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A B S T R A C T

Rapid urbanization and population growth in recent decades have placed significant pressure on urban cities to
rely heavily on underground infrastructure, such as sewers and tunnels, to maintain the provision of essential
services. These sewers, typically having a limited lifespan of 50 to 100 years, are prone to various forms of
defects. While prior research has primarily addressed common sewer defect like crack, root intrusion, and
infiltration among others, the challenge of encrustation—the formation of hard deposits within sewer system-
s—has received less attention. This study presents a pioneering deep-learning approach to detect encrustation in
sewers by leveraging survey videos from 14 different sewers in the United Kingdom. Our work marks the first
effort to develop models specifically for detecting encrustation using deep learning techniques, as previous
studies have focused on other types of deposits such as settled and attached deposits. By converting the videos
into sequential image frames, we subjected them to thorough analysis and several image pre-processing tech-
niques. Our contributions include the development and comparison of different classification models using
backbone CNN networks such as AlexNet, VGG16, EfficientNet, and VGG19 to classify encrustation. Notably, this
study provides the first metric-based comparison of these backbone networks to identify the most effective model
for encrustation detection. The results demonstrate an impressive 96 % accuracy using the deep architecture of
VGG19. Beyond accuracy, this research explores the impact of data augmentation and network dropout on
reducing overfitting and enhancing model performance. Additionally, we analyze the time complexities asso-
ciated with training models with and without data augmentation, providing valuable insights into the efficiency
of our approach.

1. Introduction

Sewers, one of the most important underground infrastructures
(Wang et al., 2021a), have seen more frequent usage in the United
Kingdom (UK) due to the increase in population and urbanization
(Statista, 2021), with approximately 8 % increase in population in the
last 2 decades (Office for National Statistics, 2021). This has led to more
subscriptions to the current sewers and put more pressure on the current
sewerage system, without any substantial additional sewers in recent
times. Covering 347,000 km in distance, sewers in the UK convey 11
billion litres of wastewater daily (DEFRA, 2014) and about 39 million
tonnes of sewage into the Thames annually (Ofwat, 2023; Varghese,
2023). Failure to properly manage these sewers can have devastating
environmental, social, and financial impacts on society and water

companies, such as in-house and environmental flooding, episodes of
land, water, and air pollution, reduction in the lifespan of household
drainage systems, huge penalty fines on sewer management companies,
and increased maintenance cost among others. Avoiding these impacts
prevents waterborne illnesses, provides safe drinking water, and en-
hances general sanitation (Decor et al., 2019; Moskalenko et al., 2020).

As a durable structure, sewers have a lifespan between 50 to 100
years (Wang et al., 2021b), and many of the ones in use today are either
old or ageing gradually (Moradi & Zayed, 2017; Myrans et al., 2018a;
Wang et al., 2021b). However, the long lifespan catalyses some internal
and external factors that expose them to significant defects over this
period. These factors include deposits, wear and tear from sewage, high
vehicular traffic and train vibrations on roads and lines above the sewer
(Aşchilean et al., 2018; Xu et al., 2021), surrounding construction
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activities and poor weather conditions (Hughes et al., 2021) among
others. Defects resulting from these vary based on their origin and
location within the sewer. According to the Water Research Centre
(WRc), these defects are grouped into structural, construction, operation
& maintenance, and miscellaneous. WRc provides the coding standard
for sewer condition assessment and classification using Closed Circuit
Television (CCTV).

Assessment of these defects through a survey is a tedious, time-
consuming, and resource-centric task. Traditional defect detection
mechanism involves sewer inspectors either going into the sewer to
conduct physical and manual inspections or watching many hours-long
survey videos to manually spot defects (Pan et al., 2020a; Savino &
Tondolo, 2021). This approach is a subjective way of defect detection
since it majorly depends on the inspector’s judgement (Li et al., 2021;
Wang & Cheng, 2019). Additionally, it takes a lot of time, cost, work-
force, and other meaningful resources to manually analyse these survey
videos. As a result, there is an increased need for automatic defect
detection in sewers (Liu et al., 2019) where defects are identified
automatically from survey videos or still images. Several techniques
have been applied to automatic defect classification using machine
learning and computer vision (Ren et al., 2022; Westphal& Seitz, 2021),
with the CCTV becoming a major data source and the most popular tool
today to carry out a non-invasive inspection and monitoring of opera-
tional sewers (Guo et al., 2009; Hawari et al., 2018). In recent years,
images or videos obtained from CCTV have been analysed and used in
training deep-learning models that can classify or identify defects in
sewers (Myrans et al., 2018b; Thiyagarajan et al., 2016).

Most machine learning-based studies in defect classification of
sewers have focused on other types of defects such as cracks, tree roots,
and blockage (Chen et al., 2018a; Pan et al., 2020b; Kumar et al., 2018),
with little or no attention specifically on encrustation, which is common
in UK sewers (ClearView Survey, 2023; RapidResponse Drain Care,
2023). This study focuses on the automatic classification of encrustation
(i.e., scaled or hard deposits) - an operational and maintenance defect in
concrete sewers. Encrustation originates primarily from the accumula-
tion of periodic residuals or deposits from infiltration, seeping, and
groundwater leakages. The residuals form a hard coating on the sewer
lining and reduce its cross-sectional area. Accumulation of this defect
over time can result in reduced hydraulic capacity, structural damage,
and partial or complete blockage of the sewer, thereby leading to
problems such as environmental flooding, sewer collapse, economic
loss, and even a threat to human lives (Xu et al., 2021). Detecting

encrustation earlier, just like other defects, provides experts with ample
time to plan and strategize on sewer repair or maintenance.

Consequently, this study developed a deep-learning model that can
automatically recognize encrustation in sewers due to its importance in
sewer maintenance and the lack of studies on this defect. Hence, we
employed a deep-learning approach to developing an encrustation
classification model for conditional assessment while following a su-
pervised learning approach. We used different CNN models such as
AlexNet, VGG16, VGG19, and EfficientNet, however, VGG19 provides
the best result. We also employed data augmentation and network drop-
out to avoid overfitting, and the result shows a substantial performance
compared to most existing classification models in sewer defect
detection.

2. Related work

The maintenance and assessment of urban underground infrastruc-
ture, particularly concrete sewers, is of vital importance to ensure the
continuous flow of wastewater and prevent structural degradation(Hu
et al., 2019; White et al., 2013). Among the numerous challenges faced
in sewer maintenance, the identification of defects, such as encrustation
and others, plays a crucial role (Fang et al., 2020; Li et al., 2023). Several
studies have been conducted in the classification of sewer defects using
CCTV images or other data acquisition technologies. These defects are in
various forms and shapes, and Fig. 1 pictorially shows defect catego-
risation adapted according to Water Research Centre (WRc).

WRc categorisation is briefly summarised below.

• Structural: Defects that affect the structure of the sewer pipes.
• Operation and maintenance (O&M) are internal and external ob-
jects found in pipes that may obstruct the sewage system’s regular
operation.

• Construction: defects and conditions associated with the method-
ology employed in constructing and connecting pipes.

• Miscellaneous: Any defect or features that are not part of the other
categories or general items concerning the sewer.

Consequently, issues such as encrustation are categorized as O&M
since it’s a type of deposit, and evaluating such defect category through
traditional methods proves to be a laborious, time-intensive, and
resource-demanding endeavour. Therefore, numerous investigations
have sought to address these challenges by applying various

Fig. 1. Defect categorisation (Guo et al., 2009).
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methodologies, utilizing different defects as case studies, with little
mention of encrustation. Recently, machine learning (Myrans et al.,
2018b) has been leading the revolution in the field of computer vision
(Smith et al., 2021; Michael, 2017; Sutton, 2013), especially its appli-
cation in defect detection using variations of deep-learning algorithms
like CNN (Gao et al., 2019; Gutierrez-Mondragon et al., 2020) which is
often used in analysing survey videos and images. Before that, conven-
tional Machine Learning (ML) techniques used in linear regression and
algorithms such as Support Vector Machine (SVM) and Random Forest
(RF) have been employed in defect classification problems (Shang et al.,
2019) and productivity analysis. While they had commendable success
in defect classification and can adapt to new types of defects, they
cannot be used as a standalone method for complete end-to-end defect
classification (Li et al., 2022; Xu et al., 2020) as they need other tech-
niques for feature extraction or selection as a prerequisite for subsequent
defect classification.

Furthermore, Decor et al. (2019) established that network
learning-based approaches in defect classification and detection are now
more competitive. They evaluated and compared both RF two CNNs on
tunnel linings using images of concrete and masonry walls of tunnels.
Their study shows that deep-learning models outperform the RF model
on concrete and masonry walls. One of many notable advantages of
deep-learning algorithms over other conventional ML algorithms is the
automatic feature extraction (Fatma et al., 2016; Lin et al., 2017) in
deep-learning without explicitly applying feature extraction techniques
(Liu et al., 2019). This has been a source of motivation for people who
chose deep learning over other approaches, as feature extraction is
usually time-consuming with conventional ML algorithms. This effi-
ciency of deep learning across many of its applications, such as auton-
omous vehicles (Grigorescu et al., 2020; Ni et al., 2020; Yue et al., 2023),
construction (Mostafa & Hegazy, 2021; Yu et al., 2022), healthcare
(Jiang et al., 2017), and manufacturing (Bartsch et al., 2021), coupled
with the rapid growth of generated data, has scaled up its adoption.

Previous deep-learning approaches focused on defects such as infil-
tration, root intrusion, and sewage deposits (Pan et al., 2020a), with no
specific attention on encrustation. Kumar et al. (2018) proposed defect
detection and tracking in sewer pipes using deep learning and metric
learning to identify and track defective objects across consecutive
frames in the video, but their study only focused on defects such as
fractures, root intrusion, and lateral connection. Li et al. (2021) used
deep learning with local and global feature fusion to detect the defect in
sewer pipes by concatenating the proposed region feature and the global
contextual feature from the corresponding image to enhance feature
representation fine-grained defect classification network. However, the
scope of their model only focused on defects such as Barriers, Deposi-
tion, Distortion, Fraction and Foreign bodies. Hence, our proposed
model aims to detect encrustation in sewers using deep learning and

datasets from CCTV surveys.
More than conventional machine-learning models, deep-learning

models require a massive amount of data to train and generalise effec-
tively, but this comes with computational overhead (Fu & Menzies,
2017; Thompson et al., 2020). For example, Xu et al. (2021) combine
automatic defect detection and segmentation by applying modified
Mask R-CNN to segment defects in tunnels to reveal more detailed in-
formation about each defect. Even though their result averaged 90 %
generalisation, they noted the computational cost of using their
approach as it requires more hours to train the model. Resource usage in
deep-learning models has sparked a variety of conversations around the
trade-off between model performance and computational cost. Models
with large training data often perform better than those with lesser data
because the models have more features to learn from, but such models
are usually not repeatable in research studies due to hardware re-
quirements and computational costs incurred during training. Invari-
ably, considerations are given to computational cost while choosing the
size of training data for deep-learning models. Outside the realm of
machine learning, other approaches (Lepot et al., 2017; Redmon et al.,
2015; Situ et al., 2023a) have also been applied to defect detection, but
this is outside the scope of this study.

3. Methodology

To detect surface encrustation in concrete sewers, we proposed a
deep-learning model that automatically detects encrustation from sewer
images. To achieve this, we sequenced inspection videos from CCTV
footage into streams of images. Sample video sequencing on selected
sewers across the UK is summarised in Table 2. The architecture of this
approach is pictorially depicted in Fig. 2, which is grouped into data
collection, image pre-processing, and defect classification.

3.1. Data collection

We collected several survey videos from 14 different sewers and
culverts across the United Kingdom from a UK sewer inspection com-
pany that offers a wide range of industry-based services, including CCTV
Surveying, Gutter Maintenance, Grease Traps and many more. This
survey covers sewers in popular cities like London, Manchester, Glas-
gow, Nottingham, Leeds, and Derby. In most cases, during a survey, the
total sewer length is divided into different sections (from onemanhole to
another designated manhole), and an additional survey is conducted for
each section. Hence, multiple videos are recorded for a sewer based on
each surveyed section. The video data was collected as MPEG files with
an approximate size of 37GB.

Fig. 2. Architecture of Proposed Deep-learning Approach.
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Fig. 3. Sample image extraction.

Fig. 4. Robotic system for sewer survey.

Fig. 5. Text removal from images.
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3.2. Image extraction

Extraction of images from videos (i.e., video sequencing) entails
converting a video into frames of images. We used OpenCV, a Python
library for analysing and manipulating videos and images, to extract
images from the inspection videos. For example, Fig. 3 shows sample
images extracted at a different inspection point in Sewer 1.

We sequenced the videos at a frame rate of approximately 25 images
per second using OpenCV’s default FPS (frame per second) for recorded
videos, which resulted in over 1 million images of sewers surface across
different locations within the UK. We further selected images with
encrustation since this is the defect in focus.

Fig. 6. Annotated dataset for model development.

Fig. 7. Convolution layer in CNN (Cheng & Wang, 2018).
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3.3. Image pre-processing

Extracted images were in different dimensions (e.g., 750 × 970
pixels) and sizes (e.g., 750 kb), which will negatively affect the model
and the pixel-wise spatial information. Even though the robotic system
on which the CCTV was mounted has its lightning functionality as seen
in Fig. 4, some images were not bright enough to clearly show the sur-
face of the sewer because of light and CCTV alignment distortion
whenever the robot hits an obstacle. Owing to this, we applied bright-
ness in images by manipulating the image’s colour space in HSV (Hue,
Saturation, and Value) using OpenCV. HSV saves images’ colour infor-
mation in a rounded representation by depicting the colours as the
human eye perceives them. Increasing some dark images’ brightness is
necessary because darker images reduce model generalisation (Xu et al.,
2021).

In addition, all images were resized to a fixed 150 × 150 pixel res-
olution by specifying the target-size value while building data genera-
tors and fetching images from directories using TensorFlow. This
abridged image dimension reduces compute resource usage and main-
tains both the image spatial information and correlation. Similarly, we
remove text with survey meta-data information from the images using a
fusion of OCR and image inpainting from OpenCV and Keras OCR. As
represented in Fig. 5, the text removal process includes text identifica-
tion using annotation, removal, and re-painting area where the text was
removed.

3.4. Defect classification

To automatically classify encrustation in concrete sewers, a deep-
learning model was developed using a 3-fold approach; dataset anno-
tation, model architecture construction, and model training &
evaluation.

3.4.1. Dataset annotation
The dataset prepared for this automation was annotated by directory

grouping. First, annotation was done by dividing the dataset into
training and testing directories. Then, each directory was further
divided into defective and non-defective, allowing the model to identify
the training and testing set directories. Fig. 6 depicts a hierarchical view
of the directory-based annotation. The final dataset was divided be-
tween training and testing using stratified hold-out sampling; 75 % for
training, 15 % for validation, and the remaining 10 % for testing (Lyu
et al., 2021; Xu & Goodacre, 2018). We adopted this splitting ratio due
to our small data size and the need to use a sizeable amount to pro-
gressively validate the model. For the training portion, the sample size
will be automatically augmented (i.e., increased) (Agnieszka & Michał,
2018) using different approaches, however, we can’t augment the
validation set.

3.3.2. Model architecture
Architecture for the deep-learning model revolves around piecing

together algorithms, different parameters, and constraints to be used by
the CNN algorithm for both training and testing of the model. This study
divided the model architecture into four dependent stages: convolution,
activation, pooling, and Flattening.

At the convolution layer, a filter (also called the kernel, weight ma-
trix, or receptive field) slides through the pixels of the input image from
left to right in a bid to extract relevant features from the image by
conducting an element-wise dot operation of the filter weights against
each subarray of the image pixel. As shown in Fig. 7, this dot operation

results in a stack of feature maps (x ∗w) - a matrix-like representation of
the relevant features extracted from the image.

The weight of the filter is randomly generated at the initial stage, and
we set a stride (i.e., the vertical movement of the filter across the pixels)
of 1 to aid in more feature extraction. Filter dimension, weight, bias, and
stride are tuned parameters to get more accurate detection. Fig. 6 shows
the processes within a typical CNN model during defect detection. Since
images are non-linear data, a common way to add non-linearity (i.e.,
adding more correlations between pixels) is the activation function on
feature maps. In this study, we used the Rectified Linear Unit (ReLU) to
add non-linearity within the network. We also used ReLU to remove
negative values from an activation map by setting the value to zero.
Other common activation function includes sigmoid and tanh (Tan et al.,
2021). The choice of ReLU is due to its low time complexity in training
the network without serious consequence to generalisation accuracy
(Javid et al., 2021).

Furthermore, we introduced pooling between subsequent convolu-
tion layers to progressively reduce the spatial size of the image. Pooling
is a form of dimensionality reduction that minimises the feature sets and
maintains the spatial relationship between pixels. Hence, we used a 2 ×

2 filter and stride of two to max pool the spatial size of the input feature
map at each convolution layer. Max pooling is common in image
recognition and object detection for pooling the maximum value from
the pixel subarray in the feature maps (Ajit et al., 2020; Mushtaq & Su,
2020). Other pooling techniques include average pooling and L2 norm.
Fig. 8 illustrates how max pooling reduces the spatial size of our feature
maps.

To calculate the output dimension of the feature map after pooling,
we used Eq. 1 (Adrian Rosebrock, 2021).

(W − F+2P / S) + 1 (1)

WhereW, F, P, and S are input size volume, filter size, number of zero
padding, and stride, respectively. Pooled feature maps are usually in a
multi-dimensional array of features, as seen in Fig. 8. This must be
transformed into a form that is executable by the fully connected layer.
We employed flattening in converting this array into a sequential 1D
array (i.e., a long vector) to prepare these features for further processing,
as seen in Fig. 9.

Fig. 8. Max pooling of feature maps.

Fig. 9. Flattening pooled feature maps.
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The fully connected layer is a typical Multilayer Perceptron (MLP)
sitting at the edge of the architecture. Individual values in the flattened
array (1D array) are usually treated as separate features that denote the
images by combining the features into more attributes. This attribute is
used to predict the class of an image (i.e., defective or non-defective) by
using a classifier at the output layer. Also, the error rate is calculated at
this layer and sent backward (backpropagation) to the network to adjust
the weight and the feature detectors to improve and optimise the
model’s performance, as depicted in Fig. 10.

This backpropagation is conducted several times to predict the class
of an image using the features, and a linear and non-linear trans-
formation is carried out. The linear transformation is of the linear form
(
z = wT ⋅X + b

)
, where w, x, and b are weight, input, and bias

respectively.
Since linear transformation alone cannot capture the complex rela-

tionship between these parameters, we introduced a sigmoid activation
function to add non-linearity to the data and to predict the probability of
whether the input image is defective or not. This probability ranges
between 0 and 1. A prediction X, such that X ≥ 0.5 indicate a defective
image while X < 0.5 indicate otherwise. The sigmoid function for
calculating this is given as represented in Eq. 2.

f(x) =
1

(1+ e∧− X)
(2)

4. Experiment and result

The proposed deep-learning classification approach was imple-
mented with TensorFlow, a deep-learning tool for computer vision and
deep learning, while the baseline algorithm used for feature extraction
was VGG19 (Dang et al., 2021a), due to not just its accuracy in defect
detection and classification in sewers (Pan et al., 2020b; Shang et al.,
2019; Situ et al., 2023b), but also shows improved performance with
reduced parameters and computational time in other tasks (Ahmed

Fig. 10. Fully connected layer.

Table 1
Sample survey videos.

Surveyed Sewer No of Videos Location Videos Duration Size

1 Sewer 1 1 Nottingham Video 1 28:55 mins 41.3MB
2 Sewer 2 3 Glasgow Video 1 7:01 mins 175 MB

   Video 2 6:22 mins 158 MB
   Video 3 4:09 mins 103 MB

3 Sewer 3 2 Manchester Video 1 38:50 mins 918 MB
   Video 2 23:00 mins 402 MB

4 Sewer 4 8 Yorkshire Video 1 02:09 mins 54.4 MB
   Video 2 13:46 mins 338 MB
   Video 3 16:57 mins 418 MB
   Video 4 33:31 mins 824 MB
   Video 5 8:04 mins 198 MB
   Video 6 02:40 mins 67.1 MB
   Video 7 05:42 mins 141 MB
   Video 8 12:13 mins 301 MB

5 Sewer 5 7 London Video 1 12:26 mins 294 MB
   Video 2 05:17 mins 125 MB
   Video 3 41:53 mins 990 MB
   Video 4 15:53 mins 376 MB
   Video 5 09:36 mins 227 MB
   Video 6 09:21 mins 221 MB
   Video 7 02:46 mins 65.7 MB

Table 2
Image extraction summary.

Infrastructure Duration (mins) No of Images

1 Sewer 1 28:55 43,371
2 Sewer 2 17:33 26,275
3 Sewer 3 61:50 92,750
4 Sewer 4 95:03 141,050
5 Sewer 5 97:26 145,800

Total 301:18 303,446
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et al., 2020; Ayanwola et al., 2023; Bouhsissin et al., 2021; Li et al.,
2022). It also outperformed others when compared with other models
such as VGG16, AlexNet, and EfficientNet (Ahmed et al., 2020; Jain
et al., 2023). The next subsections include data preparation, training,
and result analysis.

4.1. Dataset preparation

Table 1 summarised 5 out of the 14 surveyed sewer videos, showing
the location and duration of the survey.

Subsequently, image extraction was carried out on each of the videos
and Table 2 summarised the number of images extracted from survey
videos in five sample sewers.

All extracted images were critically analysed and manually grouped
into two categories: defective and non-defective. Defective images indi-
cate only signs of encrustation in some parts of the sewer, while non-
defective images are all other images not showing any sign of encrus-
tation but might include other types of defects which are not of focus.
We only recorded 1050 defective images compared to more than a
million either non-defective or had other types of defects. This poses a
widespread problem in machine learning known as class imbalance (Li
et al., 2021), where data (images in this case) in a particular category
(non-defective images) are more than the ones in another category
(defective).

Invariably, this means the model will perform well just by classifying
all data to belong to the class with the higher amount of data, giving a
false performance capability of the model. To mitigate this, we have
manually selected 1050 non-defective images to equate the number of
defective images, and these cumulatively resulted in 2100 images
(defective and non-defective) across 14 different sewers. Sample

defective images are shown in Fig. 11.

4.2. Model training

Based on the methodology and architecture described above, we
trained a VGG19 by specifying 3 layers of convolution and extracting 16,
32, and 64 filters respectively, with a 3 × 3 window. We followed each
convolution layer with a ReLU and max pooling layer using a 2 × 2
window to reduce the pixel spatial information. The convolution, ReLU,
and max pooling layers were stacked into three separate convolutional
modules. This is done to keep the model size minimal and reduce
overfitting chances since we have a small training sample. Another
attempt was made to further reduce overfitting by augmenting the
training data, as explained above. Table 3 depicts the summary of the
model.

The output shape illustrates how the spatial size of feature maps
changes in each succeeding layer. Convolution layers decrease the vol-
ume of the feature maps due to zero padding, and each pooling layer
halves the feature map.

We defined two data generators for training and testing, which read
images from the - directory, convert them to float32 tensors, and feed
them (with their labels) to our network. We normalised the pixel of each
image to a range [0,1] which was in the range [0, 255] because of its
RGB properties. We fit the model using 15 epochs, 20 batch_size and 100
steps_per_epoch on 420 validation images, with 210 defective and non-
defective images, respectively. We trained the model with bina-
ry_crossentropy loss since it’s a binary classification problem. Root Mean
Square Propagation (RMSprop) optimiser was embedded in the config-
uration using a learning rate of 0.001. RMSprop was preferred to

Fig. 11. Sample defective images.

Table 3
Model summary.

Layer (Type) Output Shape Param#

input_1 (InputLayer) (None, 150, 150, 3) 0
conv2d (Conv2D) (None, 148, 148, 16) 448
max_pooling2d (MaxPooling2D) (None, 74, 74, 16) 0
conv2d_1 (Conv2D) (None, 72, 72, 32) 4640
max_pooling2d_1 (MaxPooling2) (None, 36, 36, 32) 0
conv2d_2 (Conv2D) (None, 34, 34, 64) 18,496
max_pooling2d_2 (MaxPooling2) (None, 17, 17,64) 0
flatten (Flatten) (None, 18,496) 0
dense (Dense) (None, 512) 9,470,464
dense_1 (Dense) (None, 1) 513
  
Total params: 9494,561 
Trainable params: 9494,561 
Non-trainable params: 0 

Table 4
Model performance.

Epoch Time
(s)

Tr acc Tr loss Val acc Val loss Avg. batch
accuracy

1 95 0.8319 0.4244 0.8992 0.2047 0.66736
2 98 0.9585 0.1308 0.9376 0.1649
3 100 0.7102 4.4055 0.4990 8.0210
4 101 0.4962 7.7705 0.5010 7.9901
5 99 0.4927 7.8237 0.5000 8.0055
6 101 0.5068 7.6069 0.5146 7.7896 0.50104
7 101 0.5018 7.6845 0.4979 7.4503
8 101 0.4922 7.8326 0.4938 7.5119
9 101 0.4980 7.7449 0.4979 7.7433
10 106 0.5028 7.6678 0.5010 7.6970
11 101 0.5013 7.6942 0.5031 7.6662 0.50248
12 105 0.5063 7.6171 0.5062 7.3269
13 211 0.4930 7.8221 0.5000 8.0055
14 100 0.4962 7.7709 0.5073 7.6045
15 101 0.4972 7.7559 0.4958 7.7742
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Stochastic Gradient Descent (SDG) because it automates the learning
rate during training. Other optimisers that can also serve this purpose
include Adam and AdaGrad (Do et al., 2020; Ottoni et al., 2023).

4.3. Result and discussion

The performance of the model was first monitored and evaluated
using accuracy. The first model was developed using the data stated in
Section 3.4. It completed 15 epochs in approximately 22 min, as shown
in Fig. 11, with the detailed accuracy summarised in Table 4 and Fig. 12.
The first epoch completed execution with the least time (95 s) with an
accuracy of 89 %. The second epoch shows an improvement with 93 %
accuracy in 98 seconds.

However, we recorded a drastic decrease in the model’s accuracy
from the fourth epoch as the accuracy dropped to 49 % and progres-
sively averaged 50% till the last epoch, as further shown in the table
above.

This means the model cannot differentiate between a defective and
non-defective image at this point. Pictorially, the accuracy and loss of
the model are given below in Fig. 13.

After investigation, we noticed the model was overfitting after the
second epoch because there weren’t enough unique features to learn

from the small dataset to aid its training and generalisation (Aggarwal,
2019; Agnieszka & Michał, 2018). Hence, the model resulted in using
irrelevant features to learn and generalise. This is also evident in how
the loss (i.e., error rate) value increased after the second epoch, as
depicted in Figs. 14 and 15 below shows the wide margin between ac-
curacy and loss for both training and validation. This further indicates
the low learning rate of the model.

4.3.1. Data Augmentation
Eliminating overfitting becomes inevitable to achieve better accu-

racy due to the small size of the selected images. Data augmentation (i.
e., generating new images from a sample image) was carried out to in-
crease the number of images, which aids in extensive model training and
more generalisation capability (Fabian et al., 2021). At first, the training
data was augmented to uniquely increase the size of our training set,
which directly increased the number of features the model can learn
from to make a better generalisation. At this level, augmentation was
implemented in arbitrary rotation, zooming, padding, and flipping of
images by setting the new images to a 40◦ rotation and 20% range in
width, height, and zoom. A sample data augmentation using a defective
image is shown in Fig. 16(a) – (f).

Augmenting the training data can help reduce the overfitting of the

Fig. 12. Completion time for batches of epoch.

Fig. 13. Training and validation result.
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Fig. 14. Training vs Validation accuracy.

Fig. 15. Training vs Validation loss.
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model by presenting the augmented images that do not correlate with
previous ones to the model as new and unique images at every iteration.
Nevertheless, these augmented data can still be somehow correlated
since each batch stemmed from a single image, as seen in Fig. 16. Hence,
we added a network dropout (Srivastava et al., 2014) of 0.5 after every
convolution to remove pixel correlation among data input. Then, the
model was retrained as previously described for 15 epochs, and the
addition of a dropout layer before flattening was conducted on the
pooled feature maps and passed to the fully connected layer. This
resulted in evident improvement in generalisation and a decrease in
error rate. Table 5 shows how the model performed in 15 epochs after
applying augmentation and dropout.

The model improved its generalisation from an average of 50 % to 97
% within 15 epochs. This is because of the increment of training data
from 2100 (defective and non-defective) images to 50,400 using data
augmentation and embedding network dropout in between

convolutions. As a result, the model had more features to learn from the
additional images. Hence, the reason for the improvement of the model.
Fig. 17 shows this improved model’s accuracy and error rate.

The training accuracy of the model increased from 95 % to 97 % (as
represented in Figs. 15 and 16) throughout 15 epochs, indicating that
the model is learning and capturing the underlying patterns within the
training data. This is indicative of the model’s ability to adapt and fit the
training data, which is essential for the convergence of the network.
Validation accuracy, measured on an independent dataset not used for
training, also mirrored the trends observed in the training accuracy. The
model originally displayed a high validation accuracy of around 93%
and, similar to training accuracy, experienced fluctuations. The highest
validation accuracy of approximately 96% was achieved around the 9th
epoch. This signifies that our model can generalize its learned features to
unseen data, highlighting its potential for practical defect classification
in real-world applications. Invariably, the model is not just learning to
memorize the training data, but it is also learning to identify patterns in
the data that can be used to classify new data accurately.

For training loss, which measures the difference between the model’s
predictions and the true values within the training dataset, started
minimal at approximately 0.12 and fluctuated within a narrow range
throughout the training epochs, with slight drops at the 5th, 10th, and
14th epoch respectively. The validation loss initially increased slightly,
but then it decreased and stabilized at a lower level, which suggests the
model is robust and not overfitting the training data. The low validation
loss values, combined with high validation accuracy, indicate the
model’s ability to generalize effectively to new defect samples., which is
important for practical defect classification tasks. The combinedmodel’s
low and stable loss values indicate that it is converging and learning
effectively, which is a fundamental characteristic of well-trained neural
networks.

In contrast to the first model, the model accuracy improves while the
loss reduces for every epoch. This means the model is learning the right
features and can generalise effectively. Therefore, training a deep-
learning network with more data and additional provisions for

Fig. 16. Data augmentation using image with encrustation.

Table 5
Model performance with augmentation and dropout.

Epoch Time (s) Tr accuracy Tr loss Val accuracy Val loss

1 97 0.9632 0.1283 0.9522 0.1348
2 96 0.9631 0.1324 0.9522 0.1386
3 95 0.9632 0.1372 0.9329 0.1721
4 95 0.9587 0.1445 0.9522 0.1575
5 95 0.9748 0.078 0.9587 0.1086
6 98 0.9691 0.1215 0.9502 0.1161
7 97 0.9689 0.142 0.9644 0.1454
8 97 0.9717 0.1051 0.9665 0.1093
9 102 0.9676 0.1309 0.9685 0.0881
10 95 0.9719 0.0886 0.9502 0.1121
11 93 0.9637 0.149 0.9563 0.1632
12 92 0.9706 0.1034 0.9563 0.1118
13 92 0.9652 0.1273 0.9462 0.1455
14 92 0.9728 0.0954 0.9502 0.1087
15 93 0.9737 0.1449 0.9441 0.164
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overfitting (such as dropout) greatly influences the model’s perfor-
mance. However, despite using a big data cluster to pre-process the
images to lower computational time, we recorded an average of 23
minutes of computational time in 15 epochs using more than 50,000
images, compared to the previous 22 min with less than 3000 images in
the first model as seen in Fig. 18. Owing to this, we also check the effect
of augmentation and dropout on the training time as shown below.

Fig. 17. Training vs Validation (augmentation + dropout).

Fig. 18. Model time complexity.

Table 6
Model evaluation result.

Accuracy Precision Recall F1-Score

0.96 0.93 0.94 0.93
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Fig. 19. Classification result from test data.

Fig. 20. Model result comparison.

Table 7
List of studies on defect classification using Accuracy.

Authors Architecture Defect type Data
size

Augmentation Metric Result

(Dang et al.,
2021b)

CNN crack, debris silty, joint faulty, open joint, surface
damage, protruding lateral, pip broken

38,386 Horizontal flip, shear range, and zoom range Accuracy 97.8

Ours VGG19 Encrustation 2100 Rotation, brightness, flipping, zooming,
flipping, and channel shuffle.

Accuracy 96.7

(Hassan et al.,
2019)

CNN longitudinal defect, debris silty, joint faulty, open joint,
surface damage, potruding lateral

24,137 Horizontal flip Accuracy 96.33

(Khan et al.,
2019)

CNN Crack 627 - Accuracy 83.3

(Wang et al.,
2023)

PIP-CovNET cracks, breaks, and collapses; 390,078 - Accuracy 82

(Chen et al.,
2018b)

CNN Deposit, obstacle, blur, intrusion 10,000 Random cropping, PCA, colour enhancement,
and rotation transformation

accuracy 81
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The slight difference in the time complexity is due to the cluster size
used. We strongly believe using a powerful cluster with high processing
units will take less time to pre-process and analyse these images.
Consideration was given to spinning a spot instance (virtual server) on
AWS to carry out this experiment, but the associated cost is beyond the
scope of this study. This means consideration must be given to compu-
tational cost while choosing a training sample size.

4.3.2. Model evaluation
We evaluated the model on the test samples using standardized

performance metrics to guarantee validity. The key metrics used
included accuracy, precision, recall, and F1-score. Table 6 below pro-
vides a summary of the evaluation.

The results indicate a high degree of accuracy on the test set, which
suggests that the model is highly effective in correctly classifying
encrustation images. The precision of 93 % paired with a recall of 94 %
indicates a strong balance between the model’s ability to identify rele-
vant instances and its tendency to avoid false positives, which is a
critical factor for defect detection systems. The F1-score, a harmonic
mean of precision and recall, further confirms the model’s robust per-
formance in this context. Fig. 19 provided sample classifications from
test data.

To further validate and compare our model, we additionally trained
new models using separate CNN models like AlexNet (Krizhevsky et al.,
2017), EfficientNet (Tan & Le, 2019), and VGG16 (Simonyan & Zisser-
man, 2014) using the same dataset and evaluation metrics. The results
reveal substantial disparities in performance among the models, which
is critical in selecting the appropriate model for encrustation detection.
As depicted in Fig. 20, VGG19 has superior performance with an accu-
racy of 96 %, alongside high precision, recall, and F1-score, by using its

deeper architecture to capture more convoluted features of encrustation.
EfficientNet also provides very good results, with over 95% accuracy, by
systematically scaling network dimensions to enhance both computa-
tional efficiency and accuracy.

In contrast, while VGG16 offered moderate performance throughout,
AlexNet significantly underperformed on all metrics compared to other
models. Their low performance shows the advancement of CNN models
towards efficiency, performance, and applicability towards different
problem categories. Lastly, we compared our model with other existing
classification models that have employed deep learning in classifying
defects in sewers. To the authors’ best understanding, there have not
been any studies in the past that have applied deep learning to encrus-
tation detection. Hence, it became difficult to make a toe-to-toe com-
parison with existing studies based on the defect type (i.e., encrustation)
considered in this study. However, this study has looked deeply into the
literature to filter out classification models targeting other types of de-
fects while using different backbone networks, augmentation tech-
niques, and evaluation metrics.

A list of these studies is summarised in Tables 7, 8, 9 and ranked
according to the reported result using different metrics. It is evident
from the tables that all existing studies have used thousands of raw
images more than ours except for (Khan et al., 2019) and (Zhou et al.,
2022b) which used 627 and 1024 images encompassing four different
defect types, however, this impacted their model performance (83% and
77 %). In addition, the number of augmentation techniques employed in
this study (6) is the joint highest with the work done by Li et al. (2019).
However, they applied these augmentations to 6 different defect types,
compared to a single defect considered in this study. To drill down into
the comparison, we have compared and grouped existing studies into
three categories based on the evaluation metrics employed – accuracy,

Table 8
Comparing models on defect classification using F1-Score.

Authors Architecture Defect type Data size Augmentation Metric Result

Ours VGG19 Encrustation 2100 Rotation, brightness, flipping, zooming, flipping,
and channel shuffle.

F1 94

(Ma et al., 2022) Resnet crack 5729 Horizontal flipping and scaling F1 92.8
(Hu et al., 2023) SPM+CNN sewer-ml defect 1,700,000 - F1, F2 91.6
(Xie et al., 2019) CNN deposition, stagger, fracture, high water level,

disjunction, barrier
40,000 rotation, flipping, and colour jittering F1 84

(Zhao et al.,
2023)

TMSDC sewer-ml defect 1,700,000 Random flip, jitter of pixel values - brightness, contrast,
saturation, and hue

F1 81.5

(Haurum et al.,
2021)

DGCNN Displaced joints, defective rubber rings, and
obstacles

17,027 - F1 -

(Haurum et al.,
2022)

Resnet sewer-ml defect 1,700,000 Horizontal flip F1, F2 -

Table 9
Comparing models on defect classification using Precision and Recall.

Authors Architecture Defect type Data
size

Augmentation Metric Result

(Li et al.,
2023)

RegNetY +

Grad-CAM
root, disjointedness, deformation, deposit, rupture,
misalignment, scaling, and interface material failure.

2562 Geometric transformation, colour
transformation, mirror, Blur.

F1, Recall 95.4

Ours VGG19 Encrustation 2100 Rotation, brightness, flipping,
zooming, flipping, and channel
shuffle.

Precision, Recall 94

(Kumar
et al.,
2018)

CNN Tree root, deposits, cracks, infiltration, debris,
connections, material change

12,000 Random flips, brightness changes,
contrast changes, and motion blur

Accuracy,
Precision, Recall

86.2

(Zhou et al.,
2022a)

CNN brick, rubber ring, and displacement 1024 - Precision, Recall 77
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F1, and a combination of recall and precision.
With accuracy, our model shows robustness in identifying encrus-

tations accurately within our dataset. Nevertheless, there is room for
optimization as we recorded a few defect misclassifications. Further-
more, since accuracy alone cannot fully capture the model’s perfor-
mance degrees (Kumar et al., 2018), such as its ability to manage the
trade-off between false positives and false negatives, which is critical in
defect detection applications where the cost of missing a defect (false
negative) could be significant. Consequently, we further compared our
model with existing studies using the F1-score.

Notably, our model outperforms all other models as shown in
Table 8, which highlights its higher capability to balance precision and
recall effectively. This is especially beneficial in defect detection appli-
cations where the accurate identification of defects and the minimiza-
tion of false positives are equally critical (Zhou et al., 2022a). Tables 8-9
also compared our model based on a combination of evaluation metrics.
See Appendix A (Table 10) for a full list of all studies, including the ones
with evaluation metrics not used in this study.

4.3. Impacts on practice

Due to the drawbacks of traditional defect classification, there is a
clear industry need for a quicker, cheaper, and safer system to analyse
survey videos efficiently and allow multiple surveys yearly to forestall
pollution incidents that attract revenue-crushing penalties. To mitigate
this, more collaboration is required from sewer inspection and man-
agement companies on data sharing. Constructing a unified database for
survey videos of hundreds of sewers will provide enough data to extract
hundreds of thousands of defective images, thereby eliminating the need
for data augmentation. Although, open-source datasets such as SewerML
(Harum & Moeslund, 2021) can assist with this, however, the dataset
was only from 3 utility companies in a specific region (i.e., Denmark).

This study proposes having a shared repository of survey videos or
images by multiple inspection companies which span across different
regions. This will aid a more robust detection system that not only im-
proves research in this area but could also automatically trigger auto-
matic report generation after fault detection. This report will be based
on unified standards for defect classification and severity grading. The
automatic defect classification and reporting process can be automated
with little human intervention by building APIs around the model and
deploying it on the cloud for real-time usage using the Software as a
Service (SaaS) approach. This will only require the survey videos to be
uploaded from a web interface like an attachment, and the deep-
learning model will break the uploaded videos into streams of images
and iterate on the images to detect defects in them. Based on the type
and severity of the fault detected, a detailed report of the defect will be
generated for end-user review, validation, and feedback. We believe the
feedback will guide further model improvements to increase the model’s
robustness.

5. Conclusion

This study adopted computer vision and deep-learning techniques to
develop a model for automatic surface encrustation detection and clas-
sification in sewers by leveraging inspection videos from CCTV. We used
2100 encrustation and non-encrustation images from 14 different
sewers across the UK to develop CNN models using backbone networks
such as AlexNet, VGG16, EfficientNet, and VGG19. This work is the first

to specifically address encrustation detection using deep learning,
whereas previous research has focused on other types of deposits like
settled and attached deposits. Data augmentation was employed on the
training data to mitigate the limitations of our small sample size, thereby
reducing overfitting and improving model generalization. We authen-
ticated the effectiveness of this approach by conducting experiments on
both the small training sample and the augmented sample, achieving an
accuracy of 96%, recall of 94%, precision of 93%, and F1-score of 93%.
These results demonstrate that the model can reliably distinguish be-
tween images with encrustation and normal images.

Our study also included a comparison of different backbone net-
works to identify the most effective model for encrustation detection.
We found that VGG19 outperformed other networks, showcasing its
superior capability in this application. Additionally, this research
highlights the impact of data augmentation and network dropout not
only on reducing overfitting and improving accuracy but also on the
time complexities involved in training models with and without data
augmentation. In conclusion, we have demonstrated that it is feasible to
develop an accurate model for surface encrustation detection in sewers
using various CNN models, with VGG19 performing the best among the
networks tested. While a larger dataset would further enhance model
robustness and generalization, data augmentation remains a viable
method to compensate for limited data. However, the choice of
augmentation techniques must be carefully considered, as they are not
universally applicable. Future studies should aim to utilize larger data-
sets to enhance feature learning and generalization capabilities. Addi-
tionally, employing multi-class defect detection for images containing
encrustation and other defects using more advanced deep-learning al-
gorithms could further improve detection accuracy and efficiency.
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Table 10
List of deep learning studies on defect classification.

Authors Architecture Defect type Data size Augmentation techniques Metrics Result

(Dang et al., 2021b) CNN crack, debris silty, joint faulty, open joint, surface damage, potruding lateral, pip
broken

38,386 Horizontal flip, shear range, and zoom range" Accuracy 97.8

(Hassan et al., 2019) CNN longitudinal defect, debris silty, joint faulty, open joint, surface damage, potruding
lateral

24,137 Horizontal flip Accuracy 96.33

Ours VGG19 Encrustation 2100 Rotation, brightness, flipping, zooming, flipping, and
channel shuffle.

Accuracy 95

(Khan et al., 2019) CNN Crack 627 - Accuracy 83.3
(Chen et al., 2018b) CNN Deposit, obstacle, blur, intrusion 10,000 Random cropping, PCA, colour enhancement, and

rotation transformation
accuracy 81

(Wang et al., 2023) PIP-CovNET cracks, breaks, and collapses; 390,078 - Accuracy, F1 82
(Kumar et al., 2018) CNN Tree root, deposits, cracks, infiltration, debris, connections, material change 12,000 Random flips, brightness changes, contrast changes, and

motion blur
Accuracy, Precision,
and Recall

86.2

(Li et al., 2019) Resnet Deposit, settlement, joint offset, broken, obstacles, water level stag, and
deformation

18,352 Random horizontal flip, random cropping, Gaussian blur,
contrast normalization, additive Gaussian noise and
channel scaling

AUC 64.8

(Meijer et al., 2019) CNN Fissures, Surface damage, intruding connection, Defective connection, Intruding
sealing material, Displaced joint, Porous pipe, Roots Attached deposits, Settled
deposits Ingress of soil, Infiltration

17,662 - AUROC, AUPR,
specificity, precision

90

(Ma et al., 2022) Resnet crack 5729 Horizontal flipping and scaling F1 92.8
(Xie et al., 2019) CNN deposition, stagger, fracture, high water level, disjunction, barrier 40,000 rotation, flipping, and colour jittering F1 84
(Zhao et al., 2023) TMSDC sewer-ml defect 1,700,000 Random flip, jitter of pixel values - brightness, contrast,

saturation, and hue
F1 81.5

(Haurum et al.,
2021)

DGCNN Displaced joints, defective rubber rings, and obstacles 17,027 - F1 -

(Hu et al., 2023) SPM+CNN sewer-ml defect 1,700,0000 - F1, F2 91.6
(Haurum et al.,
2022)

Resnet sewer-ml defect 1,700,000 Horizontal flip F1, F2 -

(Li et al., 2023) RegNetY +

Grad-CAM
root, disjointedness, deformation, deposit, rupture, misalignment, scaling, and
interface material failure

2562 Geometric transformation, colour transformation, mirror,
Blur.

F1, Recall 95.4

(Zhong, et al., 2019) CNN - 36,000 Flipping, rotating and scaling, and colour adjustment. FNR, ATC 95.9
(Zhou et al., 2022a) CNN brick, rubber ring, and displacement 1024 - precision, recall, F1-

score
77
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