difference
between the three conditions or between experts and non-experts for individual sessions and all
sessions combined. Figure 7 correlates with the ANOVA. In terms of individual sessions, there is
no statistically significant difference between the first and the second session. However, there is a
statistically significant difference between session 2 (` = 4.23, f = 3.69) and session 3 (` = 5.14,
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Fig. 6. Boxplots for number of images per object. Significance levels (∗? < .05; ∗∗∗? < 0.001; ∗∗∗∗? < 0.0001)
are indicated on bars between columns.
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Fig. 7. Boxplots for number of images per object over five sessions. Significance levels (∗? < .05) are indicated
on bars between columns.

f = 4.27) with ? = 0.0222, session 2 and session 4 (` = 5.00, f = 3.98) with ? = 0.0400, and between
session 2 and session 5 (` = 4.90, f = 4.55) with ? = 0.0180. Detailed results are shown in Table 8.

As we noticed the effect of prior programming experience in [4] in the FT condition and also
observed a higher number of images for experts in the FT condition (Figure 7), we performed
a Wilcoxon rank sum test [66] with false discovery rate correction [11] between experts and
non-experts in the FT condition over five sessions. As displayed in Figure 6, there is a statistically
significant difference between experts and non-experts for sessions 4 and 5 only, i.e., when com-
paring experts (` = 9.05, f = 4.41) to non-experts (` = 3.68, f = 3.25) with ? = 0.035,, = 10.5
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in session 4, and comparing experts (` = 11.49, f = 7.03) to non-experts (` = 3.14, f = 2.49) with
? = 0.035,, = 10.0 in session 5.

5.2.3 Number of Teaching Phases Per Session. As the ANOVA for the number of teaching phases
was not significant, we did not perform a post hoc Tukey’s HSD test. Overall, 35 out of 60 participants
had at least one session where they started more than one teaching phase with the robot. Overall,
100 out of 300 sessions had more than one teaching phase ranging from 2 to 11 teaching phases in
a single session.

5.2.4 Reteaching After Misclassification. As the ANOVA for reteaching after misclassification
was not significant, we did not perform a post hoc Tukey’s HSD test. Overall, we noticed that 33
out of 60 participants retaught at least one object after it was misclassified by the robot during the
testing phase. In total, there were 90 out of 300 sessions in which participants retaught misclassified
objects with a maximum of 7 misclassified objects retaught in a session.

Note there were two different kinds of objects that participants could reteach after they were
misclassified by the robot in a session: objects that were taught in the session, and objects that were
taught in previous sessions. The above statistic only counts the reteaching of misclassified objects
from the current session only, i.e., if an object taught in the previous sessions was misclassified
and retaught in a session it is not covered in the above statistic. The ANOVA for this variable
was significant for the session number and interaction between the three independent variables;
therefore, we performed a post hoc Tukey’s HSD test for the significant ANOVAs. Figure 9 shows the
number of old objects retaught after misclassification for the three CL models. There is a statistically
significant difference between session 1 (` = 0.07, f = 0.52) and session 4 (` = 0.23, f = 0.72) with
? = 0.0345, and between session 1 and session 5 (` = 0.17, f = 0.56) with ? = 0.0484 (more details
in Table 9). There is no statistically significant difference between any other sessions and between
the three conditions.

As most participants did not reteach old objects, the value for this variable was mostly zero for the
300 sessions. Therefore, we also report the raw statistics for this dependent variable. Overall, there
were only 18 sessions when participants retaught at least one object from the previous sessions,
with a maximum number of 4 old objects taught in a session. In terms of the number of participants,
only 11 out of 60 participants retaught objects from previous sessions in subsequent sessions.

Finally, we also conducted the ANOVA with combined retaught objects in a session and previous
sessions, because many participants did not reteach old objects. Table 12 in Appendix shows the
ANOVA results. These results confirm that the ANOVA for reteaching after misclassification for
this combined data was not significant. Therefore, we did not perform a post hoc Tukey’s HSD test.

5.3 Semantic Analysis
The overall sentiment scores for all questions are Q1: robot_perception: ` = 0.62, f = 0.45, Q2:
robot_house: ` = 0.58, f = 0.49, Q3: assist_friend : ` = 0.68, f = 0.42, Q4: concern_friend : ` =

0.36, f = 0.52, Q5: suggestion_improvement : ` = 0.63, f = 0.49, Q6: pre-defined_objects: ` = 0.72, f =

0.30. In terms of the three conditions, we performed an ANOVA to determine if there was an effect
of the choice of the CL model on sentiment scores for any of the six questions. Table 4 shows the p
values for all six open-ended questions. We performed post hoc Tukey’s HSD tests for significant
ANOVAs (Q1: robot_perception and Q3: assist_friend).

Figure 8 shows the difference in sentiment values between the three conditions for Q1: robot_per-
ception. We notice a statistically significant difference between CBCL (` = 0.81, f = 0.29) and FT
(` = 0.55, f = 0.44) with ? = 0.0417, and between CBCL and JT (` = 0.48, f = 0.38) with ? = 0.0435.
No statistically significant difference was observed between FT and JT. For Q3: assist_friend
(Figure 8), post hoc Tukey’s HSD did not show a statistically significant difference between the
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Table 4. Results (? Values) of the ANOVA for
Open-EndedQuestions with the Continual
Learning Model as the Independent Variable

Questions p
Q1: robot_perception 0.0194

Q2: robot_house 0.1388
Q3: assist_friend 0.0499
Q4: concern_robot 0.0758

Q5: suggestion_improvement 0.0687
Q6: pre-define_objects 0.1081

Significance levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? <

0.001; ∗∗∗∗? < 0.0001) are in bold.
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Fig. 8. Boxplots for compound sentiment values for the three conditions with different CL methods (CBCL, FT,
and JT) in Q1: robot_perception and Q3: assist_friend. Significance levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? < 0.001;
∗∗∗∗? < 0.0001) are indicated on bars between columns.

three conditions. This is in correlation with the borderline p value in ANOVA for Q3: assist_friend.
Overall summary statistics for all three conditions are shown in Table 10.

5.4 TA
We identified a total of 4 main themes and 24 categories among participants’ responses.
Table 5 shows the four themes, 24 categories, and the number of times they appeared in indi-
vidual responses by the participants. Table 6 further shows the number of times each category
appeared in participants’ responses in the three conditions.The four themes with example responses
for the corresponding categories are described next.

5.4.1 Theme 1—Robot Interaction. Thirty seven responses were about interaction with the robot.
This theme describes participants’ perceptions about interacting with the robot over repeated
interactions. Almost all of the participants had a positive perception of the teaching process and
interactions with the robot, many considering it to be easy, straightforward, and fun. The two
categories in this theme along with example responses are described next.
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Table 5. Categories for Responses to Open-Ended InterviewQuestions

Theme Code Category Count

Robot interaction 1 Operating the robot is straightforward. 29
2 The robot is fun. 8

Robot usability

3 The robot can be used for older adults. 31
4 The robot can be used for people with disabilities. 27
5 The robot can be used for children. 8
6 The robot can be used by anyone. 3
7 I do not want the robot for myself. 23
8 I do not want the robot for anyone. 5
9 The robot can be used to find/fetch personal belongings. 17
10 The robot can be used in the kitchen. 7
11 The robot is useless. 6

Concerns

12 The robot is inaccurate/unreliable. 92
13 The robot is forgetful. 28
14 The robot is bulky. 19
15 The robot’s arm moves fast. 6
16 The robot’s arm moves slowly/rigidly. 11
17 The robot is not safe. 25

Improvements

18 The robot needs better object recognition. 20
19 The robot needs a better camera. 17
20 The robot needs to keep information private. 7
21 The robot should come with a pre-defined set of objects. 29
22 The robot should not come with a pre-defined set of objects. 11
23 Robust customization based on users’ needs for pre-defined objects. 15
24 The robot needs to be more human-like. 11

Note that some categories were found in multiple responses of a single participant; therefore, their overall count is higher
than # = 60.

1. Operating the robot is straightforward. Almost half of the participants mentioned that working
with the robot was quite straightforward. Most of these participants specifically mentioned that
the teaching process was “pretty easy” because they saw the demo only once and could teach the
robot afterwards, e.g., “I thought the teaching process was very easy, it was very intuitive. You only
showed me how to use the iPad once, and I didn’t need to be reminded again during further sessions,
and my sessions were relatively far apart, so it didn’t seem to be difficult to remember at all.,” or “I
think the teaching process was very streamlined and straightforward. It doesn’t get simpler than
that.,” or “It was very simple to do. Just showing the objects and then pressing the button to give
it different views of the object.” Another participant supported this view by commenting about
the quick learning ability of the robot, “I would say it was pretty easy. Again, the robot is smart
enough to grasp things really quickly. I would say he’s a fast learner.”

2. The robot is fun. Interactions with the robot during the teaching and testing phases were also
considered to be fun by some participants, although most of the excitement was in the first session
which went down later on. This was potentially due to the novelty effect. Participants’ comments
about their long-term interactions were positive about the beginning but neutral for the later
sessions, “It was a lot of fun. I haven’t interacted with that robot before. That was quite new. I think
there was a lot of excitement in the first session that kind of went down.,” or “Ok, so my experience
was fun and a little bit boring in the middle but overall fun.”

5.4.2 Theme 2—Robot Usability. One hundred twenty-seven responses were related to the
usability of the robot. This theme describes participants’ perceptions of the robot’s usability
in different domains. Most of the participants positively perceived the robot to be used for a
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Table 6. Categories for Responses to Open-Ended Interview
Questions for the Three Conditions with Different CL Methods

(CBCL, FT, and JT)

Theme Category Code CBCL FT JT

Robot interaction 1 12 5 12
2 5 2 1

Robot usability

3 10 9 12
4 9 10 8
5 4 0 4
6 1 2 0
7 8 6 9
8 0 5 0
9 8 6 3
10 2 1 4
11 3 1 2

Concerns

12 30 28 34
13 1 22 5
14 10 3 6
15 4 1 1
16 3 3 5
17 9 8 8

Improvements

18 7 8 5
19 10 5 2
20 6 1 0
21 7 12 10
22 4 2 5
23 7 3 6
24 4 2 5

variety of assistive applications, whereas some found it to be useless either for themselves or
everyone. The nine categories in this theme along with participants’ example responses are
described next.

3. The robot can be used for older adults. A significant number of participants perceived the robot
to be useful for assisting older adults in their homes. Many of these participants commented about
the potential use case of the robot for assisting their grandparents, “I think it can work, for example,
for my grandmother, because she is sick and she cannot have some kind of physical activity and this
robot can help her a lot.” ormore specifically to help them fetch objects, “The first I thought about was
my grandma because she’s very old. She’s over 90. And it might help for reaching stuff, getting some
stuff for her that she can’t reach. And the robot knows where it is or can indicate it.” or find objects,
such as medicine, “I could see this being helpful with my grandmother, because she has dementia,
and it could help tell different pill bottles or something apart so that she knows what to take or
anything.”

4. The robot can be used for people with disabilities. Similarly, a large number of participants
perceived a more general use case of the robot for people with disabilities, and not just older adults
who might have disabilities. Participants commented that the robot could be helpful for people with
mobility disabilities to help fetch objects and medicine, “Yeah, people with mobility disabilities, I
think the robot could be helpful for getting things for them.” or “I definitely think it could be used
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for people who need some sort of assistance if they have trouble finding things or getting things,
maybe they have some sort of disability. I think it would really benefit them for them to be able to
put an object and the robot to be able to find that object or they need their medication or things
like that. I think it would be really beneficial for them.” or “I can see it being used as an accessibility
type of thing. So if somebody has trouble walking, the robot could get something for them.”

5. The robot can be used for children. Some participants mentioned a unique use case of this robot
for teaching children new objects, where the user could teach the robot personalized names for the
objects and then the robot could be used to teach children, e.g., “I would say situations like there
are some kids in the home like you have to teach them. Where is the mug? Where is the Sharpie?
You can first ask the robot to learn stuff, and then the kid can play around with the robot and learn
actual stuff. So for a kid, it would be like a toy.” or “If you want to teach a small kid, like objects on
the table, you could use this robot to teach objects because the kid would interact with the robot.”

6. The robot can be used by anyone. A few participants perceived the robot to be useful for anyone,
not just older adults or people with disabilities, e.g., “Yeah, I think anyone can use it.” or more
specifically to find objects in the home, “Sure, I can see it being used by almost everyone in my
house, because it’s great for me to find something but you can’t really remember where you put it
or you can’t really see something that you’ve put somewhere. Also, if you’re busy with something
else, maybe you want to find out where something is and you’re tied up with something else, maybe
that can be a great help too.”

7. I do not want the robot for myself. Although a large number of participants perceived the robot
to be useful for older adults, people with disabilities, and children, many of them did not think that
the robot could be useful for them, e.g., “I don’t know. Like how much I would use it just because
I don’t know. I don’t think that like I would find a use for it personally in my life.” or “For me, I
don’t think I need a robot like this, but I think I can see this application and assistive care kind of
environment.” or “If it works, I think it’s quite cool. Or maybe for me, just, I don’t know if finding
objects would be that helpful, but maybe for people in need, not able to move on their own. It
might be quite helpful.”

8. I do not want the robot for anyone.A small number of participants perceived the robot negatively
and did not think that it could be used for anyone. Participants commented that they would not
want their friends or relatives to use this robot, “Honestly, no, I would not suggest my friend or
relative to have this robot.,” others mentioned that it would be a waste of money, “I would try and
convince someone I secretly hate to waste their money on the robot. Like, that is something I would
kind of do as a person because it’s like if they’re rich enough to spend a bajillion dollars on such a
robot. It’s like, yes, you can waste your money on this robot.”

9. The robot can be used to find/fetch personal belongings. Many participants also specifically
mentioned that the robot can be used to fetch and find things in the home, although they did not
specify it for any particular population group, e.g., “Yeah, it happens a lot that you need something
and, for example, you feel lazy and you don’t want to bring that stuff by yourself and this robot
can be really helpful.” or “I mean, I wouldn’t mind if it goes and gets me things. Because you know
when you like on your bed or something and you want to pick something up. So if it’s going to go
do it for me, yeah, that would be nice.,” or to find things quickly, “Yeah, if you have a lot of objects
and you’re trying to find an object in your house, you can use this robot to find the object in a pretty
less time.”

10. The robot can be used in the kitchen. A few participants mentioned a specific use case for
the robot in the kitchen. Participants commented that the robot can provide an extra hand when
cooking things, “I could see some people using it, especially if it’s something like, I don’t know,
maybe cooking, and they’re like alone in the house, and they could just use an extra hand, even
just like, hey, can you get this out of the cupboard, or where is this? So that could be useful for
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them.” or assist in a restaurant or a household “So immediate situation that comes to mind is used
in a restaurant or use as an assistant robot to fetch objects in like kitchen household.”

11. The robot is useless. A small number of participants perceived the robot to be useless, particu-
larly in the real world where this system can be quite slow, e.g., “Actually my personal feeling is
that it might not be so useful. I mean in real life it’s really hard to use that in different situations
and it was a little tiring, to be honest. You should wait a lot for the system to do your actual orders.
So yeah, to be honest. I didn’t like it very much. It’s my personal feeling.” or they commented that
they could not think of any use case for the robot, “I don’t have a proper use for it right now in
mind, so I wouldn’t recommend it to a relative or friend because I don’t know where exactly it
would be that useful to really take it.”

5.4.3 Theme 3—Concerns. The most number of participants’ responses (181) were related to
concerns about the robot. This theme describes participants’ concerns about the robot’s deployment
in the real world, mainly related to the reliability and safety of the robot. The six categories in this
theme along with participants’ example responses are described next.

12. The robot is inaccurate/unreliable. All of the participants had multiple concerns about the
reliability of the robot, with many participants mentioning it multiple times in the open-ended
questions. The concerns related to reliability were evenly distributed across the three conditions,
and not only in the FT condition where the robot forgot previous objects. Participants commented
that they got frustrated due to the unreliability of the robot, “I mean I kind of got frustrated at
quite some points as a customer I know I can’t rely on it right now. I don’t know what errors it has
but it does need some more things to be covered before introducing it to the market so.” Others
said that it was inconsistent and not 100% reliable, e.g., “It seems very inconsistent and its ability to
even detect an object in the same spot is entirely random. Even if it’s facing the exact same way or
in the exact same position, it’s very, very inconsistent.,” or “The only concern I would have is that
it’s not 100% reliable all the time.”

13. The robot is forgetful. A significant number of participants more specifically said that the robot
forgot previous knowledge. Most of these participants were in the FT condition, which was expected
as the FT model theoretically forgets all prior knowledge when learning new tasks. Participants
commented that the robot was reliable for the objects taught in a session but forgot previous objects,
“Well, I thought it was kind of inconsistent because it only recognizes the things that you teach
immediately. I mean, like the five newest objects, and it forgets like the rest of them.,” or “So, I
thought that initially it was very easy to use and it was very reliable. But as more objects were added
to its database, it started having a lot of problems identifying even objects that had no problem
identifying before. And so initially you could have like five objects on the table and it’d have no
problem finding them. But later on, sometimes even just having one object by itself was too difficult
for the object. And then sometimes it works and sometimes it doesn’t. Usually, it’s able to learn the
new object very well, but it kind of in a way forgets about the old items.” Others commented that
the robot was not able to remember previous objects, but they were not sure if it was because of the
robot or their teaching style, “Well, the one obvious thing was that the robot had trouble remem-
beringthe objects that I had taught it, but I don’t know if that was necessarily the robot or myself
as a user.”

14. The robot is bulky. Many participants had a concern regarding the robot’s size, specifically that
the robot was too bulky and big to be used in tight spaces in real-world environments. Participants
commented that the robot might take up too much space and we might have to be careful not to
bump into it, “Maybe it’ll take up too much space and it needs a safe space around it. So yeah,
maybe in the household it would be a little bit, everyone will have to be cautious around it so that
they don’t bump into it and you know, spoil the robot. Nothing will happen to us, but the robot
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should not get damaged. So that could be a problem.” or “It’s a little bit huge. And I’m worried if it
has a collision.” Others commented that the robot will not be useful in smaller apartments, “Well, if
you don’t live in a bungalow, it’s going to be hard to go downstairs if that needs to happen. It’s
kind of bulky so it might not be good in a Toronto apartment or a small apartment. Um, and its
arm swinging around might not be very convenient in small spaces either.”

15. The robot’s arm moves fast. A few participants commented that the robot’s arm moves really
fast and it should be slowed down for safety, “Maybe move the arm a little bit more slowly because
that kind of shows that it’s being a little bit more careful because right now it might be a little bit
too fast with the arm movement. You can’t stop it either.” Others commented that the pace of the
robot might be too fast for some people, “Pretty much I have no concerns because it really worked
well. It doesn’t look like, you know, dangerous in all that. So maybe the pace of the robot might be
too fast for people.”

16. The robot’s arm moves slowly/rigidly. In contrast, some participants had a concern about
the slow pace of the robot and its arm. Participants commented to make the robot faster, but did
appreciate that the slow movement makes it safe when interacting with people, “Just making sure
that it’s as reliable as humanly possible, and maybe a little bit faster, because it is a little bit slow in
the movements, but also that’s a good thing when it’s interacting with people. You don’t want it
to be going super fast. I can see the pros and cons in speeding it up.” Others mentioned that the
robot’s movements were too rigid, “Something that the robot developers should focus on would be
to make the movements less rigid so it can move out of the way of obstacles.”

17. The robot is not safe. Almost half of the participants had concerns regarding the safety of
the robot, which were not only due to its arm speed or its size but also because of other factors.
Participants commented that they do not really trust the robot when it moves especially when it
comes close to some objects which they did not predict, “My concern is I don’t trust it whenever it
moves. I am not always sure on how it’s going to move. When it points I have a very good idea, but
there are a couple of times when it got really close to touching an object like the tall water bottle,
and I’m excluding the time I did something dumb and put something where I shouldn’t have, but
it does sometimes get farther or closer to objects than I expect. And that arm looks like it could
definitely break something. So I would be concerned if something like that was being used in my
household. It would have to be very strictly restricted to not break anything.” Others commented
that the robot makes them scared and going too close to the robot might not be safe, e.g., “I was
kind of scared when I saw it for the first time. So if there are children in a house they might get
scared or we have an area, like a specific area for the robot to interact. So yeah, if people are too
close to it, it might hurt people.,” or “During this research, I have had to stand far away from the
robot in the little squares on the floor, whenever it’s moving. So, I guess if it was moving and
bringing stuff around, it would have to be that I don’t have to move out of its way, especially if I
have a moving disability. So, I guess that would be a safety concern.”

5.4.4 Theme 4—Improvements. The last theme is related to participants’ comments to improve
the robot. One hundred ten responses were related to the suggestions given by the participants for
improving the robot so that it could be deployed in a household environment. The seven categories
in this theme along with example responses by the participants are described next.

18. The robot needs better object recognition. Thirty percentage of the participants recommended
improving the object recognition of the robot. Participants commented that the reliability of the
object recognition should be improved “If its functions can be improved, mainly like being able
to detect objects better and perform a little bit more reliably, I think it has applications in maybe
larger than average household or for people with special needs.,” others also mentioned to improve
the robot to be able to remember previous objects, “I mean, I’m not a software or machine learning
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expert, but I guess, there needs to be work on the remembering part, and then the recognition part
needs to be worked on.,” and robustness against changing angles of objects “I think one thing that
can be improved is how it remembers objects from different angles because during the test, I tried
to change the objects’ angles or, shape or how it was put on the table during the teaching section,
but after I changed it a little bit, the robot cannot recognize it.”

19. The robot needs a better camera. A large number of participants also suggested improving
the camera of the robot to improve object recognition. Participants commented to have multiple
cameras for images from multiple angles, “I guess a better camera than this one so that it can
recognize objects better. And maybe multiple cameras to see the object from multiple perspectives
so that the user doesn’t have to always put it in different orientations.,” or take 3D images instead
of 2D, “I would say first of all I am not sure what was happening because it couldn’t detect several
objects. So, I was thinking maybe right now it’s just taking a 2D picture so I would like my robot to
be taking a 3D picture so it is covering all the dimensions and the aspects of the objects. I think that
will be helpful.,” or improve the camera resolution “Maybe, increase the resolution of the camera. It
seems like the camera resolution is not very good at the moment.”

20. The robot needs to keep information private. Some participants had suggestions regarding
data privacy, particularly because it collects users’ personal data which should not be available
to other people, e.g., “I think the main concern is the privacy that the data it collects must be
completely secured and not used by any other person.” or “Yeah, not much comes to mind except a
wide berth and also maybe privacy concerns because it does take a look at the inside of my house
and the objects in it and it has a camera I’m not sure when it’s active or not so I don’t know I’d be a
bit wary.”

21.The robot should come with a pre-defined set of objects.Almost half of the participants suggested
that the robot should come with a pre-defined/trained set of objects so that the users do not have
to teach it everything. Participants commented that having some pre-trained objects would ease
working with the robot, e.g., “Yes, I would say having some pre-trained objects would be good
because that will help the user, in general, to work with the robot easier.,” or “I would definitely
think that the developer should set up some stuff initially, just so that the robot has a certain level
of understanding before just handing it off to the owner.”

22.The robot should not come with a pre-defined set of objects. Contrarily, another set of participants
suggested that the robot should not come with any pre-trained set of objects, and the users should
teach it on their own. Participants commented that having pre-trained objects in the robot might
not be useful for people, “I don’t know if having it comes with pre-existing objects, I don’t know
what the use of those objects would be to those people, so I like this method better, where you
can teach it whatever you want to fetch it.,” others supported this by saying that everyone has a
different set of objects so the users should teach the robot themselves, “It should not come with a
predefined object, probably because everyone has a different set of objects. And then, someone calls
the same objects different names, so it’s better if one teaches their own style of objects.,” and some
commented that pre-defined objects could take up too much storage space, so the robot should
only learn what they want it to learn, “The second option would be preferred like making him
learn what we want him to learn rather than getting a predefined set of learned objects. Because of
course, we don’t want to consume a lot of storage.”

23. Robust customization based on users’ needs for pre-defined objects. Finally, another set of
participants suggested that the choice of having pre-defined objects should be dependent on the
users’ needs, and even with pre-defined objects users should have the ability to customize and
teach again. Participants commented that the pre-defined objects can depend on the application
area, “I think it depends on how you want to use that robot. Yeah. For example, if it’s asked for your
household, then you might need to teach it everything you want to teach it. But if it’s for a specific
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experiment like this, then you can have predefined objects for it to learn.,” others commented that
there should be pre-defined objects but users should be able to train it with more objects if needed,
e.g. “It should be a little bit of both. Maybe you can have the common items alone, like, already
set. And then the user can train whatever other objects that they have,” or “It should come with a
predefined set of objects, but that should also be customizable by the user. So if the robot knows
pop, but the user wants to differentiate between 7Up and Coke, they should be able to do that.”

24. The robot needs to be more human-like. Some participants also suggested improving the
interaction capabilities of the robot, to make it more engaging and user-friendly. Participants
commented making it human-like in its appearance and the way it talked, e.g., “I think it must be
a little, it must have a little human-like behavior in its intonation and in its appearance to make
people more comfortable with it than people trust it better.,” or “I don’t know if it’s possible, but
having it be a little more engaging with the voice tone and a little more of a feel of like a human
would be a better thing, especially in everyday household tasks and just being in the house, so it
feels less like a robot.” Others commented that making the robot human-like might be weird, but it
should be user-friendly, “I don’t know, maybe make it more human-like, but then that would be
kind of weird, too, because it’s a robot. It’s not a human, but you know, kind of just like making it
user-friendly.”

Finally, we performedword cloud analysis on participants’ responses to the open-ended questions.
Results for the word cloud analysis are presented in Appendix B.

5.5 Teaching Experience Ratings
One of the open-ended questions asked participants to rate their experience teaching the robot
on a scale of 1 (Very Boring) to 5 (Very Engaging). The overall rating for the teaching process was
` = 2.91, f = 0.99. We further performed a one-way ANOVA, but the results were not statistically
significant with ? = 0.55. Detailed summary statistics for the three conditions are shown in
Table 11.

6 Discussion
Results from the qualitative and quantitative analyses of the data collected in our study allow us to
validate the hypotheses in Section 5 and answer the research questions in Section 1.

6.1 Object Learning by Human Teachers (RQ1)
For object labeling, we noticed significant variations in the labeling strategies of different partici-
pants. None of the 25 objects used in the study had a single consistent label across 60 participants,
even for simple objects, such as Apple, Banana, and so on. Further, some participants also label
different objects with the same label, and some participants gave multiple labels to the same object.
These strategies affected the performance of the CL robot for different participants as depicted
by the high standard deviation in classification accuracy of the two CL models (Figure 5). As a
consequence, we can accept H1.1: Labeling strategies for objects vary among different users, which
answers RQ1: How do different users label objects when teaching a CL robot over multiple sessions?
These results also indicate the need for developing personalized robots that adapt to users’ labeling
strategies and learn, and understand, their environment such that both the user and the robot can
effectively communicate about the entities in the environment.

6.2 Robot’s Performance (RQs 2, 3, and 4)
The classification accuracy of the CL robot was significantly affected by the choice of the CL model
which was expected as the FT model forgets previous objects over the five sessions. However,
classification accuracy was not affected by the previous robot programming experience of the
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participants. This result was surprising as it indicates that even expert users who have previous
programming experience might not be familiar with CL over the long term. Therefore, the teaching
effectiveness of both expert and non-expert users might be similar for a CL robot. This is promising
for CL robots in the real world as most users will not have prior experience working with robots.
Consequently, we have to reject H4.1: CL robots taught by expert users perform better than the ones
taught by non-expert users.

Finally, both JT and CBCL achieve significantly higher accuracy when tested on data provided
by the researchers in controlled experimental setups [8]. For example, CBCL and JT achieve ∼90%
accuracy after learning 22 different object classes over 11 sessions (2 classes per session) with only 5
training images per class. In contrast, in our experimental setup, both of these models achieve ∼50%
accuracy after 5 sessions. These results indicate that the results of CL models in controlled setups
with researchers might not be the best indicator of real-world applicability, because participants’
teaching styles in unconstrained experimental setups can significantly affect the performance of
these models.

6.3 Participants’ Teaching Styles (RQs 2, 3, and 4)
Wequantified participants’ teaching styles by calculating the number of images taught per object, the
number of teaching phases started in each session, the number of times objects were retaught after
being misclassified by the robot, and the number of times objects from previous sessions were taught
by the participants. For the number of images per object, we did not find a statistically significant
difference regarding the choice of the CL model and the previous programming experience of
the participants. However, we did notice a statistically significant difference in the number of
images shown per object over different sessions, with more images per object shown in later
sessions. These results indicate that as the robot’s performance might degrade over time, because of
forgetting or other factors, users would compensate by spending more effort in teaching the robot.
Further analysis also showed that expert users showed a significantly higher number of objects
than non-experts in later sessions when interacting with the robot in the FT condition. This result
further shows that based on their previous experiences expert users might try to compensate for
the degraded performance of the robot in later sessions by spending more effort in teaching the
robot. Note, that this might still not affect the robot’s classification performance, as indicated by
results for classification accuracy for expert and non-expert users. However, future studies with
improved CL models might show differences in the performance of these models when learning
from experts and non-experts.

For the number of teaching phases per session and reteaching of misclassified objects, there was
no statistically significant effect of any of the three independent variables. We did, however, notice
that more than 50% of the participants started multiple teaching phases per session with the robot.
A similar result was also seen for reteaching misclassified objects. These results demonstrate the
difference between constrained CL experimental setups and the real world where users might teach
the robot multiple times in an interaction and also reteach the robot if it does not recognize an
object correctly. In contrast, constrained CL setups train the robot to learn an object only once.
Note that in the demo phase, participants were shown only a single teaching and testing phase
with the robot, and they were not told that they could reteach misclassified objects to the robot.
These results show that users might teach the robot differently than the experimenters or CL robot
developers.

Finally, for reteaching old objects there was no statistically significant effect of the choice of the
CL model or prior programming robot programming experience of the participants. This result is
surprising because the FT model forgets the previous objects but CBCL and JT do not; therefore,
we expected that participants in the FT condition would reteach more old objects than participants

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 52. Publication date: October 2024.



A Human-Centered View of Continual Learning 52:29

in the other two conditions. We did notice that participants taught a significantly higher number of
old objects in later sessions. We believe the reason is that in the earlier sessions, there were no old
objects to teach the robot and the robot performed reliably. However, by sessions 4 and 5, there are a
large number of old objects taught in previous sessions, and the robot’s performance also degrades
because of forgetting. We further noticed that ∼18% of the participants retaught old objects to
the robot. These further confirm the difference between the constrained CL setups and real-world
setups with robots interacting with real users, as we notice a natural replay of misclassified old
information for the robot through user interactions. Note that in the study instructions, and during
the demo phase, participants were not told that they cannot re-teach old objects. Similar to the
results for the number of teaching phases and reteaching misclassified objects, these results show
how real users might teach the CL robots. Finally, all of these results show that most users in the
study were motivated to improve the performance of the robot, even though they were not given
any specific incentive to do so. This is quite promising, as it indicates that users might be motivated
to improve the performance of their personal robots over long-term interactions.

Based on the above results for the teaching style of the users, H2.1 (Classification performance of
the robot affects the teaching style of the participants over multiple sessions) can be accepted partially
as we noticed that almost half of the participants retaught objects to the robot based on the robot’s
classification performance. We also noticed that experts taught a higher number of images per
object to the robot in the FT condition in the later sessions when the robot’s performance degraded.
Both H2.2 (Users teach a robot that forgets previous objects differently than a robot that remembers
previous objects) and H2.3 (Users teach a robot that retrains on all previous objects differently than a
robot that does not train on all previous objects) have to be rejected as we did not notice the effect of
the CL model on any of the variables representing the teaching style of the users. H3.1 (Teaching
styles of users change over multiple sessions regardless of the CL model) can be accepted partially as
we did notice an effect of the sessions number on the number of images per object and reteaching
old objects, but not on the number of teaching phases per session and reteaching misclassified
objects. Finally, we did not see a statistically significant effect of the previous robot programming
experience of the participants on any of the variables representing participants’ teaching styles.
Therefore, we have to reject H4.2 (There is a difference between the teaching styles of expert and
non-expert users). Overall, the above results and the hypotheses allow us to answer RQ2–4 regarding
the teaching style of the users. Specifically, for RQ2 : How does the CL robot’s performance affect
the way users teach over multiple sessions? we noticed a direct effect of model performance on
participants’ teaching styles as many participants re-taught objects to the robot after they were
incorrectly classified. For RQ3: Do users change the way they teach the CL robot over multiple sessions?
we noticed that participants did evolve their teaching styles over multiple sessions by teaching
the robot more in later sessions. Finally, for RQ4: Is there a difference in teaching style and robot
performance for expert and non-expert users we did not notice any significant effect on the teaching
style or the robot’s performance between expert and non-expert users.

6.4 Teaching Experience Ratings
Results for teaching experience ratings showed that participants were neither overly excited nor
bored while interacting with the robot over multiple sessions. Further, the choice of the CL model
did not have an effect on these ratings, indicating that the performance of the robot does not affect
users’ teaching experience with the robot. We hypothesize one of the reasons for low ratings was
that the robot did not have any extra social cues in an overall functional setup. Utilizing social cues
and changing the dialogue of the robot might improve users’ overall experience with the robot
over the long term.
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6.5 Semantic Analysis (RQ5)
Results for semantic analysis of the open-ended questions showed an overall positive sentiment in
all of the questions with ` > 0.5, except for question 4 with ` = 0.36. As Q4: concern_robot asked
participants about their concerns about the robot, it was expected that sentiment values for many
participants would be lower (neutral or negative sentiments), therefore the average sentiment value
was lower for responses to this question. The standard deviation in the sentiment values for all the
questions was also very high (∼0.5) which shows that there were significant variations among the
sentiment values for responses by different participants. Still, on average a positive sentiment for
responses to all questions indicates that most participants had positive perceptions toward the robot.
Further analysis indicated that the sentiment value in the responses to Q1: robot_perception (What
do you think about this robot or system? ) for participants in the CBCL condition was significantly
higher than the sentiment values of responses for participants in the FT and JT conditions. It
was expected that participants in the CBCL condition would perceive the robot more positively
than participants in the FT condition because of the lower classification accuracy of the FT model,
especially in later sessions. However, it was surprising to see that a similar effect was seen between
the CBCL and JT conditions. We think, one possible explanation could be that the JT model requires
a much higher amount of time to train on new objects in later sessions because it has to replay all
the data from previous sessions, whereas CBCL can learn quickly as it does not require any replay.
Therefore, this might have negatively affected participants’ perceptions of the JT condition. These
results indicate that users think more positively about robots that can learn quickly and perform
reliably without forgetting old knowledge.

For the rest of the five questions, there was no effect of the choice of the CL model on the
sentiment values in participants’ responses. Both questions 2 and 3 asked participants about the
perceived usability of the robot in household environments. The results indicate that participants
had similar perceptions about the usability of the robot in household environments irrespective of
the choice of the CL model. This was promising as it shows that even if the robot is forgetful or
unreliable users perceive it to be similarly useful for household assistive applications. Questions
4: concern_robot, 5: suggestion_improvement, and 6: pre-define_objects asked participants about
their concerns and suggestions for the future development of the CL robot. Again, results for these
questions show that participants had similar sentiments in terms of concerns and suggestions
toward all CL models. This indicates that CL robots, even if they do not forget past knowledge, are
quite far from being deployed in real environments.

6.6 TA (RQ5)
TA of the open-ended questions resulted in four major themes indicating participants’ perceptions
of interaction with the robot, the usability of the robot for different real-world scenarios, concerns
about the robot assisting with daily tasks, and suggestions for improving the robot for deployment
in household environments. These themes were divided into 24 categories that provide further
insight into the strengths and weaknesses of the CL robot. Almost half of the participants mentioned
that it was straightforward to interact with, teach, and test the robot. Most of these participants
were from the CBCL and JT conditions, which could be because participants in the FT condition
had to reteach the robot multiple times after misclassifications, and therefore did not perceive the
teaching process to be easy. In terms of usability, although many participants did not want the robot
for themselves, a large number of participants mentioned that the robot could be useful for older
adults, people with disabilities, and for fetching everyday personal belongings. A few participants
also highlighted the usefulness of the robot for teaching children. A small number of participants
did mention that the robot is not useful for anyone, although most of these participants were in the
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FT condition. Overall, these results were quite promising as participants can envision CL robots as
helpful assistants in household environments.

Participants also identified many concerns related to the CL robot for assisting with daily tasks.
The primary concern raised by all participants (multiple times by some participants) was that
the robot was unreliable and inaccurate. This correlates with the classification accuracy results
for the three CL models where the average accuracy was never higher than ∼50–60%. The other
major concern was that the robot forgot objects from previous sessions, although almost all of
the participants who raised this concern were from the FT condition. This was expected as the FT
model forgets the previous knowledge when learning new information. The rest of the concerns
were related to the safety of the robot, especially when it moves its arm. These concerns indicate
that CL robots are currently not reliable and safe enough to be deployed in our daily environments.
Additionally, we noticed that there were conflicting comments by the participants regarding the
robot’s arm’s speed, with some saying it was too fast and others saying it was too slow. Future
research in CL should also focus on the relation between the perception of robots and safety [27]
and personalization to users’ preferences of perceived safety [65] in addition to learning task
knowledge.

Finally, participants highlighted various ways to improve the robot for deployment in household
environments. In correlation with the major concerns, the main suggestions for improvement were
related to the object recognition and camera of the robot. Future development of CL robots should
focus on improving the performance of the robot through robust CL methods. In response to the
last open-ended question, half of the participants mentioned that it is better if the robot comes with
pre-defined objects without any teaching required by the users. The rest of the participants were
divided into two groups. One of them mentioned that the robot should not come with pre-defined
objects and that users should be allowed to teach what they want the robot to learn. The second
group mentioned a hybrid approach where pre-training or no-pretraining can be chosen based on
the application area, e.g., for household applications users should be allowed to teach the robot
their own objects. These results indicate that the development of CL robots should be based on
their application area, and for household assistive applications, it might be useful to develop robots
that can personalize to their users’ environments through direct learning from the users. Overall,
these results allow us to answer RQ5: How do human users perceive the CL robot for everyday
applications?. Our analysis shows that users did perceive the robot to be useful in the future for
assisting older adults and people with disabilities in their homes, albeit after several improvements
related to the robot’s object recognition, its camera, its interaction with the participants, and
data privacy.

7 Conclusions
In this article, we considered a human-centered approach to CL to understand how users interact
with, teach, and perceive CL robots over the long term.We designed a long-term between-participant
HRI study in which 60 participants interacted with a CL robot using three different CL models
(three conditions) over 300 sessions. We analyzed the data collected from this study to understand
the different teaching styles of participants, and how these styles are influenced by the performance
of the robot over multiple sessions. Our results indicate that different users teach household objects
to the CL robot in a variety of ways, and, unlike constrained CL test setups, the classification
performance of the robot can also influence the teaching style of the users. The results also
show that the previous programming experiences of the users did not affect their teaching style
or the performance of the robot, which is promising because it demonstrates that CL robots
can easily learn from non-expert users. Our analysis of the open-ended questionnaires with the
participants provides further insight into the strengths and weaknesses of CL robots and their

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 52. Publication date: October 2024.



52:32 A. Ayub et al.

potential to be deployed as assistive robots for older adults and people with disabilities in household
environments. Overall, based on the results of this study, we recommend future CL models focus on
adapting to the teaching style of their users, and that CL models should be tested in more realistic
test setups.

8 Limitations and Future Work
We conducted our study in an unconstrained setup, where participants could teach and test the
robot flexibly. However, the study was conducted in a robotics lab and not in a realistic household
environment. In future work, we plan to conduct a similar study in a smart home with the same
robot to understand the influence of the household environment on the interactions and teaching
styles of the users.

We conducted the user study with a mix of expert and non-expert users, however, due to practical
constraints of recruitment, they were all university students between the ages of 18 and 37 years.
In future work, we plan to conduct this study with participants who might be less familiar with
robots to understand the effectiveness of CL robots for assistive applications. Finally, the study was
conducted with one particular robot and with three CL models. Expanding this work to other robots
and CL models can help us understand the larger design space of CL robots and users’ teaching
patterns when interacting with these robots.

The GUI used in the system currently requires participants to type the name of the object during
the training and testing phases. This can be cumbersome, and people can also forget the names
they gave to the objects over time. In the future, one research direction can be to improve the GUI
and the interaction with the robot, such as by saving the names of the objects that the participants
provide over time and then providing an option to choose an object name from a drop-down menu
rather than typing it every time. Additionally, adding an NLP-based interaction supporting the
GUI or standalone could also improve how users interact with and teach the robot. This could be
effective for older adults and people with disabilities who might be unfamiliar with technology and
face difficulties interacting through a GUI. Future studies with an NLP-based interaction system,
particularly with older adults, could shed better light on the capabilities of this system for real-world
assistive applications.

Despite these limitations, our user study took the first step toward a human-centered approach
to CL by integrating ML-based CL models with HRI. We hope that our results can help ML and HRI
researchers design CL models that can adapt to their users’ teaching styles and test these models in
realistic experimental setups where embodied agents interact with human users.

Appendices
A Detailed Results of the Study
Tables 7–9 show detailed summary stats and ? values for the classification accuracy of the three
CL models, number of images per object, and number of old objects retaught by the participants,
respectively. Table 10 shows the complete summary stats for the sentiment values in the responses
to the open-ended questions for the three conditions.

B Word Cloud Analysis
We performed word cloud analysis for responses to each of the six questions using the Python
wordcloud library. Note that we filtered out common words in responses that were not helpful,
such as “the,” “like,” and so on. Figure 10 shows word clouds for the six questions. The word clouds’
most common words match the most frequent categories in the TA. For example, the most common
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Table 7. Detailed Results for Classification Accuracy in the Three Conditions with Different Continual
Learning Methods (CBCL, FT, and JT)

Session CBCL FT JT FT-CBCL CBCL-JT FT-JT
Value ` f ` f ` f ? ? ?

1 0.53 0.18 0.51 0.18 0.59 0.18 0.9777 0.4770 0.4052
2 0.54 0.16 0.29 0.13 0.61 0.2 0.0004 0.5291 <0.0001
3 0.54 0.15 0.22 0.13 0.48 0.2 <0.0001 0.4154 0.0006
4 0.53 0.2 0.24 0.13 0.46 0.19 <0.0001 0.6974 0.0018
5 0.55 0.19 0.26 0.14 0.51 0.2 <0.0001 0.7763 0.0010

Significance levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? < 0.001; ∗∗∗∗? < 0.0001) are in bold.

Table 8. Detailed Results for Number of Images Per Object in Five Sessions

Session 1-x 2-x 3-x 4-x
Value ` f ? ? ? ?

1 4.73 4.37 - - - -
2 4.23 3.69 0.3489 - - -
3 5.14 4.27 0.9123 0.0222 - -
4 5.00 3.98 0.8583 0.0400 0.9998 -
5 4.91 4.55 0.7591 0.0180 0.9968 0.9993

The column labeled 1-x shows ? values between session 1 and the rest of the four sessions. The next three column labels
follow the same procedure. Significance levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? < 0.001; ∗∗∗∗? < 0.0001) are in bold.

Table 9. Detailed Results for Number of Old Objects Retaught in Five Sessions

Session 1-x 2-x 3-x 4-x
Value ` f ? ? ? ?

1 0 0 - - - -
2 0.07 0.52 0.9179 - - -
3 0.1 0.49 0.4191 0.9397 - -
4 0.23 0.72 0.0345 0.2491 0.4719 -
5 0.17 0.56 0.0484 0.2625 0.7138 0.8589

The column labeled 1-x shows ? values between session 1 and the rest of the four sessions. The next three column labels
follow the same procedure. Significance levels (∗? < .05; ∗∗? < 0.01; ∗∗∗? < 0.001; ∗∗∗∗? < 0.0001) are in bold.

words in Q3’s word cloud are useful, recommend, relatives, older, helpful, fetch, and home. These
match with common categories in the theme about the usefulness of the robot, i.e., the robot is
useful for older adults, and the robot can be used to fetch personal belongings.
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Fig. 9. Boxplot for number of old objects retaught after misclassification for the three conditions with different
CL methods (CBCL, FT, and JT). Significance levels (∗∗? < 0.01) are indicated on bars between columns.

Fig. 10. Word clouds for participants’ responses to open-ended questions.
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Table 10. Detailed Summary Statistics for Compound Sentiment Values for the Three Conditions with
Different Continual Learning Methods (CBCL, FT, and JT) in Six Open-EndedQuestions

CBCL FT JT
Questions ` f ` f ` f

Q1: robot_perception 0.81 0.29 0.55 0.44 0.48 0.55
Q2: robot_house 0.69 0.41 0.66 0.45 0.38 0.58
Q3: assist_friend 0.67 0.55 0.61 0.43 0.76 0.19
Q4: concern_robot 0.51 0.48 0.41 0.49 0.15 0.53

Q5: suggestion_improvement 0.81 0.36 0.54 0.53 0.53 0.57
Q6: pre-defined_objects 0.75 0.30 0.82 0.14 0.61 0.38

Table 11. Detailed Summary Statistics for
Teaching Experience Ratings for the Three

Conditions with Different Continual
Learning Methods (CBCL, FT, and JT)

CL Model ` f

CBCL 3.05 1.10
FT 2.71 1.00
JT 2.96 0.86

Table 12. Results (? Values and Effect Sizes) of the Three-Way ANOVA Using Session Number,
Continual Learning Model, and Previous Programming Experience as Independent Variables

p Values
Accuracy Number

of Images
Teaching
Phases

Reteaching

Programming experience 0.5772 0.0845 0.4399 0.9718
Session number <0.0001 0.0257 0.3903 0.2691

CL model <0.0001 0.3748 0.8394 0.2404
Programming experience: Session number 0.5607 0.0534 0.5083 0.4787

Programming experience: CL model 0.856 0.0868 0.6896 0.5679
CL model: Session number 0.0011 0.2624 0.6151 0.4890

Programming experience: CL model: Session number 0.9111 0.0993 0.3127 0.1344
Effect Sizes

Accuracy Number
of Images

Teaching
Phases

Reteaching

Programming experience 0.0027 0.0424 0.0091 <0.0001
Session number 0.0714 0.008 0.0034 0.0129

CL model 0.2467 0.0267 0.0053 0.0243
Programming experience: Session number 0.007 0.0065 0.0026 0.0085

Programming experience: CL model 0.0027 0.0702 0.0112 0.0096
CL model: Session number 0.0674 0.0063 0.005 0.0181

Programming experience: CL model: Session number 0.0074 0.009 0.0079 0.0313

Columns for the accuracy of the models, number of images per object, number of teaching phases, and reteaching
misclassified objects (including retaught old objects) show ? values (top table) and effect sizes (bottom table) for the
dependent variables. We use generalized eta [39] to calculate effect sizes. Significance levels (∗? < .05; ∗∗? < 0.01;
∗∗∗? < 0.001; ∗∗∗∗? < 0.0001) are in bold.
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