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ABSTRACT 
Construction projects are complex endeavours requiring intricate coordination among stakeholders, 

resources, and timelines. However, delays are a pervasive issue, causing financial losses, reputational 

damage, and compromised outcomes. This research addresses this problem by integrating systematic 

reviews, expert insights, and cutting-edge artificial intelligence (AI) techniques. The study begins with 

a systematic review adhering to Systematic Reviews and Meta-Analyses (PRISMA) guidelines to 

identify common drivers of project delays. Analyzing scholarly articles from various regions and project 
types, the research develops a conceptual framework categorizing delay risk drivers into nine distinct 

groups. To validate these findings, an expert survey involving industry professionals is conducted, 

ensuring the research reflects real-world insights. This results in an empirically validated framework for 

assessing delay risks. Concurrently, the study reviews AI applications in construction, identifying 

supervised learning and deep learning as the most impactful technologies for predictive modelling. 

Using the validated delay risk drivers as features, the research develops hyperparameter-optimized AI 

predictive models through a process of feature engineering, model development, optimization, and 

evaluation. Among the evaluated models, the Fully Connected Neural Network (FCNN) demonstrates 
superior performance. To enhance model interpretability, the study employs SHapley Additive 

exPlanations (SHAP), providing transparent explanations for model predictions. This transparency 

fosters trust among stakeholders and enables targeted interventions to address critical delay risk 

drivers. The development and validation of the FCNN model represent a significant advancement in 

anticipating and mitigating project delays in construction. The integration of SHAP enhances the 

model's transparency and interpretability, empowering professionals with a powerful tool for proactive 

delay risk assessment and mitigation. This research makes substantial contributions to academic 
knowledge and industry practice by providing a robust predictive model and enhancing model 

interpretability. Acknowledging limitations such as data scope, industry dynamics, potential biases, and 

inherent machine learning constraints, the study suggests future research opportunities. These include 

exploring diverse datasets, incorporating new AI techniques, improving interpretability, integrating 

decision support systems, and leveraging synergies with emerging technologies. 
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CHAPTER 1  

1.0 INTRODUCTION1 
 

1.1 Background of Study  

The construction industry contributed £117 billion to United Kingdom (UK) economy In 2018, 

representing 6% of the total economic output and provided 2.4 million jobs, representing 6.6% of all 

jobs in the UK (Rshodes, 2019). The case is similar in other countries e.g., construction industry 

represents 3% of the total economic output of Nigeria (Oladinrin, Ogunsemi and Aje, 2012), 4.3% of 

the total economic output of Germany (European Comission, 2017), 4.1%  and 6.8% of the total 
economic output of the United States of America (USA) and China respectively (Wang, 2018, 2019). 

On the global scale the construction industry is similarly worth 13% of the global gross domestic product 

(GDP) with a promising 85% to $15.5 billion globally by the year 2030 (Filipe Barbosa, Jonathan 

Woetzel, 2017). Furthermore, Woetzel et al. (2017) estimates global infrastructure spending at $3.4 

trillion annually from 2013 to 2030, which is roughly 4% of total GDP, solely delivered as large-scale 

projects. The industry is thus considered a major backbone of any country’s economy and a major 

contributor to the global economy. However, despite its importance the construction industry has 
continued to underperform. According to Egan (2018) the construction industry is underperforming as 

evident in its low profitability, capital investment, research and development caused generally by delay 

of construction projects which results in great dissatisfaction from the industry's clients on its overall 

performance. Construction project delay has been defined as a project where key dates or milestones 

have been missed or where the contractual date of completion must be forfeited, (Van et al., 2015). 

Delay has also been described as an occurrence which may result in the loss of income for the client 

or owner Haseeb, Bibi & Rabbani, (2011). A delay may also be characterized as a somewhat 

incremental increase in both overheads and labour costs for the contractor and is deeply detested by 
all parties involved in a construction project. 

 

 
1 This chapter is primarily derived from the following journal articles: 
 
Egwim, C.N., Alaka, H., Toriola-Coker, L.O., Balogun, H. and Sunmola, F. (2021) ‘Applied artificial 
intelligence for predicting construction projects delay’, Machine Learning with Applications, 6, p. 
100166. doi:10.1016/j.mlwa.2021.100166.  
 
Egwim, C.N., Alaka, H., Toriola-Coker, L.O., Balogun, H., Ajayi, S., et al. (2021) ‘Extraction of 
underlying factors causing construction projects delay in Nigeria’, Journal of Engineering, Design and 
Technology, ahead-of-p(ahead-of-print). doi:10.1108/jedt-04-2021-0211. 
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Randolph et al. (1987) used bid cost to classify project sizes as small (< $50,000), medium ($50,000–

$250,000), and large (> $250,000) while Yang, O’Connor & Wang (2006) used total installed cost to 

characterize project size and categorized it into small (< $5million), medium ($5–50million) and large 

(> $50million). This research adopts the European Commission (2015) categorization of project size: 
small (< €10 million), medium (< €50 million) and large (> €50 million), since the research is based in 

the UK which was a part of the European Union(EU) at the time. Major large-sized projects that have 

been delayed in the UK for instance as one of the most advanced countries of the world have caused 

huge financial problems, e.g. the Crossrail project also known as the Elizabeth Line, one of Europe’s 

sizeable construction project is yet to be officially commissioned and is at present £17.6 billion, (18.9%) 

over the original £14.8 billion budget (Haylen, 2019). The building of the Scottish parliament named 

Holyrood experienced a 20 months delay which contributed to a cost increase from £195 million in 

September 2000 to £431 million in February 2004 (White & Sidhu, 2005). Furthermore, the London 
Jubilee Line Extension project, opened virtually two years late in 1999 and contributed to 80% higher 

cost than the original budget, and the Channel Tunnel was commissioned a year late in 1994 and had 

a final cost of £9.5 billion, double the original budget due to delay risk contributions. Construction project 

delay is not only restricted to large-sized construction project. For example, these medium-sized 

projects: Almond Bank Flood Protection Scheme project had a 4 months delay that contributed to £17.6 

million completion cost rather than the £15 million initial budget and the North Bridge Refurbishment 

project is currently in progress haven missed its initial Autumn 2019 completion plan and has an 

increase cost from initial £17.25 million to £22 million (Scape, 2020). Additionally, these small-sized 
projects: Carnival Pool Multi Storey Car Park of Wokingham Borough Council project experienced a 6 

months delay from its 12 months schedule with an increased cost valued at £2.5 million and St Crispin's 

Community Centre project finished 3 months later than scheduled and resulted in £2.2 million in cost 

(Scape, 2020).  

With reference to Shebob et al.( 2012), 60% of the UK’s construction projects runs beyond their contract 

period. In truth, delay on construction projects, and the associated costs is by no means limited to the 

UK, construction delay is a global phenomenon. Some research publications, for instance, Harris 
(2013),  Flyvbjerg (2014) and Rhodes (2019) indicated that 9 out of 10 global mega projects encounter 

delay which usually result to excess cost overruns. They argued that delays of seemly 50% in real terms 

of construction projects are habitual. These papers also stated that delay have been perpetually high 

over the last 70 years. Investigation by several researchers have shown that delay of construction 

projects has adverse effect on the reputation of the construction industry’s contribution to the global 

economy. With reference to Abdul-Rahman et al., (2011), the effects of construction delay can be 

evaluated with respect to its national footprints which with prejudice sway the industry’s subsidy to the 

economy; at an industry level, where delays impact profitability and productivity negatively; and at a 
project level where delays foster industry client’s dissatisfaction on its overall performance, cessation 

of contracts by the owner, and unprofitability for contractor(s). Furthermore it has been argued (Kumar 

R, 2016) that delay often lead to project cost overruns, insolvency of organization, loss of opportunity 

of future projects, dispute among project stakeholders (e.g. clients, contractors, architect, engineers, 

sub-contractors, suppliers and consultants) and legal actions.  
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Major delay factors have been identified by several researchers as evident in vast body of international 

literature (from amongst the oldest articles to the most recent), e.g. bad weather and 

jurisdictional/contractual disputes in both United States of America (USA) and UK by Baldwin et al., 

(1971) and Sullivan et al., (1986) respectively; variation orders in both Nigeria and United Arab Emirates 
(UAE) by Odeyinka, (1997) and Motaleb, (2010) respectively; planning and scheduling deficiencies in 

Australia, delay in payment certificates in Ghana and poor site management in Malaysia by Shah, 

(2016); ground problems and inefficient structural connections for prefabricated components in both the 

UK and India by (Agyekum-Mensah et al., 2017) and Ji et al., (2018) respectively and finally shortage 

of adequate equipment and poor communication among contracting parties in China by Chen et al., 

(2019). Over the decades, several research methods and recommendations towards mitigating delay 

of construction projects have been identified. For instance, Sullivan & Harris, (1986) suggested more 

teamwork especially at the early stages of project planning. It is the viewpoint of Mansfield, Ugwu & 
Doran, (1994); Frimpong, Oluwoye & Crawford, (2003) that contractors should buy construction 

materials at the early stage of work and be more familiar with effective and efficient material 

procurement systems/software. Also, according to  Assaf, Al-Khalil & Al-Hazmi, (1995); Enshassi, 

AlNajjar & Kumaraswamy, (2009); Owolabi et al., (2014); Alaghbari & Sultan, (2018) clients should 

adhere to timely payment of progress fee and consider funding levels at the planning stage of project. 

Furthermore, the survey by Gondia et al., (2020); Yaseen et al., (2020) recommended the use of 

predictive models to mitigate delay risks and time claim in construction projects. Despite all these delay 

factors and recommendations towards mitigating delay in construction, delay still strives in the industry. 
However, though Building Information Modelling (BIM) has brought about a lot of improvement on 

construction projects as claimed in many studies, (e.g. Ballesty et al., (2007); Azhar, (2011); Azhar, 

Khalfan & Maqsood, (2012); Jones & Dewberry, (2012); Latiffi et al., (2013); Mohd & Latiffi, (2013); 

Gibbs et al., (2013); Johansen, (2015 )) among others, there has not been a lot of studies on the effect 

of BIM on construction delay when compared to construction project without BIM (see section 3 for 

more details). 

 

1.2 BIM and Construction Delay. 
Construction delay is the most important factor to consider in the general execution of any construction 

project as it expands cost overruns (Haq et al., 2017). In the construction industry the term delay is 

comprehensively used giving rise to vast body of international literature definition of the term (Gibbs et 

al., 2013). They defined delay as any unexpected extension to the entire scheduled span or the 

occurrence that  lengthen the period of a task without generally influencing the project term (cited in 
Bramble & Callahan, 2004). It is the viewpoints of Assaf & Al-Hejji (2006) that delay can be defined as 

the time increase beyond the agreed project delivery planned schedule by stakeholders or beyond a 

legal contract completion date. Furthermore, delay mean different things to different stakeholders 

(owner, contractor, consultant etc.) and is oftentimes referred to as time or schedule overruns by various 

scholars (Abdul-Rahman et al., 2009; Akhund et al., 2017; Al-Hazim et al., 2017; Elawi et al., 2016; 

Gardezi et al., 2014; Głuszak & Les̈niak, 2015; Orangi et al., 2011). For the owner, delay connote loss 
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of revenue or investments at the end of agreed time while to the contractor, a delay can imply an 

increase in overhead cost(Assaf & Al-Hejji, 2006). The construction process comprises a series of 

interconnected phases - from building material manufacturing to design, planning, and construction, as 

well as facilities management each influencing the others directly or indirectly (Egwim, Alaka, Toriola-
Coker, Balogun, Ajayi, et al., 2021). Also, several studies have revealed that project delays are more 

prevalent during the execution stage of construction. For instance, research by Aibinu and Jagboro 

(2022) found that the construction stage accounts for a significant portion of delays in construction 

projects. Similarly, the findings of Akintoye et al. (2000) corroborate this, emphasizing that construction-

related factors contribute prominently to project delays. Moreover, in contemporary scholarly discourse, 

a substantial proportion of literature focuses on the phenomenon of construction project delays without 

BIM implementation referred to this study of non-BIM-based construction project over those with BIM 

implementation (BIM-Based construction projects) Surprisingly, researchers ( Saka and Chan, 2021; 
Silverio and Suresh, 2021; Tai, Zhang and Li, 2021) have revealed that the delay factors that impact 

non-BIM-based and BIM-based construction projects are not necessarily the same. This is due to a 

variety of reasons (see section 3). The hypothesis of BIM was established in 1970 by Professor Charles 

Eastman at the Georgia Tech School of Architecture as building description systems (BDS) (Eastman 

et al., 2008). Undeterred by its long-time existence, interest in BIM only took off few years ago. This 

present-day construction industry is predisposed by the wariness about BIM. Varying concerns around 

what exactly BIM is, whether BIM is only meant for large projects with complex geometries, how to 

change from the traditional design process to BIM etc. In 2000, BIM was defined as structured model 
of data that represents building elements with its usage spanning beyond the pre-construction phase 

to the post-construction phase in Architecture, Engineering, and Construction industry (Ameziane, 

2000). However, facility managers see BIM as a tool used to improve building’s performance and 

manage operations more efficiently throughout a building’s life (Abbasnejad & Moud, 2013). The 

practical adoption of BIM by the Architecture, Engineering, and Construction industry for construction 

project started around the mid-2000s (Latiffi et al., 2013). BIM was first implemented by the United 

States of America (USA) with example BIM-based construction projects seen in Sutter Medical Centre, 
Castro Valley California USA (Davis, 2007). Presently, BIM-based construction projects have been 

implemented in several countries such as “Sydney Opera House, in Australia; “One Island East Office 

Tower”, in Hong Kong; “Crussel Bridge”, in Helsinki, Finland; “National Cancer Institute (NCI)”, in 

Putrajaya, Malaysia; “Barking Riverside Extension and Rail Station”, in London, UK etc (Eastman et al., 

2008; Latiffi et al., 2013). The rate of adoption of BIM differs from country to another. For instance, 

according to a report by Bernstein (2010) 50% adoption rate amidst contractors was reached in North 

America compared to barely 24% of the counterparts in Western Europe meanwhile the Western 

Europe has more percentage of BIM user rate: 34% against North American BIM user rate: 18%. With 
reference to House et al. (2007) the major benefit of BIM is its  accurate geometrical representation of 

building parts in an integrated data. Some research (Johansen, 2015; Jones, Young Jr. & Bernstein, 

2008; Mohd & Latiffi n.d.; Siddiq, 2018) indicated that BIM is generally used during pre-construction, 

construction and post construction stages to produce better project design; aid in decision making 

process; improve collaboration and communication among stakeholders; centralize data administration 
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in a common data environment; reduce changes during construction; reduce conflict during 

construction; minimize risks in execution period; visualize design solution in 3D; reduce project delay; 

improve overall project quality and achieve better cost control/predictability. Although the benefits of 

BIM with regards to construction projects have been enlisted, its application to the real world is 
seemingly limited to just 3D visualization and clash detection, hence there remains a large gap between 

its proposed application area and its current implementation (Jin, Tang & Fang, 2015). Consequently, 

in investigating into whether BIM can assist with construction delay claims, Mohd & Latiffi (2013) 

reported that the employment of BIM tools by construction players aids the mitigation of delay in 

construction projects through project scheduling. Examples of such BIM tool includes Autodesk Revit, 

Autodesk NavisWorks, AutoCAD Civil 3D, Digital Project, Bentley, Vectorworks, Tekla, and Vico (Jones, 

Young Jr. & Bernstein, 2008). Project scheduling is known to generate an overall project duration by 

using logic and mathematical calculations to sequence all the activities needed to complete the works 
(CIOB, 2011). According to Gibbs et al., (2013) a critical path on the schedule is used to represent the 

major activities necessary to finish a project with the shortest time possible and an overlap on these 

activities will signify an extension in project time hence resulting to project delay. So, since BIM offers 

a way of coordinating all project activities throughout its lifecycle stored in a common data environment 

and linked to a 3D model plus time (4D), these BIM tools are able to offer support for project control 

against delay(s) (Gibbs et al., 2013; Hartmann et al., 2012). They however, concluded that, 

understanding cause and effect of change in construction doesn’t come easy and suggested the use of 

multiple dimensions to connect the information generated in the delay analysis to an n-dimension 
representation of the project. Young et al., (2008) take a similar view, insisting that even though the 

design capabilities of BIM are long-established, the potential of BIM to offer scheduling functions—also 

referred to as 4D is still coming to the fore likely due to huge outlays already made in project 

management software by firms.  

 

1.3 Artificial Intelligence / Machine Learning in Construction. 
Artificial Intelligence (AI) represents a powerful contemporary analysis method that has been widely 

adopted across other industries, but construction industry is slow to adopt (Blanco et al., 2018; Marks, 

2017). The adoption of AI and Machine Learning (ML) algorithms in construction is relatively evolving, 

especially when compared to other industries like healthcare: guiding in the choice of treatment; 

education: virtual lectures;  and transportation: autonomous vehicles, as it currently uses lots of 

methods that were used in the centuries past (Blanco et al., 2018; Marks, 2017). Furthermore, AI 

technologies exhibit varying degrees of effectiveness across different stages of construction (Egwim et 

al., 2024). Certain AI technologies excel primarily during the design stage, while others demonstrate 

their utility during construction or post-construction stages. Nonetheless, there are instances where AI 

technologies prove beneficial across multiple stages of the construction process (see section 4). As a 

common place the industry produces massive amount of data daily on every project, for example data 

produced from images captured from smart devices, IoT sensors, BIM etc presents a window of 

opportunity for the industry and its customers to examine and gain profits from insights generated from 
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past construction data through the aid of AI and ML. AI is defined as a collection of state-of-the-art 

technologies that permit machines or any computer programme to sense, comprehend, act and 

learn(Goyal, 2019). ML on the other hand is a branch of AI that allows computers to learn by a direct 

route from examples, data and experience replacing the traditional approaches to programming that 
relied on hardcoded step by step rules(Royal Society, 2017). This is done by giving the system huge 

amount of data to learn from as a task leaving it to decide how best to achieve the task in form of a 

desired output. AI/ML offer transformative potential for addressing delays in construction projects. The 

unique strengths of AI/ML include several key rationales. Firstly, AI/ML provide data-driven insights. 

Construction projects generate massive amounts of data daily, ranging from images captured by smart 

devices and IoT sensors to BIM data. AI/ML can process and analyse these extensive datasets to 

uncover patterns and insights that are not readily apparent through traditional methods. This data-driven 

approach helps identify the root causes of delays and provides actionable insights to mitigate them. 
Secondly, AI/ML exhibit predictive capabilities. ML algorithms excel at learning from historical data to 

predict future outcomes. By analyzing data from past construction projects, ML models can anticipate 

potential delays before they occur. This predictive capability allows project managers to take proactive 

measures, such as adjusting schedules or reallocating resources, to avoid delays. Moreover, AI 

contributes to optimization and efficiency in construction management. AI can optimize various aspects 

of construction management, including scheduling, resource allocation, and workflow processes. For 

instance, AI algorithms can suggest the most efficient sequence of tasks and the optimal distribution of 

labour and materials, thereby reducing the likelihood of delays caused by inefficiencies. Furthermore, 
AI provides real-time monitoring and adjustments. AI systems can offer real-time monitoring of 

construction projects, continuously comparing actual progress with the planned schedule. When 

deviations are detected, AI can suggest corrective actions to bring the project back on track. This real-

time adjustment capability is crucial for minimizing the impact of unforeseen issues and maintaining 

project timelines. Additionally, AI/ML tools enhance decision-making. These tools support decision-

making by providing project managers with data-driven recommendations. They can analyse multiple 

factors simultaneously, offering insights that lead to more informed and effective decisions. Enhanced 
decision-making helps in pre-emptively addressing issues that could lead to delays, thus improving 

overall project management. Several ML algorithms such as Neural Networks, Linear Regression, 

Logistic Regression, Nearest-Neighbour Mapping, Decision Trees, K-Means Clustering, Random 

Forests, Support Vector Machines, Principal Component Analysis, Singular Value Decomposition, etc. 

exist for ML model implementation. Which ML algorithm to use depends on lot of factors e.g. ease of 

use, accuracy, training time etc.  Few researchers have attempted the use of AI and ML algorithms in 

some aspect of construction. Poh, Ubeynarayana & Goh (2018) used 5 popular ML algorithms to predict 

accident occurrence and severity of construction sites in Singapore, Zou & Ergan (2019) Leveraged on 
3 ML techniques to predict the influence of construction projects on urban quality of life; Arditi & Pulket 

(2005) and Mahfouz & Kandil (2012) used only 1 and 3 ML algorithms respectively to forecast end 

results of construction litigation all in the USA.  Only a hand full of literature have attempted the adoption 

of AI or ML to mitigate construction delay. For example, Gondia et al. (2020) used 2 ML models towards 

expediting precise project delay risk assessments and forecast, Asadi, Alsubaey & Makatsoris (2015) 
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used 2 ML approach (with accuracy value of 79.41% and 73.52% for decision tree and Naive Bayes 

model respectively) to predict delays in construction logistics in Qatar. Also, Yaseen et al. (2020) 

developed a hybrid artificial intelligence model (a combination of Random Forest and Genetic 

Algorithm) and achieved an accuracy value of 91.67% for delay problem prediction. Furthermore, 
Yaseen et al. (2020) used Artificial Neural Network (ANN) to forecast final budget and duration of 

highway construction projects in Thailand. Evidently there is no singular literature currently that have 

attempted to use feature selection and cross validation in the ML algorithms to predict delays of a BIM-

based construction project in the world hence the first motivation for this research. Additionally, no 

research has ever attempted the use of ML algorithms to predict delay risk of BIM-based  in comparison 

to non-BIM based construction projects giving rise to the final motivation of this research. First, this 

research will highlight the key factors such that when BIM is involved in a project will help to reduce 

construction delay. Secondly, this research will develop an AI technology model to predict potential 
delay of BIM-based construction project by using several ML algorithms. 

 

1.4 Problem Statement 
In consequent, the problem statements are as follow: 

1. There is no clear research evidence of distinguishing factors that affect BIM based construction 

projects as compared to non-BIM-based ones. 
2. There is no clear evidence of a research backed BIM-based framework that can potentially help 

to mitigate construction delay in the industry. 

3. No clear evidence of a research that have taken the advantage of the contemporary analysis 

method which best explains the factors that can be affecting a phenomenon like delay based 

on its predictive capabilities.  

 

1.5 Research Questions 
A set of research questions that will convey the research aim and objectives are given below: 

1. What are the most common factors affecting construction project delays in construction 

projects, as identified through a systematic review, and how do these factors apply to BIM-

based construction projects in terms of their applicability according to expert judgements? 

2. What are the most applicable AI technologies across the entire construction value chain 
lifecycle, as identified through a systematic review of AI in the construction industry? 

3. How can the applicable factors identified in the first objective be used as independent features 

(variables) with the most applicable AI technologies as identified in the second objective to 

develop hyperparameter optimized AI predictive models? 
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1.6 Research Aim and Objectives 
This project aims to develop AI models for delay risk prediction of BIM-based construction projects. To 

fulfil the stated aim, the following objectives were formed as follows: 

1. Conduct a systematic review toward gathering the most common factors affecting construction 

project delays and use it to conduct survey of experts to establish the most applicable factors 

affecting construction project delays in BIM-based construction projects. 

2. Conduct a systematic review of AI in the construction industry and use it to establish the most 
appropriate AI technologies during construction. 

3. Utilize the applicable factors in the first objective as independent features (variables) with the 

most applicable AI technologies as identified in the second objective to develop hyperparameter 

optimized AI predictive models. 

 

1.7 Research Methodology 
This study adopts a positivist research philosophy and deductive approach, aligning with the 

quantitative research design. The positivist paradigm is chosen as it facilitates hypothesis testing and 

the establishment of verifiable knowledge through empirical observation and scientific methods. The 

deductive approach allows the researcher to formulate hypotheses based on existing theories and test 

them through data collection and analysis. Also, it employs a quantitative research design, which 

involves the collection and analysis of numerical data. This design is suitable for achieving the research 

objectives, which include identifying correlations between construction project delays and potential 

covariates, as well as developing predictive models using machine learning techniques. Quantitative 
data is essential for machine learning algorithms, which require numerical inputs for prediction and 

classification tasks. The research strategy adopted is a survey, implemented through an online 

questionnaire. This approach allows for the collection of data from a large sample of construction 

industry experts, enabling the identification of the most applicable factors contributing to construction 

project delays in large-scale, BIM-based infrastructure projects. The survey consists of sections 

addressing various aspects of project delays, including the frequency of occurrence of delay factors, 

their relative importance, and the level of detail associated with each factor. The study utilizes a 
probability sampling technique, specifically stratified sampling, to ensure an appropriate sample size 

for population subgroups of interest. This method involves dividing the population into homogeneous, 

mutually exclusive strata and then selecting independent samples from each stratum. The stratified 

sampling approach ensures adequate representation of different subgroups within the construction 

industry, such as contractors, quantity surveyors, architects, and engineers. The unit of analysis for this 

study is construction project delay, falling under the category of "social artifacts." The research focuses 

on understanding and analyzing delays in construction projects, with construction project delay being 

the central phenomenon under investigation. The unit of observation, which is the entity on which initial 
measurements are performed, is also construction project delay, as the measurements and 

observations are specifically designed to gauge the extent and factors contributing to project delays. 
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Data collection is conducted through primary sources, utilizing the online survey questionnaire 

distributed to construction industry experts. Primary data collection is chosen as it allows for the 

generation of data tailored to the specific research objectives and ensures the relevance and accuracy 

of the information obtained. Data analysis techniques employed in this study include reliability analysis, 
exploratory data analysis, data cleaning, outlier detection, feature selection and engineering, 

hyperparameter tuning, principal component analysis, ensemble methods, and hypothesis testing. 

These techniques are applied to achieve the research objectives, which involve identifying the most 

applicable drivers of construction project delays, establishing the most applicable AI technologies for 

the construction value chain lifecycle, and developing optimized AI models for predicting and mitigating 

project delays. The systematic review process follows the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines. PRISMA provides a standardized and 

comprehensive framework for conducting and reporting systematic reviews, ensuring transparency, 
reproducibility, and scientific rigor. The PRISMA checklist and flow diagram guide the various stages of 

the systematic review process, from literature search and study selection to data extraction and 

synthesis. 

 

1.8 Research Contributions 

1.8.1 Contribution of Study to Academic Knowledge

This research has made significant contributions to academic knowledge in several ways. Firstly, the 

systematic review conducted on identifying the most common drivers affecting construction project 

delays represents a comprehensive and up-to-date synthesis of existing literature on this topic. By 

rigorously adhering to the PRISMA guidelines, the review process ensured a thorough and unbiased 

exploration of delay factors across diverse construction project types and geographical regions. The 
resulting conceptual framework, encompassing nine distinct categories of delay risk drivers, serves as 

a valuable foundation for future research in this domain, providing a robust starting point for further 

investigation and validation. Moreover, the integration of industry expertise through the expert survey 

adds a crucial practical dimension to the study, bridging the gap between academic research and real-

world industry practices. This approach not only validates the findings from the systematic review but 

also ensures that the resulting framework is grounded in the realities and nuances of the construction 

industry. By incorporating the perspectives of subject matter experts, the study enhances the relevance 

and applicability of its findings, fostering a stronger connection between academic research and 
practical implementation. The systematic review on the application of AI technologies in the construction 

industry represents another significant contribution to academic knowledge. By rigorously analyzing 

vast body of academic literature, the review provides a comprehensive and up-to-date understanding 

of the current state of AI adoption in the construction value chain lifecycle. The identification of seven 

major AI technology types, with supervised learning and deep learning emerging as the most prominent, 

offers valuable insights for researchers and practitioners alike. Furthermore, the review's exploration of 

the applicability of these AI technologies across the three major stages of the construction project 
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lifecycle (planning/design, construction/execution, and supply/facility management) provides a 

roadmap for future research and technological advancements in the industry. The development of 

hyperparameter-optimized AI predictive models for assessing delay risks in both BIM-based and non-

BIM-based construction projects represents a ground-breaking contribution to academic knowledge 
such that has never been done before in one study. By leveraging the identified critical delay factors as 

input features and employing the most suitable AI technologies (supervised learning and deep learning), 

this study has successfully created a robust and accurate predictive model. The Fully Connected Neural 

Network (FCNN) model, which emerged as the optimal choice, exhibits exceptional performance 

metrics. This model not only demonstrates the potential of AI in addressing complex challenges in the 

construction industry but also serves as a blueprint for future research in developing AI-driven solutions 

for risk assessment and project management. The integration of SHapley Additive exPlanations (SHAP) 

into the predictive model further enhances the study's contribution to academic knowledge. By providing 
a transparent and interpretable explanation of the model's predictions, SHAP addresses the long-

standing issue of "black box" models in AI, fostering trust and understanding among researchers and 

construction stakeholders Consequently, this study has made significant strides in advancing academic 

knowledge in the fields of construction project management, delay risk assessment, and AI applications 

in the construction industry.  

 

1.8.2 Contribution of Study to Practice 

This research makes substantial contributions to the practice of construction project management, 

particularly in the realm of delay risk assessment and mitigation. By identifying and validating the critical 

drivers of construction project delays through a systematic review and expert survey, the study provides 
construction professionals with a comprehensive and industry-relevant framework for understanding 

and addressing these challenges. The developed hyperparameter-optimized AI predictive model, 

specifically the FCNN, represents a significant practical contribution to the construction industry. This 

model offers construction stakeholders a powerful tool for assessing the risk of potential delays in both 

BIM-based and non-BIM-based construction projects. The model's exceptional performance metrics, 

including accuracy scores for BIM-based and non-BIM-based projects, respectively, demonstrate its 

reliability and effectiveness in predicting potential delays. The integration of SHAP  into the predictive 

model further enhances its practical value by providing transparency and interpretability to the model's 
predictions. Construction professionals can gain valuable insights into the specific factors contributing 

to potential delays, such as late payment by the owner, inaccurate resource planning, space limitations 

at the site, reworks due to construction errors, and unskilled labour. This information empowers 

construction stakeholders to develop targeted strategies and interventions to mitigate these critical 

delay risk drivers proactively. Also, the predictive model's ability to assess delay risks early in the project 

lifecycle offers construction professionals a significant advantage in project planning and resource 

allocation. By identifying potential bottlenecks and high-risk areas before they manifest, construction 

teams can implement preventive measures, optimize resource allocation, and develop contingency 
plans to minimize the impact of delays on project timelines and budgets. Furthermore, the study's 
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contribution extends beyond individual construction projects. The validated framework of delay risk 

drivers and the predictive model's capabilities can be leveraged by construction firms and organizations 

to enhance their overall project management practices. By integrating these tools into their project 

management processes, companies can improve their risk management strategies, enhance decision-
making processes, and foster a culture of proactive delay mitigation. The practical implications of this 

research also extend to the broader construction industry ecosystem. Government agencies, regulatory 

bodies, and policymakers can utilize the findings to develop guidelines, best practices, and industry 

standards for delay risk assessment and mitigation. By incorporating these insights into industry 

regulations and certification processes, the construction industry can collectively promote transparency, 

accountability, and a proactive approach to addressing project delays. Moreover, the study's findings 

can inform the development of training programs and educational curricula for construction 

professionals. By incorporating the identified delay risk drivers and the predictive model's capabilities 
into professional development programs, construction companies can better equip their workforce with 

the knowledge and tools necessary to tackle project delays effectively.  

 

1.8.3 Research Scope and Limitations 
Regarding size, this study focused on large construction projects – projects with a gross budget of €50 

million or more, as defined by the European Commission (2015). This threshold ensures that the 

research captures the complexities and challenges associated with managing large-scale construction 

endeavours, which often involve substantial financial investments and intricate coordination among 

various stakeholders. With respect to the type of projects, the study will concentrate on large-scale 

infrastructure projects. These projects encompass the development and maintenance of critical physical 
assets, such as roads, telecommunication networks, railways, tunnels, bridges, and other essential 

infrastructure vital for a nation's economic growth and development (Cullingworth, 2014). The inclusion 

of infrastructure projects is particularly relevant because most of these large-scale undertakings 

increasingly incorporate BIM methodologies (Bradley et al., 2016). By focusing on large-scale 

infrastructure projects that employ BIM, the study aims to address the unique challenges and factors 

contributing to construction delays within the construction industry. The integration of BIM processes 

adds an additional layer of complexity, requiring careful consideration of technological adoption, data 

management, and interdisciplinary collaboration. Investigating these projects thus provides valuable 
insights into the effective implementation of BIM and its potential impact on mitigating delays in large-

scale construction endeavours critical to a nation's infrastructure development. While this study has 

made significant contributions to both academic knowledge and industry practice, it is essential to 

acknowledge and address its inherent limitations. One of the primary limitations lies in the scope and 

representativeness of the data used for model development and validation. The expert survey data, 

although valuable, may not fully capture the diverse range of construction projects, geographic regions, 

and industry practices. Consequently, the generalizability of the findings and the predictive model's 

performance might be limited when applied to contexts outside the scope of the data. Another potential 
limitation is the dynamic nature of the construction industry itself. The factors influencing project delays 
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are subject to continuous evolution, as new technologies, regulations, and industry practices emerge. 

This study's findings, while comprehensive at the time of research, may require periodic updates and 

refinements to remain relevant and accurately reflect the changing landscape of the construction 

industry. Furthermore, the study's reliance on expert judgements and systematic reviews, although 
rigorous and systematic, may inadvertently introduce biases or overlook emerging trends or factors that 

have not yet been widely documented or recognized within the industry. This limitation highlights the 

need for continuous monitoring and incorporation of new insights as they become available. It is 

important to note that the FCNN predictive model, despite its impressive performance, is not infallible. 

Like any machine learning model, it is subject to the limitations of the training data and the assumptions 

inherent in its architecture and optimization process. Unforeseen edge cases or outliers in real-world 

scenarios may challenge the model's predictive capabilities, necessitating ongoing refinement and 

adaptation.  

 

1.9 Thesis Structure. 
This section provides the overview of the research study in a tabular form. This comprises of the nine 

chapters and a brief description of the chapters is provided below: 

Table 1.1: Thesis Structure 

Chapter Number Chapter Title Summary 

Chapter 1 Introduction This chapter provides the overview of this 

research.  

Chapter 2 Theories affecting construction 

delay. 

This chapter reviews the management 

theories that affect construction delay and 
how they apply to factors to be extracted for 

systematic review in the next two chapters.  

Chapter 3 Systematic review of construction 

delay and the effect of BIM on 

construction delay. 

Chapter 3 provides a systematic review of 

construction delay and the effect of BIM on 

it. 

Chapter 4 Systematic review of artificial 

intelligence/ machine learning in 

construction.  

This chapter details a systematic review of 

artificial intelligence/ machine learning in 

the construction industry. 

Chapter 5  Research methodology This chapter describes relevant aspect of 

research models in details: Reasoning 
behind the selection of research approach, 

technique for data collection etc. 
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Chapter Number Chapter Title Summary 

Chapter 6 Research analysis and result This chapter confers the exhaustive 

analysis of data (respondent profiles, 

descriptive, reliability analysis and factor 

analysis. etc). 

Chapter 7 AI model development This chapter summarises the model 
development processes including  (data 

preparation, feature engineering, selection 

and framework validation). 

Chapter 8 Discussion This chapter delivers an evaluation and 

discussion of the research findings.  

Chapter 9 Conclusion and recommendation This chapter summarises the research 

findings, contributions, limitations, and 

future directions. 
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Figure 1.1: Thesis Structure Diagram
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1.10  Chapter Summary 
To summarise, this chapter introduced my research with a clear explanation to the background of the 

research problem, the background of the research problem was given in the context of the fact that 

there is a massive delay on the construction industry which results to efficiency, profitability and 

sustainability issues which is a great problem to the economy of several countries. BIM has been 

introduced since 1970, however no clear evidence of predicting models for delay predictions in BIM-

based construction projects as established in the BIM and construction delay subsection. This led to 

this research’s aims and objectives, research questions, scope and limitation, research contribution and 

approach. Key research contributions are improving the quality of decision and risks taken by several 
stockholders in construction through developing an AI technology that can predict potential delay of 

their present or future projects. A systematic review of existing literatures and questionnaire of survey 

were conducted as a research approach for this study. The thesis structure is given. The next chapter 

will review literatures that are anticipated to be useful and appropriate for undertaking this research 

study. 
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CHAPTER 2  

2.0 THEORETICAL FOUNDATIONS OF 
CONSTRUCTION PROJECT DELAYS 

 

2.1 Chapter Overview 
This chapter explores the theoretical underpinnings that help explain construction project delays. Two 

main theories are examined - the Optimism Bias Theory and the Innovation Diffusion Theory. Each 

offers a unique perspective on the underlying factors that can derail project performance and hinder 

technology diffusion within the construction sector. The Optimism Bias Theory sheds light on the 

cognitive biases and risk assessment shortcomings that frequently lead to overly optimistic forecasting 

of project costs, schedules, and benefits during planning phases. On the other hand, the Innovation 

Diffusion Theory examines the characteristics of innovations themselves, as well as the social dynamics 

that influence how rapidly or slowly, they disseminate through a system over time. 

 

2.2 Optimism Bias Theory 
According to Macdonald (2002), optimism bias is the propensity to underestimate a project's costs and 

duration while overestimating its benefits. He defined optimism bias as “a measure of the extent to 

which actual project costs, and duration (time from business case to benefit delivery and time from 

contract award to benefit delivery) exceed those estimated”. This occurs because humans frequently 
assume everything will work out as planned, so we make optimistic estimations while understating how 

long things will take or how much they will actually cost. Optimism bias can be mathematically 

expressed as:  

Optimism!"#$ = 		100	 ×	
(𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 	% 

The theory of optimism bias provides a useful account of how it is considered optimistic to estimate 

project costs or durations when they do not fully account for the possibility of cost and delay or shortfalls. 
In construction projects, optimism bias can be distinguished into six basic categories: works duration, 

project duration, capital expenditure, operating expenditure, unitary payments and benefits shortfall 

(Macdonald, 2002; White, Cunningham and Titchener, 2011). Works duration optimism bias refers to 

the duration of the execution stage of a project, which includes the design, mobilization, and 

construction phases. One well-known study that is often cited in research on optimism bias is that of 

Macdonald (2002), who found that the estimated works duration from the outline business case and 

contract award are contrasted with the actual works duration such that its measured optimism bias 
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merely indicates how much the works duration has grown and provides no insight into whether the 

project was completed on schedule. Drawing on the work of a wide range of philosophers, Sharot (2011) 

advances the notion that the length of time it takes for a project to complete each stage, from planning 

to execution, is known as the project duration optimism bias. This view is supported by White et al., 
(2011) who writes that in addition to delays in the actual construction of the project, delays in the 

project's procurement i.e., before construction really starts are also the cause of project duration 

overruns. A broadly similar point has also subsequently been made by Flyvbjerg (2004), who argued 

that as a comparably significant length of time may have elapsed between these phases, the project 

duration optimism bias is significantly reliant on the life-cycle stage at which the business case 

information is collected (i.e., strategic outline case, outline business case, or complete business case). 

In a comprehensive literature review of optimism bias, Caffieri et al. (2018) identified that the capital 

expenditure optimism bias offers a measurement of the proportional rise in capital expenditure between 
what was projected in the outline business case as well as at contract award and what was invested in 

capital. According to Flyvbjerg (2008), variations in the construction cost index and tender price index 

(pre contact award) frequently contribute to capital expenditure optimism bias (post contract award). 

Along the same lines, Love et al. (2017) subsequently argued that the project costs—both the expected 

and actual outlays is usually indexed to a common year in order to eliminate the impact of indexes. 

According to Macdonald (2002), operating expenditure optimism bias can be defined as the amount by 

which the business case's projected expenditures are outperformed by the actual operating expenses.  

Both a capital and an operating component make up unitary payments optimism bias.  Raisbeck et al. 
(2010) made an important point by saying It is vital to identify significant project risk areas that have an 

influence on the levels of optimism bias for capital and operating expenditures in order to minimise 

unitary payments optimism bias. As with capital and operational expenditure optimism bias for 

traditionally purchased projects, controlling these project risk areas would lower the optimism bias for 

unitary payments. A benefits shortfall optimism bias arises when we compare the benefits delivered 

with those estimated at the beginning of a business case and at the moment the contract is awarded 

(Macdonald, 2002). Benefits are sometimes ill-defined; thus, it is necessary to utilise best judgement to 
identify shortfalls. When a shortfall is identified during project research, the shortfall should be quantified 

according to the interviewee's viewpoint, the project's decreased capability, or the project's success in 

achieving its goals. According to a vast body literature (Macdonald, 2002; Flyvbjerg, 2004; Sharot, 

2011; Caffieri et al., 2018), the inability to properly identify and manage project risks is the major cause 

of optimism bias in construction projects. Five typical project risk groups were identified by the 

Macdonald (2002) research, each of which had a number of project risk areas that were known to lead 

to cost and schedule overruns as well as benefit deficiencies. In order to comprehend optimism bias 

better, Flyvbjerg (2004) divided its root causes into four main groups, as indicated in Table 2.1. 
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Table 2.1: Causes of Optimism Bias 

Causes of Optimism Bias Example 

 

 

 

Technical causes 

Imperfect information (inadequate data, 

inaccurate forecast and new or unproven 

technology) 

Change in project scope or inadequate 
business case. 

Poor management often reflected in the 

poor documentation. 

 

Psychological causes 

Tendency for humans and organisations to 

favour optimism appraisal optimism 

Projects promoters are overly optimistic 

about projects outcomes. 

Economic causes Construction companies and consultants 

have interest’s in advancing projects 

 

Political-Institutional causes 

Interests, power, and institutions 

Actors may deliberately lie in order to see 

their projects/ interest realised 

 

Failure to take into account and actively control optimism bias's causes will lead to cost and delays as 

well as benefit deficiencies that go beyond what might be accomplished if the reasons were identified 

and actively handled. However, it is feasible to lessen the optimism bias and increase confidence in 

project estimates by considering risks while defining the nature and scope of a project and then creating 

techniques for the efficient management of risks. To lessen the chance of cost and schedule overruns, 

as well as benefit shortfalls when the project is implemented, it is therefore important to evaluate how 

well project risks have been recognised and will be handled throughout project assessments. 
Furthermore, it should be feasible to successfully limit project risks and lessen any potential optimism 

bias by applying current industry best practises. The phenomenon of optimism bias extends beyond 

mere miscalculations in project planning and is deeply rooted in psychological and social dynamics. 

Understanding these underlying factors is crucial for comprehensively addressing optimism bias in 

construction projects. Optimism bias is not merely a result of poor estimation techniques but is deeply 

ingrained in human psychology. As Kahneman and Tversky (1979) illustrated through their Prospect 

Theory, individuals have a tendency to focus on positive outcomes while undervaluing potential risks 

and negative consequences. This cognitive bias, known as the optimism bias, leads to overly optimistic 
project timelines and cost estimates. Sharot (2011) further elaborated on this by explaining that the 

brain's reward system is more activated by positive predictions than negative ones, making optimistic 
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forecasts more appealing and likely to be adopted. Within the organizational context, social dynamics 

and the pressure to present favourable outcomes can exacerbate optimism bias. Managers and project 

proponents often face significant pressure to demonstrate the viability and profitability of their projects. 

This pressure can lead to deliberate downplaying of potential risks and overstatement of benefits, a 
phenomenon also discussed by Flyvbjerg (2004) under the term "strategic misrepresentation." This 

strategic behaviour is not always a result of malicious intent but can stem from a genuine belief in the 

project's success, bolstered by a collective optimism within the organization. The impact of optimism 

bias on project performance can be profound. Studies by Love et al. (2017) have shown that projects 

affected by high levels of optimism bias often experience significant cost overruns and delays. This not 

only affects the financial viability of the project but also its reputation and stakeholder trust. Furthermore, 

projects with unrealistic timelines and budgets are more likely to encounter stress and resource 

shortages, leading to compromised quality and increased likelihood of failure. To mitigate optimism 
bias, several strategies have been proposed and successfully implemented in various projects. One 

effective approach is the implementation of reference class forecasting, as suggested by Flyvbjerg 

(2008). This technique involves comparing the current project with a database of similar past projects 

to provide a more realistic estimate of costs and timelines. Additionally, the use of independent peer 

reviews can help identify and correct overly optimistic assumptions early in the project planning process. 

Also, raising awareness about the cognitive and social roots of optimism bias through targeted training 

programs can also be beneficial. By educating project teams about the common pitfalls of optimism 

bias and encouraging a culture of critical evaluation, organizations can foster a more realistic approach 
to project planning and execution. Moreover, advancements in AI and ML offer new tools for combating 

optimism bias. These technologies can analyse large datasets from previous projects to provide 

predictive insights and identify patterns that may not be evident through traditional analysis. As 

discussed earlier, AI/ML can play a crucial role in real-time monitoring and adjustments, further 

enhancing the accuracy of project estimates and timelines. The adoption and implementation of BIM in 

construction projects present unique challenges and opportunities. Optimism bias theory is particularly 

relevant in BIM, as it can significantly influence how BIM is perceived, planned, and executed within 
projects. One common manifestation of optimism bias in BIM adoption is the overestimation of its 

potential benefits. While BIM offers numerous advantages, such as improved design accuracy, 

enhanced collaboration, and better project visualization, stakeholders may exaggerate these benefits 

without fully understanding the complexities involved. Optimistic bias might predict seamless integration 

and immediate productivity gains, neglecting the learning curve and the need for substantial upfront 

investment in training and technology. Optimism bias also leads to underestimation of the costs and 

timeframes required for BIM implementation. Initial project plans might overlook the extensive resources 

needed to transition from traditional methods to BIM. These include the costs of software acquisition, 
training personnel, and restructuring workflows to accommodate BIM processes. Additionally, the time 

required to fully integrate BIM into existing systems is often underestimated, leading to project delays 

and cost overruns. BIM relies on the accurate and efficient management of vast amounts of data. 

Optimism bias may cause project teams to underestimate the challenges associated with data 

management and interoperability between different software platforms. Inadequate planning for these 
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technical hurdles can result in data silos, errors, and inefficiencies that negate some of the anticipated 

benefits of BIM. Furthermore, optimism bias can significantly impact stakeholder expectations regarding 

BIM adoption. Project promoters may present an overly optimistic view of BIM’s capabilities, leading to 

unrealistic expectations among clients and other stakeholders. When the reality of implementation falls 
short of these expectations, it can lead to dissatisfaction, loss of trust, and potential conflicts. 

 

2.3 Innovation Diffusion Theory  
Diffusion of Innovation (DOI), according to Rodgers (2003), is the process " through which an innovation 

is disseminated over time among members of the social system through specific channels". Innovation, 

communication routes, time, and the social structure make up the bulk of the DOI. Since innovation is 
defined as "an idea, practise, or undertaking that is regarded as novel by an individual or other units of 

adoption," it need not actually be new, only new to the adopter (Rodgers, 2003). The mechanism 

through which people exchange information with one another, including interpersonal and media 

channels, is known as a communication channel. The time pertains to how long it takes to adopt or 

reject, how long adoption takes compared to being early or late, and how long it takes for a certain 

number of adopters. While the social structure is made up of interconnected parts that cooperate to 

accomplish a goal(s). The theory views innovation as occurring at many stages and being impacted by 

factors including the invention's qualities, those of its adopters, and the local social structure. According 
to Rodgers (2003), Relative advantage, compatibility, complexity, trialability, and observability are the 

qualities associated with innovation. Compatibility is defined as "the degree to which an innovation is 

regarded to be compatible with the existing values, prior experiences, and demands of potential 

adopters." Relative advantage is "the degree to which an innovation is judged to be superior than the 

notion it succeeds." The degree to which an innovation is seen as being challenging to understand and 

use is referred to as its complexity, observability is "the degree to which the consequences of an 

invention are visible to others," whereas trialability is "the degree to which an innovation may be tested 
with on a limited basis”. Information is spread through communication channels to educate interested 

people about the innovation, who then may be convinced (persuaded) to decide whether to accept or 

reject the innovation. The adoption decision is followed by the implementation, which entails employing 

the invention for a while before confirmation Rodgers (2003). As a result, different adopters adapt 

differently based on their innovativeness, or how early or late they adopt in comparison to other adopters 

in the system as illustrated in figure 2.1 below. 
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Figure 2.1: Diffusion Model (Rodgers, 2003) 

 

The adopters are divided into laggards, innovators, early majority, early majority, and late majority. It is 
believed that innovators have access to major mass media and are frequently pioneers and risk-takers 

who are not afraid to try forth novel concepts. The innovators set the example for the early adopters, 

who then quickly embrace the invention. In order to conceptualise BIM adoption inside Australian SMEs, 

Hosseini et al. (2016) applied the innovation diffusion model and stated that the theory is relevant for 

the BIM adoption process. The theory has drawn criticism, nevertheless, for putting too much emphasis 

on the technology environment and not enough on the social structure of the system (Ifinedo, 2011; 

Ishak and Newton, 2016). The oversimplification of the theory and the portrayal of adoption as a binary 
function that omits the usage were questioned by Bayer & Melone (1989). The research also noted that 

the classification of adopters based on innovativeness, the absence of adopter representation of 

innovation discontinuity, the impacts of government mandates on innovation, and the lack of a 

specification for the interplay between diverse social systems were all unjustified. The Popperian 

technique was used by Lyytinen & Damsgaard (2001), who compiled the theory's six main conjectures 

for debunking. The six conjectures, according to Lyytinen & Damsgaard (2001), are as follows: (1) 

Innovations have distinct characteristics that are readily identifiable by the interested parties; (2) 

Innovation moves from an independent innovator to other adopters in a discrete manner; and (3) The 
decision to adopt or reject by an adopter is atomic, isolated, and influenced by pull and push forces. (4) 

The adopters make decisions based on information made available through communication channels, 

technical features, and a logical calculus. (5) The adoption rate, which is influenced by the push and 

pull forces, determines how quickly diffusion occurs. (6) The diffusion process is devoid of feedback; 

thus, the diffusion history is irrelevant. The study used the example of electronic data interchange to 

disprove the idea that innovation does not alter over time or within different contexts. It was discovered 

that complicated innovation would not disseminate in the theory's suggested consecutive phases. 

Additionally, the choice to adopt or reject may not be based on the knowledge given and may go outside 
the social structure. Despite the objections, it is commonly known that innovation diffusion theory is 

valuable for innovative studies; nevertheless, the theory has to be changed to account for the flaws 

found in sophisticated technologies like BIM. According to Rogers (2003), the innovation-decision 

process consists of five key steps:  
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 Knowledge - When an individual is first exposed to an innovation and gains some 

understanding of how it functions.  

 Persuasion - When the individual forms either a favourable or unfavourable attitude towards 

the innovation.  
 Decision - The individual weighs the advantages/disadvantages and decides whether to adopt 

or reject the innovation.  

 Implementation - The innovation is put into practice.  

 Confirmation - The individual finalizes their decision to continue using the innovation.  

 

This multi-stage process highlights that adoption is not a binary event, but rather unfolds over a period 

influenced by various factors. As Rogers highlights, "The innovation-decision period is the length of 

time required to pass through the innovation-decision process" (2003, p.172). Rogers identifies several 
variables that can facilitate or impede adoption, including characteristics of the decision-making unit, 

characteristics of the innovation itself as mentioned earlier (relative advantage, compatibility, etc.), 

communication channels, nature of the social system, and role of change agents or opinion leaders. 

For example, higher socioeconomic status, more years of formal education, and greater 

cosmopolitanism and interpersonal networking have been found to correlate with higher innovativeness 

in adopting new ideas (Che Ibrahim et al., 2010). The theory also covers diffusion networks and critical 

mass - the notion that adoption of interactive innovations like BIM is self-sustaining only after a critical 

mass of users have adopted (Rogers, 2003). As more interconnected individuals adopt the innovation, 
network effects increase its value for all, incentivizing further adoption. Furthermore, Rogers makes a 

key distinction between centralized, hierarchical diffusion systems where adoption choices are relatively 

optional, versus decentralized diffusion systems with collective agency where choices are more 

autonomous (Pries & Jansen, 2009). Construction projects often represent temporary, decentralized 

diffusion systems where adoption patterns are more unpredictable. While impactful, the Innovation 

Diffusion Theory has seen notable critiques and advancements over time: Attewell (1992) argued the 

theory oversimplifies by not accounting for knowledge barriers where potential adopters lack 
understanding of complex innovations like IT systems. He proposed a "Knowledge Barrier Model" 

incorporating phases of knowledge acquisition before adoption can occur. Another critique is that the 

theory tends to have a pro-innovation bias that oversimplifies the rational decision-making process 

(Rogers, 2003). It downplays how adoption is often motivated by institutional pressures rather than 

rational weighing of costs/benefits (Shi et al., 2008). Swanson and Ramiller (1997, 2004) expanded 

diffusion concepts to theorize that broader level "organizing visions" around innovations like BIM 

emerge to legitimize and motivate adoption across an industry. These shared visions shape discourse 

around an innovation's value proposition. Finally, some argue that the linear Innovation Diffusion Model 
is too rigid, and that adoption unfolds through more dynamic, recursive cycles of initiation, adoption, 

implementation, and institutionalization over time (Elenkov & Mohr, 2018; Zolkafli et al., 2012). The DOI, 

as articulated by Rogers (2003), offers a comprehensive framework to understand the adoption and 

dissemination of innovations BIM within the construction industry. According to Rogers, the diffusion 

process involves the spread of an innovation over time among members of a social system through 
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specific channels. The theory's relevance to BIM adoption is particularly significant, given the complex 

and multidisciplinary nature of construction projects, which require seamless coordination and 

communication across various stakeholders. BIM, as an innovative technology, fits well within the DOI 

framework, which outlines five key attributes influencing the rate of adoption: relative advantage, 
compatibility, complexity, trialability, and observability. Relative advantage refers to the perceived 

benefits of BIM over traditional methods, such as enhanced visualization, improved collaboration, and 

increased efficiency. These benefits can be compelling drivers for adoption, especially in a competitive 

industry seeking to improve project outcomes. Compatibility addresses how well BIM aligns with the 

existing values, past experiences, and needs of potential adopters. This is crucial in the construction 

sector, where entrenched practices and resistance to change can pose significant barriers. Complexity 

is another critical factor, as BIM involves sophisticated software and requires a certain level of technical 

expertise. This complexity can hinder adoption, particularly in small and medium-sized enterprises 
(SMEs) that may lack the necessary resources or skills. The attribute of trialability, or the ability to 

experiment with BIM on a limited basis, can mitigate some of these concerns by allowing firms to explore 

its benefits without full-scale commitment. Finally, observability pertains to the visibility of BIM's results, 

which can encourage adoption by showcasing its practical benefits through successful case studies 

and projects. The process of BIM adoption also aligns with Rogers' stages of the innovation decision 

process: knowledge, persuasion, decision, implementation, and confirmation. Initially, potential 

adopters become aware of BIM and gain an understanding of its functions (knowledge). This is followed 

by the formation of a positive or negative attitude towards BIM (persuasion), leading to a decision to 
adopt or reject it. Upon adoption, BIM is implemented and tested, with the final confirmation stage 

involving the continued use or abandonment of the technology based on its performance and benefits. 

 

2.4 Chapter Summary  
This chapter presented an overview of two key theories that have been applied to the conceptualization 
of research on construction project delays: the Optimism Bias Theory and the Innovation Diffusion 

Theory. The Optimism Bias Theory, as proposed by Macdonald (2002), addresses the tendency to 

underestimate project costs and durations while overestimating benefits. This bias is quantified as the 

percentage difference between actual and estimated values. Optimism bias manifests in various forms, 

including works duration, project duration, capital expenditure, operating expenditure, unitary 

payments, and benefits shortfall biases. Alternatively, he Innovation Diffusion Theory, proposed by 

Rodgers (2003), offers a framework for understanding the process by which innovations are adopted 

within a social system over time. The theory encompasses four key elements: innovation, 
communication channels, time, and social structure. Innovations are characterized by relative 

advantage, compatibility, complexity, trialability, and observability, which influence their adoption rate. 

While the theory remains valuable for innovation studies, it requires adaptation to account for the 

intricacies of complex technologies.
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CHAPTER 3  

3.0 SYSTEMATIC REVIEW OF CRITICAL 
DRIVERS FOR DELAY RISK PREDICTION: 

TOWARDS A CONCEPTUAL FRAMEWORK FOR 
CONSTRUCTION PROJECTS2 

 

3.1 Chapter Overview 
This chapter presents a systematic review of the critical drivers for delay risk prediction towards 

developing a conceptual framework for BIM-based construction projects. The study recognizes a 

significant gap in the existing body of knowledge – the lack of a cohesive conceptual framework for 
identifying and prioritizing the most critical delay risk drivers specific to BIM-based construction projects. 

Thus, it aims to identify key delay risk drivers in BIM-based construction projects that have a significant 

impact on the performance of delay risk predictive modelling techniques. It employs the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline to conduct a 

comprehensive systematic review and synthesize the findings. The chapter discusses the background 

and motivations behind this research, highlighting the persistent challenges of construction project 

delays and the potential of BIM in mitigating these issues. It emphasizes the lack of a cohesive 
conceptual framework for selecting the most critical delay risk drivers specific to BIM-based projects, 

which has hindered the development of highly effective predictive models tailored to BIM-based 

construction projects. 

 

3.2 Background of Study 
Construction projects are one-of-a-kind and are seen to be inherently risky owing to the involvement of 

many parties with competing interests. The risks associated with construction projects are many and 

have the potential to result in negative outcomes. One of such risks is delay risk as construction industry 
rarely completes projects in time due to its complex nature - vagaries of project type, scope, location 

and size (Egwim, Alaka, Toriola-Coker, Balogun, Ajayi, et al., 2021). Risk management methods that 

 
2 This chapter is primarily derived from the following journal articles: 
 
Egwim, C.N. et al. (2023) ‘Systematic review of critical drivers for delay risk prediction: towards a 
conceptual framework for BIM-based construction projects’, Frontiers in Engineering and Built 
Environment, 3(1), pp. 16–31. doi:10.1108/febe-05-2022-0017. 
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are systematic and realistic are required to handle and control delay risks so that project success may 

be assured. As a result of the detrimental impact of such construction projects delay on the economy 

and society in general, researchers have recently used delay risk predictive modelling as a major risk 

management method for developing construction project delay risk predictive models. For instance, 
Owolabi (Owolabi et al., 2018) developed a big data analytics-based predictive model for estimating 

delays in public-private partnership projects between 1992 to 2015 across Europe. Also, Yaseen 

(Yaseen et al., 2020c) developed a hybrid artificial intelligence predictive model to mitigate construction 

projects delay in Diyala city, Iraq. Furthermore, Egwim (Egwim, Alaka, Toriola-Coker, Balogun and 

Sunmola, 2021a) developed a multilayer high-performance ensemble of ensembles predictive model 

utilising hyperparameter optimised ensemble machine learning techniques for construction projects in 

Nigeria among many others. Prior to the use of delay risk predictive models to mitigate delay, numerous 

investigations on causes of construction project delay by several researchers exists as evident in vast 
body of international literature, e.g. planning and scheduling deficiencies in Australia, delay in payment 

certificates in Ghana and poor site management in Malaysia by Shah (Shah, 2016); ground problems 

and inefficient structural connections for prefabricated components in both the UK and India by 

Agyekum-Mensah (Agyekum-Mensah and Knight, 2017) and Ji (Ji et al., 2018) respectively and finally 

shortage of adequate equipment and poor communication among contracting parties in China by Chen  

(G.-X. Chen et al., 2019) etc. Sequel to these studies, a few literature-reviews / systematic-reviews  

studies (Derakhshanfar et al., 2019)(Sanni-Anibire, Mohamad Zin and Olatunji, 2020)(TAFESSE, 2021) 

were conducted to identify key drivers that causes construction project delay in the construction 
industry. These drivers put together forms the variables that inform construction project delay. However, 

a structured model of data that represents building elements with its usage spanning beyond the pre-

construction phase to the post-construction phase known as BIM in Architecture, Engineering, and 

Construction industry has been introduced for a while now (Ameziane, 2000). Surprisingly, researchers 

(Al-Mohammad et al., 2021; Cooney, Oloke and Gyoh, 2021; Evans et al., 2021; Gharouni Jafari, Ghazi 

Sharyatpanahi and Noorzai, 2021; Saka and Chan, 2021; Silverio and Suresh, 2021; Tai, Zhang and 

Li, 2021) have revealed that the delay risk drivers that impact non-BIM-based and BIM-based 
construction projects are not necessarily the same. This is due to a variety of reasons, including the 

adoption of BIM for accurate geometric model development within the continuum modelling strategy 

(Kassotakis and Sarhosis, 2021), ability to Integrate BIM with emerging radio frequency identification 

technologies in structural engineering (Duan and Cao, 2020), use of BIM to control the geometry of 

arch pylon as it is being built while taking into account seasonal temperature fluctuations (Wang, Zhang 

and Wang, 2022), or since BIM now allows for the storage of modularisation data from past projects 

(Tidhar et al., 2021), and as argued by (Johnston et al., 2018) the weights of various structural forms 

are more readily available as a result of the increased usage of BIM and structural analysis models, 
and may be used to swiftly compute embodied carbon etc. The hypothesis of BIM was established in 

1970 by Professor Charles Eastman at the Georgia Tech School of Architecture as building description 

systems (BDS) (Young et al., 2008). Undeterred by its long-time existence, interest in BIM only took off 

few years ago. This present-day construction industry is predisposed by the wariness about BIM. 

Varying concerns around what exactly BIM is, whether BIM is only meant for large projects with complex 
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geometries, how to change from the traditional design process to BIM among many others. BIM involves 

the creation and use of a three-dimensional (3D) virtual model that replicates the design, construction, 

and operation of a building. Also, BIM is perceived by facility managers as a tool used to improve 

building’s performance and manage operations more efficiently throughout a building’s life (Abbasnejad 
and Moud, 2013). The practical adoption of BIM by the Architecture, Engineering, and Construction 

industry for construction project started around the mid-2000s (Mohd and Latiffi, 2013). BIM was first 

implemented by the United States of America (USA) with example BIM-based construction projects 

seen in Sutter Medical Centre, Castro Valley California USA (Davis, 2007). Presently, BIM-based 

construction projects have been implemented in several countries such as “Sydney Opera House”, in 

Australia; “One Island East Office Tower”, in Hong Kong; “Crussel Bridge”, in Helsinki, Finland; 

“National Cancer Institute (NCI)”, in Putrajaya, Malaysia; “Barking Riverside Extension and Rail 

Station”, in London, UK etc (Young et al., 2008; Latiffi et al., 2013). The rate of adoption of BIM differs 
between countries. For instance, according to a report by (Bernstein, 2010) 50% adoption rate amidst 

contractors was reached in North America compared to 24% of the counterparts in Western Europe, 

while Western Europe has higher percentage of BIM user rate(approximately 34%) compared to North 

American counterpart (18%). With reference to House (House et al., 2007) the major benefit of BIM is 

its accurate geometrical representation of building parts in an integrated data. Some research 

(Johansen, 2015)(Jones, Young Jr. and Bernstein, 2008)(Mohd and Latiffi, 2013)  indicated that BIM is 

generally used during pre-construction, construction and post construction stages to produce better 

project design; aid in decision making process; improve collaboration and communication among 
stakeholders; centralize data administration in a common data environment; reduce changes during 

construction; reduce conflict during construction; minimize risks in execution period; visualize design 

solution in 3D; reduce project delay; improve overall project quality and achieve better cost 

control/predictability.  Undeterred by these BIM-based delay analysis studies with corresponding 

benefits of BIM to construction projects, there is no amalgamating study that has consolidated key 

drivers that affect BIM-based construction projects. As a result, using delay risk drivers from BIM-based 

construction projects is crucial and has been actively promoted in Architecture, Engineering, and 
Construction industry to accomplish early prediction, which is necessary in any robust predictive 

modelling to provide adequate time for correction (Narlawar, Chaphalkar and Sandbhor, 2019)(Amany, 

Taghizade and Noorzai, 2020). Consequently, this study aims to develop a comprehensive conceptual 

framework that will serve as a foundation for identifying the most critical delay risk drivers for BIM-based 

construction projects. To accomplish this aim, the following objectives will be used: 

 To identify key delay risk drivers in BIM-based construction projects that have significant impact 

on the performance of delay risk predictive modelling via systematic review of literature. 

 

 To examine the systematic review's summary of findings and rank the discovered delay risk 

drivers to determine which are the most critical. 

 

 To Identify and present BIM tools used to potentially mitigate delay from vast body of literature 

in first and second objectives. 
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The contribution of this study is therefore to fill the gap in lack of a conceptual framework for selecting 

key delay risk drivers for BIM-based construction projects, which has hampered scientific progress 

toward development of extremely effective delay risk predictive models for BIM-based construction 
projects. Furthermore, this study will solve the challenge of analysing variables under all existing drivers 

to find the most critical ones before developing delay risk predictive models for BIM-based construction 

projects in future research. As such, only variables that fall under the selected categories will be 

examined, thus significantly enhance the efficiency of delay risk predictive modelling for BIM-based 

construction projects. The next section details the research methodology, which begins with an 

explanation of the systematic review methods. The data analysis section follows afterwards (section 3), 

explaining the systematic review's data analysis step by step. The analysis' findings are then presented 

discussed in section 4. The discussion part examines how the findings connect to existing theories, 
while the conclusion summarises the findings in section 5. 

 

3.3 Methodology 
Pragmatism is the philosophical paradigm used in this study. This is because it focuses on practical 

applied research using several viewpoints to aid in data interpretation such that depending on the 

research question, either observable occurrences or subjective meanings might give acceptable 
knowledge (Saunders, Lewis and Thornhill, 2019).This systematic review is conducted in line with the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009). 

PRISMA is a guideline for conducting systematic reviews and meta-analyses that includes a 27-item 

checklist and a four-phase flow diagram. It was created by a consortium of twenty-nine professors in 

the medical community with the aim of improving the clarity and consistency of systematic reviews. 

PRISMA was therefore, chosen over other existing guidelines because of its comprehensiveness, its 

use in a variety of disciplines around the world outside of medicine, and its ability to improve accuracy 
through articles (Pahlevan Sharif, Mura and Wijesinghe, 2019a). In order to record the research process 

and inclusion criteria, a guideline was created in advance. A thorough literature search was conducted 

to find articles for this study. More precisely, only articles published until 1st of August 2021 in SCOPUS 

and American Society of Civil Engineers (ASCE) databases were used as its primary source of 

information for the search. These databases were chosen because the formal is the “largest abstract 

and citation database of peer-reviewed literature” (Cantú-Ortiz and Fangmeyer, 2017) while the latter 

is the “world’s largest publisher of civil engineering content” (ASCE, 2010). The abstract, title and 

keywords of publications in these databases were searched using the following search terms: (“BIM" 
OR "Building Information Model*" OR "Building Information Manage*" AND (“Delay*" OR "Schedule 

Overrun*")) with no date, language, and article type restrictions.  The eligibility criteria are thus, all 

articles stored in these databases whose title, abstract or keywords matched the search terms. This is 

because titles, abstracts and keywords serve as cues for article search. A total of three hundred and 

eighty-eight articles were identified (see Figure 3.1). The author’s name, author’s affiliation, articles title, 

articles abstract, authors keywords, publication year and source title were exported to a Comma-
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Separated Values (CSV) file. At first, I screened each title and abstract in the exported CSV file 

independently. Full text of articles from the file that fell within the eligibility criteria (mentioned above) 

were subsequently accessed and evaluated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bibliographic information for the included articles, as well as the necessary elements from the 

PRISMA checklist (with a few changes) were added to the data management CSV file. Meta-analysis 

study findings (items 12–16 and 19–23 from the PRISMA checklist) were excluded because they were 
related to meta-analyses only, outside the scope of this research. In order to optimize the extracted 

information and to code accordingly, a pilot test of fifteen randomly chosen included articles was carried 

out. Finally, all articles used were thoroughly examined for data extraction (research aim, project type, 

country/region, research method(s), tool(s), etc.) and coded as summarized in Figure 3.1. This figure 

displays the flow diagram of the research selection process. It details the total number of articles 

identified through database search, total number of articles screened based on eligibility criteria and 

 
 

Figure 3.1: Flow diagram of research selection process. 
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total number of these articles whose full text were access and finally total number of these articles that 

were used for analysis in this study. The ranking of delay risk drivers in this study was based on citation 

frequency. This method involves counting the number of times each delay driver was cited across the 

reviewed literature. Citation frequency serves as an indicator of the relative importance and impact of 
each delay driver within the context of BIM-based construction projects. For each of the nine categories, 

delay risk drivers were ranked according to the number of times they were cited across the reviewed 

articles. For instance, contractor-related drivers, which include issues such as shortage of resources, 

financial difficulties, and inaccurate resource planning, were the most frequently cited, thus ranking 

highest. In contrast, categories with fewer citations, such as consultant-related drivers, were ranked 

lower. The ranking process is visually represented in Table 3.3 of the study, which details the frequency 

of citations for each delay driver. This table serves as a quantitative foundation for the subsequent 

conceptual framework, which identifies the most critical delay risk drivers for BIM-based construction 
projects. The use of citation frequency as a ranking method is well-supported in academic literature. 

According to Borrego et al. (2018), citation analysis is a reliable indicator of the impact and relevance 

of specific topics within a research field. This method ensures that the ranking reflects the collective 

judgment of the academic community, thereby enhancing the validity of the findings. Furthermore, 

citation frequency analysis mitigates potential biases that could arise from subjective assessments. As 

noted by Garfield (2006), citation counts provide an objective measure that is less susceptible to 

personal or institutional biases. This objectivity is crucial in constructing a robust and credible 

conceptual framework for identifying key delay risk drivers in BIM-based projects. 

 

3.4 Result and Analysis 
Performing the search terms on the electronic databases yielded a total of three hundred and eighty-

eight articles (see Figure 3.1). A total of three hundred articles which either despite meeting the eligibility 

criteria, doesn’t relate to the objective of this study or due to my limited access to subscription-based 
articles were excluded from this research (For example, Yan (Yan et al., 2008), (Studebaker, 2014), 

(Surendhra Babu and Hayath Babu, 2018), (Moselhi, Bardareh and Zhu, 2020) etc) were not relevant 

to the effect of BIM on construction projects delay.  Thus, remaining a total of eighty-eight articles. 

Furthermore, I read the full-length of the remaining articles carefully to ensure that they were relevant. 

Thirty-eight of these were further discarded because they did not satisfy the eligibility criteria. 

Consequently, a total of fifty articles – thirty-one journals, seventeen conference proceedings, and two 

books remained and were used for this research. Table 3.1 below summarizes the extracted variables 

and information as the main characteristics of all the reviewed articles towards the discovery of key 
delay risk drivers for BIM-based construction projects. Furthermore, exploratory analysis of the data 

from Table 3.1 revealed seventeen different types of construction projects (see Figure 3.2) from the 

articles reviewed in this study, demonstrating the validity of the conceptual framework to be built using 

these articles as being capable of working in a variety of construction projects. In addition, a count of 

research methods per project revealed that the most used research method, quantitative research, was 

most prevalent in the general construction project category as shown in Figure 3.2. 
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Table 3.1: The summary of study characteristics. 

SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

1  

(Narlawar, 

Chaphalkar and 

Sandbhor, 2019) 

I. Conflicts between contractor 

and sub-contractor (s). 

II. Natural disasters e.g., floods, 

earthquakes etc. 

Journal India Residential Building Quantitative Autodesk Revit, 

and Autodesk 

Navisworks 

Manage 

2  

(Narlawar G.S., 

Chaphalkar N.B., 

2017) 

 

I. Changes in specifications. 

II. Poor contract management. 

Journal Malaysi

a 

General 

construction 

Mixed methods 

(semi-structured 

interview and 

Questionnaire) 

None  

3  

(Ryu et al., 2015) 

I. Traffic restrictions. 

II. Changes in site topology after 

design. 

Journal Korea Tunnel Quantitative Simulated 

Annealing (SA) 

and BIM 

4  
(Nawi et al., 2014) 

I. Ineffective project 
supervision. 

Journal Malaysi
a 

Industrialised 
Building System 

(IBS) Construction 

Projects 

Qualitative Integrated 
Project Delivery 

and BIM 

5  

(Li et al., 2017) 

I. Client’s cash flow issues. 

 

Journal Hong 

Kong 

General 

construction 

Qualitative and 

Experimental 

RFID-enabled 

BIM 

6  

(Subramani and 

Ammai, 2018) 

I. Contractor’s cash flow issue. 

 

Journal Multinati

onal 

General 

construction 

Qualitative Primavera 



 31 

SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

7  

(Amany, Taghizade 

and Noorzai, 2020) 

I. Ineffective project plan. 

II. Shortage of materials on 

market. 

Journal Multinati

onal 

General 

construction 

Quantitative Last Planner 

System (LPS) 

technique with 

Revit BIM 

8 (Husin, 2019) I. Conflicts between contractor 
and consultant. 

Journal Indonesi
a 

High-rise building Quantitative None 

9 (Abdelbary, Edkins 

and Dorra, 2020) 

 

I. Schedule/program of work. Journal Egypt General 

construction 

Quantitative None 

10  

 

(Shin, Lee and Kim, 

2018) 

I. Limited space for temporal 

equipment. 

Journal South 

Korea 

Railway Site Mixed methods  None 

11  

(Park and Lee, 
2017) 

 

I. Discrepancies in contract 

documents. 

Journal Korea hospital building Quantitative 2D drawings 

and BIM 

12  

(Park et al., 2017) 

I. Changes in client 

requirements. 

II. Reworks due to error in 

construction. 

Journal Multinati

onal 

General 

construction 

Experimental Web and 

Database-

Based 4D BIM 
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SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

13  

(Sepasgozar et al., 

2019) 

I. Late delivery of construction 

materials. 

II. Inflation or sudden increase in 

commodities. 

 

Journal Generic General 

construction 

Qualitative, 

Quantitative and 

Experimental 

None 

14  

(Chiponde et al., 

2017) 

I. Building permit from 

authorities. 

II. Corruption issues. 

III. Variation in structural design. 

Journal Zambia General 

construction 

Mixed methods  None 

15  

(Sami Ur Rehman 

et al., 2020) 

I. Schedule/program of work. 

II. Labour dispute or strikes. 

 

Journal Multinati

onal 

General 

construction 

Mixed methods  None 

16  

(Giel and Issa, 
2013) 

I. Reworks due to error in 

construction. 

Journal Multinati

onal 

General 

construction 

Qualitative None 

17  

(Jang and Lee, 

2018) 

I. Contractors’ financial 

difficulties. 

Journal Korea General 

construction 

Quantitative None 

18  

(Chen and Tang, 

2019) 

I. Staff’s productivity level. 

II. Shortage of resources 

(human resources, 

machinery, equipment etc). 

 

Journal China Residential Building Quantitative None 
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SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

19  

(Ern, Ooi and Al-

Ashmori, 2020) 

I. Contractor’s poor decision Journal Malaysi

a 

General 

construction 

Quantitative None 

20  

(Elhusseiny, Nosair 
and Ezeldin, 2021) 

I. Client’s cash flow issues. 

II. Consultant’s cash flow issues. 
III. Conflicts between contractor 

and consultant 

Journal Egypt General 

construction 

Quantitative None 

21  

(Malacarne et al., 

2018) 

I. Contractors’ financial 

difficulties. 

Journal Italy General 

construction 

Qualitative None 

22  

(Handayani, 

Likhitruangsilp and 

Yabuki, 2019) 

I. Change in economic 

conditions. 

II. Shortage of resources 

(human resources, 
machinery, equipment etc). 

Journal Thailand Story Buildings Qualitative Autodesk Revit 

23  

(Wong, Zhou and 

Chan, 2018) 

I. Variation in structural design. 

II. Reworks due to error in 

construction. 

III. Poor communication amongst 

stakeholders 

Journal China General 

construction 

Quantitative 3D/4D BIM 

24  

(Tserng, Ho and 

Jan, 2014) 

I. Poor site investigation or 

management. 

II. Staff’s productivity level. 

Journal Taiwan General 

construction 

Experimental Construction 

BIM-assisted 

Schedule 
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SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

management 

(ConBIM-SM) 

25  

(Liu et al., 2020) 

I. Ineffective project plan. 

II. Pandemic 

 

Journal China Residential Building Experimental None 

26  
(Vilventhan, Razin 

and Rajadurai, 

2020) 

I. Delay in site delivery. Journal India Infrastructure 
construction project 

Qualitative and 
Experimental 

Geographic 
Information 

System (GIS) 

27  

(Delgado et al., 

2015) 

I. Site accident. 

II. Political influence. 

Journal Spain Residential Building Experimental Web3D 

visualizer and 

BIM 

28  

(Hossain et al., 

2018) 

I. Late payment by the client. Journal Singapo

re 

Story Building Experimental None 

29  

(Stegnar and 

Cerovšek, 2019) 

I. Damage storage materials. 

II. Contractors’ financial 

difficulties. 

III. Natural disasters e.g., floods, 

earthquakes etc. 

IV. Unforeseen site conditions 

e.g., unanticipated 

Journal Slovenia Office Building Quantitative None 
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SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

groundwater, quicksand, mud, 

rock formation etc. 

30  

(Khalesi et al., 

2020) 

I. Building material’s price 

fluctuation. 

II. Inflation or sudden increase in 
commodities. 

III. Unskilled labourers 

Journal Multinati

onal 

Residential Building Quantitative None 

31  

(Tahir et al., 2018) 

I. Use of outdated technologies 

by staffs. 

Journal Multinati

onal 

General 

construction 

Qualitative None 

32  

(Vahdatikhaki and 

Mawlana, 2017) 

I. Project quality control. Conference Canada General 

construction 

Experimental None 

33  

(Tahir Muhammad 

et al., 2019) 

I. Building material’s price 

fluctuation. 

II. Equipment breakdown. 

Conference Malaysi

a 

General 

construction 

Quantitative None 

34  

 

(Btoush and Harun, 

2017) 

I. Use of outdated technologies 

by staffs. 

II. Change order. 

III. Damage storage materials. 

IV. Equipment breakdown. 

Conference Jordan General 

construction 

Qualitative 3D/4D BIM 

35  

(Dallasega et al., 

2019) 

I. Change order. 

II. Discrepancies in contract 

documents 

Conference Italy Hospital 

construction project 

Experimental 3D/4D BIM 
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SN Study Delay risk drivers Source Type Country Project Type Research Method BIM Tool Used 

36  

(Diaz et al., 2019) 

I. Site accident. 

II. Labour dispute or strikes. 

Conference Peru Road projects Experimental Civil 3D, Revit 

and IfraWorks 

360 

37  

(Ansah et al., 2016) 

I. Variation in structural design. Conference Malaysi

a 

General 

construction 

Qualitative 3D/4D BIM 

38  
(Chou and Chen, 

2017) 

I. Late delivery of construction 
materials 

Conference Taiwan General 
construction 

Quantitative 3D/4D BIM 

39  

(Wang et al., 2015) 

 

I. Inaccurate budgeting Conference Australi

a 

Liquefied Natural 

Gas Construction 

Quantitative Laser Scanning, 

Mobile 

Computing and 

RFID 

40  

(Kermanshahi et al., 

2020) 

I. Shortage of materials on 

market. 

II. Ineffective government 
regulations. 

Conference Malaysi

a 

Police Headquarter 

Building 

Quantitative Autodesk Revit 

and Autodesk 

Navisworks 

41  

(Couto and Ericson, 

2017) 

I. Ineffective project 

supervision. 

II. Building material’s price 

fluctuation 

Conference USA Airport Building Experimental 3D/4D BIM and 

Laser Scanner 

42  

(Vacanas et al., 

2015) 

I. Shortage of resources 

(human resources, 

machinery, equipment etc). 

Conference Multinati

onal 

Infrastructure 

construction project 

Qualitative 3D/4D BIM and 

Unmanned 

Aerial Vehicle 

(UAV) 
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43  

(Suermann and 

Issa, 2009) 

I. Poor site investigation or 

management. 

Conference USA Air Force Building Experimental 3D/4D BIM 

44  

(Liu and Liu, 2020) 

I. Inaccurate resource planning. Conference China Substation 

Construction 

Qualitative and 

Experimental 

Glodon 5D BIM 

45  
(Ibrahim, Hashim 

and Ahmad Jamal, 

2019) 

I. Use of outdated construction 
methods (e.g., precast twin 

wall technology, 2D drawing 

etc.). 

 

Conference Malaysi
a 

General 
construction 

Quantitative Traditional 
3D/4D BIM 

46  

(Zhang and Liu, 

2021) 

I. Conflicts between contractor 

and sub-contractor(s). 

II. Level of BIM usage. 

III. Inaccurate resource planning. 

Conference Multinati

onal 

General 

construction 

Qualitative 3D/4D BIM  

47  
(Ocheoha and 

Moselhi, 2013) 

I. Limited space for temporal 
equipment. 

Conference Canada General 
construction 

Quantitative 3D/4D BIM 

48  

(Sigalov and König, 

2018) 

I. Inaccurate resource planning. Conference Multinati

onal 

General 

construction 

Experimental 3D/4D BIM  

49  

(Teng et al., 2013) 

I. Unfavourable weather 

conditions. 

Book China General 

construction 

Qualitative Integrated 

Project Delivery 

and BIM 
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II. Use of outdated construction 

methods (e.g., precast twin 

wall technology, 2D drawing 

etc.). 

III. Changes in client 
requirements. 

50 (Srao, Rai and 

Mann, 2018) 

 

I. Level of BIM usage. Book India General 

construction 

Qualitative 3D/4D BIM 
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Figure 3.2: A count of research methods by construction project type 

By observation (see Table 3.2), it appears that the global construction industry has only paid more 

attention on the effect of BIM to its project delay in the continent of Asia (in terms of number of 
publications by researchers and practitioners used in this study) when compared to other continents of 

the world. This can further suggest the possible increase in the rate of adoption of BIM and a lesser 

number of delayed projects in that region as was evidently demonstrated in the construction of a 1,000-

bed Huoshenshan and 1500-beds Leishenshan Hospitals for COVID-19 patients in Wuhan, China 

between the 23rd of January and 2nd of February 2020.  

Table 3.2: List of research articles used and their respective countries/continents. 

SN Continent Countries (# of Research Articles) Total 
Countries 

Total 
Articles 

1 Africa Zambia (1), Egypt (2), 2 3 

2 North America Canada (2), USA (2), 2 4 

 South America Peru (1), 1 1 

3 Asia India (3), Malaysia (7), Korea (4), China (5), 

Thailand (1), Taiwan (2), Jordan (1), Singapore (1), 

Slovenia (1), Indonesia (1), Hong Kong (1) 

11 27 

4 Europe Italy (2), Spain (1), Germany (1) 3 4 

5 Oceania Australia (1) 1 1 

6 Multicontinental Multinational (10) n/a 10 
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To obtain the key delay risk drivers necessary for development of delay risk predictive models for BIM-

based construction projects (as part of the objective of this research) I extracted the top drivers each 

from the fifty research articles used in this systematic review and grouped them into nine delay 

categories: owners related driver, contractor related driver, consultant related driver, design related 

driver, labour related driver, equipment related driver, project related driver, suppliers related driver, 

and external related driver. Furthermore, we ranked them based on these categories ( i.e., for each 

category according to number of times each driver occurred in the fifty articles used)  and used the 

outcome of the ranking to propose a conceptual framework necessary for developing delay risk 

predictive models for BIM-based construction projects as shown in Table 3.3 and Figure 3.3 below 

respectively. 
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Table 3.3: Delay risk drivers Category Ranking 
Delay risk drivers List of Sources Number of 

Sources 

Delay 
Category 

Total 
Number of 
Citations 

Category 
Ranking 

Shortage of resources (human 
resources, machinery, 
equipment etc) 

(Vacanas et al., 2015), (Chen and Tang, 2019), 

(Handayani, Likhitruangsilp and Yabuki, 2019) 

3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contractors’ financial 
difficulties 

(Jang and Lee, 2018), (Malacarne et al., 2018), (Stegnar 

and Cerovšek, 2019)  

3 

Level of BIM usage (Srao, Rai and Mann, 2018), (Zhang and Liu, 2021), (Liu 

et al., 2020) 

3 

Inaccurate resource planning (Zhang and Liu, 2021), (Sigalov and König, 2018), 

(Kermanshahi et al., 2020) 

3 

Schedule/program of work (Sami Ur Rehman et al., 2020), (Abdelbary, Edkins and 
Dorra, 2020) 

2 

Limited space for temporal 
equipment 

(Shin, Lee and Kim, 2018), (Ocheoha and Moselhi, 

2013) 

2 

Ineffective project supervision (Couto and Ericson, 2017), (Nawi et al., 2014) 2 

Poor site investigation or 
management 

(Suermann and Issa, 2009), (Tserng, Ho and Jan, 2014) 2 

Contractor’s poor decision (Ern, Ooi and Al-Ashmori, 2020) 1 
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Delay risk drivers List of Sources Number of 
Sources 

Delay 
Category 

Total 
Number of 
Citations 

Category 
Ranking 

Ineffective project plan (Amany, Taghizade and Noorzai, 2020) 1 Contractor 

related 
driver 

 

24 

 

1 Contractor’s cash flow issue (Subramani and Ammai, 2018) 1 

Project quality control (Vahdatikhaki and Mawlana, 2017) 1 

Traffic restrictions (Ryu et al., 2015) 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Building material’s price 
fluctuation 

(Tahir Muhammad et al., 2019), 72], (Couto and Ericson, 

2017) 

3 

Inflation or sudden increase in 
commodities 

72], (Sepasgozar et al., 2019) 2 

Site accident (Diaz et al., 2019), (Delgado et al., 2015) 2 

Natural disasters e.g., floods, 
earthquakes etc. 

(Narlawar, Chaphalkar and Sandbhor, 2019), (Stegnar 

and Cerovšek, 2019) 

2 

Pandemic (Liu and Liu, 2020) 1 

Shortage of materials on 
market 

(Amany, Taghizade and Noorzai, 2020), (Kermanshahi 

et al., 2020) 

2 

Change in economic conditions (Handayani, Likhitruangsilp and Yabuki, 2019) 1 

Political influence (Delgado et al., 2015) 1 
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Delay risk drivers List of Sources Number of 
Sources 

Delay 
Category 

Total 
Number of 
Citations 

Category 
Ranking 

Ineffective government 
regulations 

(Kermanshahi et al., 2020) 1  

 

 

External 

related 

driver 

 

 

 

 

19 

 

 

 

 

2 

Unforeseen site conditions e.g., 
unanticipated groundwater, 
quicksand, mud, rock formation 
etc 

(Stegnar and Cerovšek, 2019) 1 

Building permit from authorities (Chiponde et al., 2017) 1 

Corruption issues (Chiponde et al., 2017) 1 

Unfavourable weather 
conditions 

(Teng et al., 2013) 1 

Labour dispute or strikes (Diaz et al., 2019), (Sami Ur Rehman et al., 2020) 2  

 

 

 

 

Labour 

related 

driver 

 

 

 

 

 

10 

 

 

 

 

 

3 

Staff’s productivity level (Tserng, Ho and Jan, 2014), (Chen and Tang, 2019) 2 

Use of outdated construction 
methods (e.g., precast twin wall 
technology, 2D drawing etc.). 

(Teng et al., 2013), (Ibrahim, Hashim and Ahmad Jamal, 

2019) 

2 

Use of outdated technologies 
by staffs 

(Btoush and Harun, 2017), (Tahir et al., 2018) 2 

Changes in site topology after 
design 

(Ryu et al., 2015) 1 
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Delay risk drivers List of Sources Number of 
Sources 

Delay 
Category 

Total 
Number of 
Citations 

Category 
Ranking 

Unskilled labourers (Khalesi et al., 2020) 1 

Change order (Btoush and Harun, 2017), (Dallasega et al., 2019) 2  

 

 

Owners 

related 

driver 

 

 

 

 

 

9 

 

 

 

 

 

4 

Client’s cash flow issues (Li et al., 2017), (Elhusseiny, Nosair and Ezeldin, 2021) 2 

Changes in client requirements (Park and Lee, 2017), (Teng et al., 2013) 2 

Delay in site delivery (Vilventhan, Razin and Rajadurai, 2020) 1 

Changes in specifications (Narlawar G.S., Chaphalkar N.B., 2017) 

 

1 

Late payment by the client 70] 1 

Variation in structural design (Wong, Zhou and Chan, 2018), (Chiponde et al., 2017), 

(Ansah et al., 2016) 

3  

Design 

related 

driver 

 

 

6 

 

 

5 Reworks due to error in 
construction 

(Park and Lee, 2017), (Giel and Issa, 2013), (Wong, 

Zhou and Chan, 2018) 

3 

Consultant’s cash flow issues (Elhusseiny, Nosair and Ezeldin, 2021) 1  

Consultant 

related 
driver 

 

 

 

 

 

 

 

 

Inaccurate budgeting (Wang et al., 2015) 

 

1 

Poor communication amongst 
stakeholders 

(Wong, Zhou and Chan, 2018) 1 
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Delay risk drivers List of Sources Number of 
Sources 

Delay 
Category 

Total 
Number of 
Citations 

Category 
Ranking 

Poor contract management (Narlawar G.S., Chaphalkar N.B., 2017) 

 

1 4 6 

Discrepancies in contract 
documents 

(Dallasega et al., 2019), (Park et al., 2017) 2 Project 
related 

driver 

 

 

4 

 

 

6 Damage storage materials (Btoush and Harun, 2017), (Stegnar and Cerovšek, 

2019) 

2 

Conflicts between contractor 
and sub-contractor (s) 

(Narlawar, Chaphalkar and Sandbhor, 2019), (Teng et 

al., 2013), (Zhang and Liu, 2021) 

3 Contractor 

& sub-

contractor 

related 

driver 

3 7 

Late delivery of construction 
materials 

(Sepasgozar et al., 2019), 80] 2 Suppliers 
related 

driver 

2 8 

Conflicts between contractor 
and consultant 

(Elhusseiny, Nosair and Ezeldin, 2021), (Husin, 2019) 2 Contractor 

& 

consultant 

related 

driver 

2 8 
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Delay risk drivers List of Sources Number of 
Sources 

Delay 
Category 

Total 
Number of 
Citations 

Category 
Ranking 

Equipment breakdown (Btoush and Harun, 2017), (Tahir Muhammad et al., 

2019) 

2 Equipment 

related 
driver 

2 8 
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Figure 3.3: Conceptual Framework of delay risk drivers necessary for developing delay risk 
predictive models for construction projects. 

 

This conceptual framework details contractor related driver and external related driver as the most 

important delay driver categories (see Figure 3.3) to be considered when developing delay risk 

predictive models for BIM-based construction projects. This is justified based on citation frequency. 

More precisely, these categories had the highest number of citations from research articles used in this 

study. Conversely, labour related driver, owner’s related driver; design related driver; suppliers related 
driver; consultant related driver; contractor & consultant related driver; equipment related driver, project 

related driver; and contractor & sub-contractor related driver were considered less important delay 

driver categories based on their respective low citation frequencies. Suppliers related driver, contractor 

& consultant related driver, and equipment related driver were grouped together because they all had 

equal number of citation (see Table 3.3). Similarly, because they all received the same number of 

citations, consultant related driver, and project related driver were grouped together. In order to identify 

BIM tools used to potentially mitigate delay from vast body of literature, fifteen BIM tools were extracted 
from the fifty research articles (see Table 3.1) reviewed in this study which includes: Primavera; 

Autodesk Revit; Autodesk Navisworks; BIM-based Simulated Annealing (SA); BIM-Integrated Project 

Delivery (BIM-IPD); Last Planner System (LPS) technique with Revit BIM; BIM-based Laser Scanning; 

Web and Database-based 4D BIM; Construction BIM-assisted Schedule Management (ConBIM-SM); 
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InfraWorks 360; BIM-based Unmanned Aerial Vehicle (UAV); BIM-based Web3D Visualizer; BIM-based 

Geographic Information System (BIM-GIS); Glodon 5D BIM; RFID-enabled BIM. Each of these tools 

will be summarised with facts illustrated by using quotations from respective research article used in 

this study, and discussions are followed up by a larger study of the literature.  
 

Primavera: “Primavera is a project portfolio management software for businesses” (Subramani and 

Ammai, 2018). It coordinates with various software applications and carries out all types of 

management, such as mission management, object management, teamwork, and capacity 

management. More precisely, Primavera can be used to create a standard project's work breakdown 

structure (WPS) and allocate time, expense, and resources to its activities, allowing Primavera to 

calculate the project's length and cost. 

Autodesk Revit: “Autodesk Revit is a BIM software that comprises three modules: Structure, 
Architecture, and MEP (Mechanical, Electrical, and Plumbing) used to create 3D models” (Handayani, 

Likhitruangsilp and Yabuki, 2019). It is downward compatible which implies other dimensional design 

can be imported into it, e.g. A 2D plan from AutoCAD can be exported and traced by its objects. 

Furthermore, 3D models developed in Revit can be used to extract quantities such as slab, column 

footing, door, beam, door etc in a typical construction project as ‘Schedule’ and ‘Material Take-off’.  

Autodesk Navisworks: Autodesk Navisworks essentially brings together models (created in any 

2D/3D software e.g., REVIT, TEKLA, AUTOCAD, BENTLY etc with their respective proprietary formats), 

“combines them into a single model and allows them to be interpreted, navigated, measured, and 
analysed in one environment” (Kermanshahi et al., 2020). Subsequently, a schedule and cost 

parameters can be added to this single model to develop a 4D and 5D models respectively which can 

further be used for schedule and cost analysis / simulation. 

BIM-based Simulated Annealing (SA): “Simulated Annealing (SA) is an optimization technique for 

combinatorial and other problems that uses an analogy to the way a metal cools and freezes into a 

minimal energy crystalline structure (the annealing process) and the search for a minimum in a more 

general method” (Ryu et al., 2015). When integrated with BIM, SA can allow contractors to assess risks 
in excavation costs and durations in a typical tunnel construction with full details about ground 

conditions acquired before construction. 

BIM-Integrated Project Delivery (BIM-IPD): IPD is “a project delivery strategy” that blends individuals, 

procedures, organizational mechanisms, and activities into a mechanism that collaboratively harnesses 

skills and insights of all project partners to optimize performance, increase value, minimize cost, and 

maximize productivity during the planning, fabrication, and construction phases. According to reviewed 

papers, this integration approach enables team members to take advantage of BIM by constructing a 

graphical model of each phase of the development process (Nawi et al., 2014). Also, BIM-IPD can help 
by facilitating cooperation between parties in Architecture, Engineering, and Construction industry. 

Last Planner System (LPS) technique with Revit BIM: The LPS is one of the theories and 

management strategies of lean construction, and it fits well with the four stages of project programs, 

including “master plan (SHOULD), scheduling plan (CAN), forecast plan (WILL), and commitment in 
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planning (DID) based on lean development principles” (Subramani and Ammai, 2018). The primary goal 

of LPS is to improve the dependability of events planned prior to the implementation level. Hence when 

integrated with BIM, it can be used to create comprehensive schedule planning according to a 

developed model. 

BIM-based Laser Scanning: “Laser scanning is a measuring technique that produces a point cloud 

that represents the 3D surface of an object quickly and accurately (Wang et al., 2015). Consequently, 

it can be used for milestone progress tracking in a construction project by changing the coordinate 

system of the as-built data to align to the as-planned BIM model. 

Web and Database-based 4D BIM (WebD-BIM): “WebD-BIM technologies leverages the power of 

integrated Web Graphics Library (WebGL) and a central database” (Couto and Ericson, 2017). In this 

integration, a WebGL can be used to render 3D graphics for sharing daily BIM information in 

construction via project participants mobile/smart devices while a central database will contain the rules 
to automatically determine and update status of individual BIM objects. 

Construction BIM-assisted Schedule Management (ConBIM-SM) system: “The ConBIM-SM 

system is designed for all BIM-related participants via a user-friendly portal which serves as a real-time, 

updated as-built schedule channel for project engineers” (Liu et al., 2020). It is also a solution that gives 

a single, unified database linked to the as-built models’ files with different levels of access determined 

by user roles. Hence participants can access the BIM model SM information entry and updates, based 

on their responsibilities in the ConBIM-SM system. 

InfraWorks 360: “InfraWorks 360 is a visual 3D design and communication BIM software for civil 
engineers, designers, and land planners” (Diaz et al., 2019). It can be used to build more realistic 

models from any database for road, rail, buildings and pipe networks etc. 

BIM-based Unmanned Aerial Vehicle (BIM-UAV): “UAV refers to a remotely operated aircraft or 

helicopter that is fitted with precision sensors such as inertial motion units (IMU) and gyroscopes to 

recognize the aircraft's alignment and location” (Vacanas et al., 2015). It has a microcomputer that 

allows for autonomous navigation without the need for any manual intervention from the pilot to capture 

high-resolution images from a variety of angles in a cost-effective and reliable manner. In terms of 
construction project time control, BIM-UAV can be used to ensure more reliable data processing and 

accurate updating of the works plan, allowing for complex development project management. 

BIM-based Web3D Visualizer: “A Web3D visualization tool”, in general, helps users to explore outdoor 

and indoor areas, as well as apply labels corresponding to cubic cell boundaries, thereby providing 

support for activity monitoring in BIM-based construction processes and the creation of a systemic 

relation that can grow over time (Diaz et al., 2019). As a result, we have an ‘‘augmented" model that 

includes unique metadata to visualize objects at various level of details (LoDs) of an open standardised 

data model like City Geographic Markup Language (CityGML). 

BIM-based Geographic Information System (BIM-GIS): “GIS is a location-based information 

framework that allows for data mapping, querying, simulation, and analysis” (Delgado et al., 2015). BIM-

GIS can be applied to underground utility infrastructure to visualize emerging underground utilities, 
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identify utility collisions, and manage utility details thus managing conditional information such as 

condition score, inspection and maintenance records of individual utilities. 

Glodon 5D BIM: “Glodon 5D BIM software is a five-dimensional representation of the spatial and 

functional features of standard Architecture, Engineering, and Construction industry projects focused 
on computer modelling” (Liu and Liu, 2020). Its main goal is to introduce a precise and efficient cost 

estimate based on a 3D digital model, which prevents errors created by manual calculations or 

estimations. 5D BIM, which is focused on 3D modelling, schedule simulation (4D), and cost prediction, 

is also seen as a potential trend for the application of multi-disciplinary experience and decision making 

for building design and construction (5D). 

RFID-enabled BIM: “RFID is a type of automated identification technology” that collects statistical 

construction site progress through radio frequency acquisition and transmission of construction site 

data. It is most often used to display product attributes, material data, and positioning (Li et al., 2017).  

 

3.5 Discussion 
One of the most evident findings (see Figure 3.3) of our analysis concerns the key most important delay 

driver categories (based on citation frequency) necessary for development of delay risk predictive 

models for BIM-based construction projects which are first contractor related driver and then external 

related driver respectively. This is very interesting as  studies (Ilozor and Kelly, 2012; Piroozfar et al., 
2019; Elghaish et al., 2020) have shown that Integrated Project Delivery (IPD) method which includes, 

Construction Manager at Risk (CMAR) and design-build procurement process, where a contractor is 

brought together with architect(s) designers(s) and client(s) to help develop a project plan that is 

buildable and meets the budgeting constraints from the design phase is the most effective project 

delivery method to be used in BIM-based construction projects due to the coordination of contractors, 

subcontractors, and fabricators in a design process, allowing the virtual prototype of the building to be 

fully studied before construction even begins. Thereby providing huge benefits such as cost estimation, 
quality control, schedule plan, constructability, expedited issue resolution among many others at the 

design phase with great outcomes or value for money for the client/ owner. As a result, construction 

projects will potentially be in the anticipated budget range and is buildable in the anticipated timeframe.  

One thing to keep in mind though is that typically client(s) will expect the contractor to identify these 

issues at design phase, so that when a final cost is agreed upon, it doesn’t change during construction. 

This type of project delivery method thus places an additional burden on the contractor as they are 

expected to be experts. However, solace can be taken from the fact that one of the most important 

benefits from BIM for the contactor is derived from the close coordination that can be achieved when 
all major subcontractors use the BIM model for detailing their portion of work thus enabling accurate 

class detection and correction of clashes before they become a problem onsite. Therefore, contractors 

are strongly encouraged to include subcontractors and fabricators in their BIM efforts. Furthermore, 

another important finding of our analysis concerns the variety of different BIM tools used in different 

construction projects and their unanimous effect on project delay. More specifically, while only one of 
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the studies (Suermann and Issa, 2009) was neutral on the effect of BIM on delay, others concluded 

BIM’s positive effect (use of BIM/BIM tool to achieve research aim/objective(s)) on construction projects 

delay even though they implemented BIM differently on different construction projects across different 

regions of the world (see table 3.1). This is good as these BIM tools allows construction stakeholders 
like BIM coordinators and structural engineers to have in the same place, in one file, all their views, 

plans, section, elevation and 3D, but also any kind of object. For instance, the  Autodesk Revit software 

identified in this study as one of the BIM tools can be used in design authoring as schedule of quantity 

take-off, which could be a door schedule or window schedule and could be related to anything from 

materials to quantity. Also, Autodesk Navisworks BIM tool identified in this study can be used during 

3D coordination process as a clash detection software to eliminate system conflict prior to installation 

thus decreasing construction time (mitigate delay risks) and increase productivity onsite. It is important 

to note however, that merely using BIM tools on a construction project does not equate to success if 
the owner’s goals for the project are not clearly set, and BIM requirements do not correlate to achieve 

those goals. In order to use BIM/BIM tools effectively, a construction project should begin with defining 

the BIM requirements. Owners should establish processes, standards, and deliverables for BIM-based 

construction projects that can be continually shared and agreed upon by the owners and the rest of the 

project team. 

 

3.6 Conclusion 
Various attempts at mapping and synthesising the current body of information have emerged in the 

literature since BIM in Architecture, Engineering, and Construction industry (as an area of inquiry) has 

increasingly grown and supposedly reached intellectual and analytical sophistication in decades. 

Systematic analyses have emerged as one of the key methods for assessing the key delay risk drivers 

necessary for development of delay risk predictive models for BIM-based construction projects among 

the various forms of research undertaken by scholars. Undeterred by these BIM-based delay analysis 
studies with corresponding benefits of BIM to construction projects, there is no amalgamating study that 

has consolidated key drivers that affect BIM-based construction projects. As a result, using delay risk 

drivers from BIM-based construction projects is crucial and has been actively promoted in Architecture, 

Engineering, and Construction industry to accomplish early prediction, which is necessary in any robust 

predictive modelling to provide adequate time for correction. Thus, led to the development of a 

comprehensive conceptual framework that serves as a foundation for identifying the most critical delay 

risk drivers for BIM-based construction projects. This was accomplished by first identifying key delay 

risk drivers in BIM-based construction projects that have significant impact on the performance of delay 
risk predictive modelling via systematic review of literature. Secondly, by examining the systematic 

review's summary of findings and ranking the discovered delay risk drivers to determine which are the 

most critical. Finally led to the identification and presentation of BIM tools used to potentially mitigate 

delay from vast body of literature. Consequently, this study therefore filled the gap in lack of a 

conceptual framework for selecting key delay risk drivers for BIM-based construction projects, which 

has hampered scientific progress toward development of extremely effective delay risk predictive 
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models for BIM-based construction projects. Secondly, this study’s analyses further confirmed a 

positive effect of BIM on construction project delay risk even though the studies used for its analyses 

implemented BIM differently on different construction projects across different regions of the world. This 

is good as the novel BIM is said to have the potential to be regarded as a disruptive technology by the 
Architecture, Engineering, and Construction industry across the globe which this study’s analyses is 

further confirming. Also, the BIM mandate required from contractors/consultant by policy makers or 

government agencies across regions will be realised there by reducing conflicts or law orders between 

project stakeholders as construction projects achieves timely completion of its projects. This systemic 

review, as an evidence-based methodology, should essentially be able to assist business policymakers 

in several areas, such as decision-making. More precisely, the information from this systematic review 

can enable construction owner(s) to better understand the design intent by ensuring that the building 

can be designed to achieve the most efficient and best overall performance. Finally, when this 
conceptual framework for BIM-based construction projects is well-planned and executed during 

predictive modelling will potentially lead to good project coordination across various phases enhancing 

project delivery schedule and project management and contribute to post-construction asset and facility 

management, building automation and control, and many other benefits, including increased property 

resale values of the building as well as leasing revenues. It's crucial to remember that just mandating 

BIM on a project does not guarantee success if the owner's project goals aren't clearly defined, and 

BIM requirements aren't linked to achieving those goals. A project should start by identifying the BIM 

requirements in order to use BIM successfully. For BIM-based projects, owners should develop 
processes, standards, and deliverables that can be shared and agreed upon by the owners and the 

rest of the project team on a regular basis. Also, as the efficiency of BIM is tied very closely to the 

project delivery method, there is no size or complexity a project should reach to be BIM-based. Each 

project is unique and will need particular attention from issues, such as a house in a snowy region or a 

hospital in an earthquake zone. Therefore, it is highly recommended that construction stakeholders 

consider IPD, which has been shown to be the most effective project delivery method, when using BIM 

in their projects. Future work may consider trying to identify new drivers that forms the factors that 
informs construction project delay. More so, future work should conduct comprehensive systematic 

review on other pertinent issues common to the construction industry. 

 

3.7 Chapter Summary 
This chapter summarizes the findings of the systematic review conducted to develop a comprehensive 

conceptual framework for identifying the most critical delay risk drivers for BIM-based construction 
projects. Through a rigorous analysis of the existing literature, the study identified contractor-related 

drivers and external-related drivers as the most crucial categories to consider when developing delay 

risk predictive models specific to BIM-based projects. The chapter presents the proposed conceptual 

framework, which offers a structured and evidence-based approach to selecting the most relevant delay 

risk drivers. It discusses the significance of this conceptual framework in enhancing the efficiency and 

effectiveness of delay risk predictive modelling efforts, enabling project stakeholders to focus their 
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resources and efforts on mitigating the most significant factors contributing to delays. Furthermore, the 

chapter highlights the study's analyses, which confirmed the positive impact of BIM on mitigating 

construction project delays, reinforcing the potential of this technology to address long-standing 

challenges within the industry.
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CHAPTER 4  

4.0 ARTIFICIAL INTELLIGENCE IN THE 
CONSTRUCTION INDUSTRY: A SYSTEMATIC 

REVIEW OF THE ENTIRE CONSTRUCTION 
VALUE CHAIN LIFECYCLE3 

 

 

4.1 Chapter Overview 
This chapter presents a systematic review of the application of artificial intelligence (AI) technologies 

across the construction value chain lifecycle. The review amalgamates findings from 70 rigorously 

selected studies exploring AI utilization in various the construction industry. A central focus is the 

identification and categorization of seven primary AI technologies documented in the literature. Also, 

the chapter explores the three major stages of the construction project lifecycle where these AI 

technologies have been applied. Furthermore, the chapter examines benefits and challenges reported 

in the literature, shedding light on the potential for design expansion, facilitation of big data analytics, 

improved workplace health and safety, increased productivity, and enhanced risk mitigation. 
Concurrently, it addresses the hurdles faced, such as low accuracy levels due to data scarcity, data 

transformation issues, and the lack of real-world applicability. 

 

4.2 Background of Study 
On a regional, national, and global scale, construction is considered a big sector with strategic 

importance (Egwim, Alaka, Toriola-Coker, Balogun and Sunmola, 2021a). It's also an industry that's 

been plagued by a slew of issues for decades, including low production, slim profit margins, waste, and 
safety concerns. Its projects are extremely complex, and the danger of inefficiency and risk, which 

eventually contribute to project costs and delays, grows geometrically with the project's scale 

(P.S.Kulkarni1, 2017; Egwim, Egunjobi, et al., 2021). In the past, to mitigate these issues the 

construction industry traditionally concentrated on generating operational benefits by employing 

 
3 This chapter is primarily derived from the following journal articles: 
 
Egwim, C.N. et al. (2023) ‘Artificial Intelligence in the Construction Industry: A Systematic Review of 
the Entire Construction Value Chain Lifecycle’, Energies 2024, Vol. 17, Page 182, 17(1), p. 182. 
doi:10.3390/EN17010182. 
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technology to streamline processes and procedures, but the data gathered as a result of this digitization 

trial is often overlooked (Zhang and Li, 2011; Egwim, Alaka, Toriola-Coker, Balogun, Ajayi, et al., 2021). 

Surprisingly, this industry is still on the edge of digitization, which is said to disrupt existing traditional 

procedures while also opening up a slew of new prospects (Bajpai and Misra, 2020). In recent years, 
there has been a surge in the global digitization of corporate processes and concepts, such as industry 

4.0 and digital twins and digital technology development is growing at such a quick pace that the 

construction industry is struggling to catch up with latest developments. A formidable digital technology, 

Artificial Intelligence (AI) is now a vital component of the digital shift (partly due to big data revolution), 

having been widely adopted across different industries such as healthcare: aiding in diagnoses of 

patients using genetic data (Huang et al., 2021; Malik, Khatana and Kaushik, 2021); manufacturing: 

use in managing workforces, production process and allowing predictive maintenance (Chen et al., 

2021); education: virtual lectures (Bajaj and Sharma, 2018; Harmon et al., 2021); finance: fraud 
detection (Iong-Zong Chen and Lai, 2021; Bao, Hilary and Ke, 2022) and transportation: self-driving 

autonomous cars (Manoharan, 2019; Ma et al., 2020) among many others. The definition of AI has 

evolved throughout time, but at its foundation has always been the goal of creating machines that are 

capable of thinking like humans. It does this by trying to imitate human intelligence through hardware 

and software solutions (Wang et al., 2019). With more data being generated every second, AI 

technologies such as Robotics, Machine learning, Language Processing, Speech Recognition, Expert 

Systems, Computer Vision etc. have aided the scientific community in harnessing the growth of big data 

(Wu et al., 2022). On these massive datasets, scientists can extract information that human eyes cannot 
interpret quickly enough using AI. As a result, it's clear that AI can help the construction industry improve 

decision-making, drive project success, and deliver projects on time and on budget by proactively 

unlocking new predictive insights from its ever-growing volume of project data, which was previously 

only archived for future reference. For instance, data collected from smart device, Internet of Things 

(IoT) sensors, BIM, and other sources can be analysed by AI technologies to find patterns in the 

performance and usage of current infrastructure assets and determine what sort of infrastructure is 

needed in the future and how it should be supplied (Egwim, Alaka, Toriola-Coker, Balogun, Ajayi, et al., 
2021). Furthermore, the number of incremental stages necessary to bring infrastructure designs to 

operational status will most likely be reduced by AI. This will save time and money in the production of 

construction materials as well as the development and maintenance of our infrastructure networks. In 

this regard vast body of international literature have investigated the use of AI technologies to tackle 

concerns related to construction projects. For example, machine learning have been applied to mitigate 

construction project delay risks (Gondia et al., 2020; Yaseen et al., 2020a; Egwim, Alaka, Toriola-Coker, 

Balogun and Sunmola, 2021a), occupational health and safety issues in construction (Xie et al., 2019; 

Lee et al., 2020; Rijo George, Nalluri and Anand, 2021), construction and demolition waste generation 
to name a few (Xiao et al., 2019; Cha et al., 2020a; Cha, Moon and Kim, 2021a). It is the view point of 

Gamba, Balaguer and Chu (Gambao, Balaguer and Gebhart, 2000; Balaguer et al., 2002; Chu et al., 

2013) that robotics can be used to automate assembly of building elements (e.g., masonry walls, steel 

structures etc.). Also Bruckmann, and Wu (Bruckmann, Reichert, et al., 2018; Bruckmann, Spengler, et 

al., 2018; Wu et al., 2018) made an important point by adding that a robotic system with a gripper 
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coupled to a frame by cables can be used for bricklaying. Furthermore, an expert system for calculating 

fault rates in construction fall incidents has been developed (Hadipriono, 1992; Imriyas, 2009; Talat 

Birgonul et al., 2016) and natural language processing has been applied to extract and exchange 

information, as well as a variety of downstream applications to aid management and decision-making 
in smart construction projects (Jallan et al., 2019; Faraji, Rashidi and Perera, 2021; Wu et al., 2022). 

More recently, some studies have conducted traditional narrative critical/literature review for a specific 

AI technology in the construction industry (e.g. computer vision by Xu (Xu et al., 2020), natural language 

processing by Wu (Wu et al., 2022), robotic system by Davila (Davila Delgado et al., 2019) etc) while a 

few other studies have conducted traditional narrative critical/literature review for adopting generic AI 

technologies in the construction industry with a specific goal (e.g. Parveen (Parveen, 2018) focused on 

AI’s legal issues and regulatory challenges, Schia (Schia et al., no date) focused on AI’s impact on 

human behaviour, and Abioye (Abioye et al., 2021) focused on AI’s present status, opportunities and 
future challenges). However, no study to the best of our knowledge has conducted a systematic review 

of AI in the construction industry, hence the first motivation of this study. In conducting a systematic 

review, independent researcher(s) design a system, based on specific guidelines and the system then 

makes the decisions to determine the outcome of the research thus producing a research outcome that 

is explicit, reproducible and without a prior assumptions (Pahlevan Sharif, Mura and Wijesinghe, 

2019b).  Meanwhile, in a typical traditional narrative literature review, the identification, selection, 

inclusion, and extraction of research articles solely (all) depends on the judgement of the author(s) in 

order to support their model, hypothesis and to identify the research gaps. This poses a great concern 
of subjectivity, repeatability, and reproducibility of results from such research (Pahlevan-Sharif, Mura 

and Wijesinghe, 2019). Secondly, and as a final rationale of this research, no study to the best of our 

knowledge has conducted any kind of AI review towards its applicability to the entire lifecycle of 

construction value chain. To fill the gap, this study aims to present an exhaustive systematic review of 

artificial intelligence and its application to the full construction value chain lifecycle - from building 

material manufacturing to design, planning, and construction, as well as facilities management. The 

review is guided by the following research questions: 

 What AI technologies have been documented in the literature so far? 

 What are the different stages of the construction project lifecycle in which those AI technologies  

are applied? 

 What are the potential benefits of implementing the identified AI technologies, as well as the 

current hurdles and gaps in their adoption in the industry? 

 

The rationale for need to consider the full construction value chain lifecycle is firstly due to the fact that 

the construction process comprises a series of interconnected phases, each influencing the others 
directly or indirectly. Delays occurring in one phase can propagate downstream, affecting subsequent 

stages of the project. For instance, delays in the design phase might impede material procurement or 

construction activities, leading to cascading delays and ultimately impacting project timelines 

significantly. Secondly, the complexity of interactions between stakeholders, resources, and processes 

throughout the construction value chain necessitates a comprehensive understanding. By scrutinizing 



 57 

the entirety of the lifecycle, from building material manufacturing through design, planning, construction, 

and facilities management, researchers and practitioners can discern intricate relationships and 

dependencies. This holistic perspective is indispensable for accurately identifying potential delay risks 

and devising effective mitigation strategies. Moreover, a thorough exploration of the construction value 
chain facilitates the identification of critical intervention points. By pinpointing stages where delays are 

most likely to occur or have the greatest impact, stakeholders can prioritize resources and interventions 

accordingly. For instance, AI technologies in material manufacturing processes can optimize production 

efficiency, enhance supply chain management, and mitigate delays in material procurement, thereby 

alleviating downstream project delays. Additionally, adopting a holistic approach to delay risk prediction 

enables researchers and practitioners to harness the power of AI across the entire lifecycle. AI 

algorithms can analyse vast datasets from various phases of the construction process, uncovering 

valuable insights and patterns that inform proactive risk management strategies. By leveraging AI for 
predictive modelling and scenario analysis, stakeholders can anticipate potential delays, optimize 

workflows, and allocate resources more effectively, thereby enhancing project efficiency and resilience. 

This research makes a significant contribution to the body of knowledge by addressing the knowledge 

gap in the field of AI in construction industry, specifically by addressing several imaginable application 

cases for AI in various stages of the construction project lifecycle and the potential benefits of 

implementing AI technologies, as well as the present roadblocks and gaps in their industrial adoption. 

This will immensely help the Architecture, Engineering, and Construction industry and the entire built 

environment ecosystem in identifying opportunities for technological advancement.  

 

4.3 Methodology 
Pragmatism is the philosophical underpinning used in this study. This is because it focuses on practical 

applied research using several viewpoints to aid in data interpretation such that depending on the 

research question, either observable occurrences or subjective meanings might give acceptable 
knowledge (Saunders, Lewis and Thornhill, 2019). This study employed a systematic review 

methodology. A systematic review, in contrast to a traditional literature review, employs a defined, 

thorough, repeatable, and auditable approach for assessing and interpreting all available research 

relevant to a specific research question, topic, or field of interest (Pahlevan Sharif, Mura and Wijesinghe, 

2019b). Furthermore, by looking at the overall picture and merging discrete components to synthesise 

results in an organised fashion, a systematic review can overcome the inadequacies of a traditional 

narrative literature review, which is commonly used in vast body of literature. To develop its systematic 

review guideline this study employed The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. PRISMA is a guideline for conducting systematic reviews and meta-

analyses that includes a twenty-seven-item checklist and a four-phase flow diagram. It was created by 

a consortium of twenty-nine professors in the medical community with the aim of improving the clarity 

and consistency of systematic reviews. As such, our topic of interest, search strategy, inclusion, 

exclusion, eligibility criteria, data extraction, and synthesis procedures were all outlined in this guideline 

which was chosen because of its comprehensiveness, wide acceptance, and applicability in different 



 58 

field of study, despite the fact that it was originally established for the medical and health domain 

(Pahlevan-Sharif, Mura and Wijesinghe, 2019). For a start, we broke down the review into four steps: 

articles identification, articles screening, critical assessment, and data extraction and synthesis. During 

the articles identification process (step 1), a thorough literature search was undertaken to find articles 
for this study. More precisely, only articles published until 21st of January 2022 in the Scopus electronic 

database was utilised as the primary source of information for the literature search. This database was 

chosen over others like ScienceDirect and Web of Science because it is the “largest abstract and 

citation database of peer-reviewed literature” (Cantú-Ortiz and Fangmeyer, 2017). Furthermore, 

Scopus indexes practically the whole ScienceDirect database, and Scopus offers a greater choice of 

journals than Web of Science, as well as quicker citation analysis and coverage of more articles 

(Falagas et al., 2008). The abstract, title, and keywords of publications in this database was searched 

using the following search terms: ("artificial intelligence" OR "machine learning" OR "deep learning" OR 
"reinforcement learning" OR "automation" OR "robotics" OR "expert system" OR "natural language 

processing" OR "optimisation" AND ("construction industry" OR "building industry" OR "built 

environment " OR "Architecture Construction and Engineering")) with no date, language, and article 

type restrictions. This search term is divided into two major parts separated by “AND” operator namely 

AI technologies and the construction industry. The search terms also contained several interesting 

synonyms, word variations, and exact phrase searching symbols, such as the usage of double quotation 

marks in “machine learning”, "building industry" among many others. At the article screening process 

(step 2),  the abstracts of 2716 articles were reviewed to see whether they were related to the research 
questions and to make sure there were no duplicates. As such, led to the removal of 2,306 items, 

leaving 410. At the critical assessment (step 3), three inclusion and exclusion criteria were employed. 

Articles were included first and foremost if their focus was on the application of any artificial intelligence 

technology in a construction project and excluded otherwise. Secondly, only articles with first-hand 

research data were considered, whereas review articles were not. Finally, each article's relevance was 

determined using a previously developed rating scale by (Pahlevan Sharif, Mura and Wijesinghe, 

2019b; Pahlevan-Sharif, Mura and Wijesinghe, 2019; Gharbia et al., 2020). The scale was adapted 
based on practical results of how artificial intelligence technology is used in a construction project, with 

"1" indicating low relevance, "2" medium relevance, and "3" indicating high relevance. Consequently, 

the full text of all articles having information relating to genuine case studies of AI technology 

implementation in construction projects or AI technology application proven in a laboratory environment 

were extracted, exported to a Comma-Separated Values (CSV) file, given a "3" rating and included in 

the evaluation during the data extraction and synthesis process (step 4). Finally, all articles used were 

thoroughly examined for data extraction (research aim, project type, country/region, research 

method(s), AI technology, etc.) and coded as summarized in Fig 4.1. This figure displays the flow 
diagram of the research articles selection process. It details the total number of articles identified 

through the database search, total number of articles screened based on eligibility criteria and the total 

number of these articles fully accessed and finally the total number of these articles that were used for 

analysis in this study. 
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Fig. 4.1: Flow diagram of the systematic review process. 

4.4 Results 

4.4.1 Summary of selected articles 

A summary of the selected articles organised by their respective publication source is provided. It was 
discovered that the journals "Automation in Construction" and "Journal Construction Engineering and 

Management," as well as conference proceedings from the "International Conference on Computer-

Aided Architectural Design Research, CAADRIA," have the most significant number of articles, 

accounting for 20 percent of the total number of papers selected. In general, 75.71 percent of the papers 

(53 out of 70) were published in peer-reviewed journals, whereas 16 articles (22.86 %) were presented 

at conferences, and just one piece was part of a book series. For two decades between 1993 and 2013, 

there were eight articles, each with a different year of publication (See Fig. 4.2). There is a notable 
constant increase in the quantity of research publications throughout the AI in construction research 

community. More specifically, between 2017 and 2021, there was a constant increase in the number of 

research publications published in the research community, with a total of 56 articles, indicating a rising 

interest in the application of artificial intelligence technology to the construction industry. The number 

of publications according to the first author's institute's location is shown in Fig. 4.3. Predominantly, 
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researchers from China (12 articles), the United States of America (USA) (8 papers), Republic of Korea 

(6 papers), Italy, the United Kingdom of Great Britain (GBR), and Australia (4 papers each) published 

most of the papers relevant to the research topic. When comparing the geographical distribution of 

papers related to artificial intelligence research applied in the construction/ execution lifecycle of the 
construction value chain, we discovered that researchers in Republic of Korea and China appear to 

lead research in this area (4 articles each), followed by researchers in GBR and Australia (3 articles 

each). Interestingly, researchers in China tend to have devoted the most attention to AI applications in 

the supply/facility management lifecycle of the construction value chain, with seven publications 

dedicated to it, and five articles dedicated to the planning/design lifecycle of the construction value chain 

as well. 

 

Fig. 4.2: Sequential distribution of articles (total number of articles is 70). 
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Fig. 4.3: Geographical distribution of articles based on project life cycle. 

 

Number of Articles 
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4.4.2 Types of AI technologies and categorization 

Table 4.1 shows the different types of AI technology and their distribution across different application 

areas. In general, the seventy reviewed studies referenced seven AI technologies for use in the 

construction industry, with supervised learning, deep learning, knowledge-based systems, robotics, and 

natural language processing being the most often mentioned. On the other hand, AI technologies such 
as optimisation and reinforcement learning, garnered less attention. In terms of the distribution of AI 

technologies to their application areas in health and safety management, supervised learning was the 

most researched (4 articles), followed by deep learning and knowledge-based systems (3 articles each). 

Deep learning and supervised learning have shown to be effective time and cost management 

technologies (2 articles each). Also, robotics  was the most often mentioned technology for 

prefabrication (2 articles). Furthermore, the most promising technologies for  heating, ventilation, and 

air conditioning (HVAC) optimum control were identified to be optimisation and deep learning 
technologies (2 articles each) while most papers highlighted the application of natural language 

processing in relation to sustainable concrete and regenerative sustainability (1 article). Quite notably 

(see Table 4.2), the articles included in this study highlighted the emergence of diverse subtypes within 

each AI technology. For instance, the most cited subtypes of supervised learning AI technology were 

support vector machine and artificial neural network (6 articles each), followed by the connected neural 

network subtype of deep learning (6 articles), and the expert system subtype of knowledge-based 

systems (5 articles). Also as shown in Table 4.2, most of the papers included cited adaptive 

manufacturing (4 articles) and Q-learning (4 articles) as the most widely used subtype of robotics and 
reinforcement learning AI technology respectively. In addition, genetic algorithm appeared to be the 

most favourable subtype of optimisation technique for the researchers (2 articles). 
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Table 4.1:  Types of AI technology and their area of application 
AI Technology Description Subtype Application Area Reference 

Supervised 
Learning 

 

A type of machine learning in which a 

computer algorithm is trained on 

labelled input data for a certain output. 

Support Vector Machine 

(6), Artificial Neural 

Network (6), 
Backpropagation(3), 

Decision Tree (5), 

Random Forest (4), k-

Nearest Neighbors (3), 

Gradient Boost Machine 

(2),  Adaptive Boosting 

(2), Naïve Bayes (2), 

extreme Gradient 
Boosting (2), Logistic 

Regression (2), Ensemble 

Method (2), Light Gradient 

Boosting Machine (1), 

Extra Trees (1),  

Health & Safety management 

(4), Time & cost management 

(2), Building structures (2), 
structural reliability (1), 

Sustainable concrete (1), 

demolition waste management 

(1), Constructability analysis 

(1), Construction monitoring 

(1), Construction equipment 

(1), Occupant behaviour (1), 

Site layout (1), Cementitious 
composite (1), Energy savings 

& demand response (1), 

Project Selection (1), 

Construction 

negotiation & conflict 

resolution (1) 

(Zhang, Liu and Coble, 2002; Barai 

and Nair, 2004; Vahdani et al., 2014; 

Pereira, Ramos and Simões, 2019; 
Ayhan and Tokdemir, 2019; Bagheri, 

Nazari and Sanjayan, 2019; F. Zhang 

et al., 2019; Gondia et al., 2019; Lee, 

Scarpiniti and Uncini, 2020; Pham et 

al., 2020; You and Feng, 2020; Cha 

et al., 2020b; Amin et al., 2021; Koc, 

Ekmekcioğlu and Gurgun, 2021; 

Mahjoubi et al., 2021; Milošević, 
Kovačević and Petronijević, 2021; 

Sanni-Anibire, Zin and Olatunji, 2021; 

Shehadeh et al., 2021; Varouqa, 

2021; Wang and Li, 2021; Zhang, 

2021; Zhou and Chang, 2021; 

Ayhan, Dikmen and Birgonul, 2021; 

Cha, Moon and Kim, 2021b; Amini 

Toosi et al., 2022; Xue and Yao, 
2022) 
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AI Technology Description Subtype Application Area Reference 

 

 

Deep Learning A type of machine learning that trains 

computers to accomplish things that 

humans do instinctively. 

Convolutional Neural 

Network (6), Deep Neural 

Network (4), Autoencoder 
(1), Long Short-Term 

Memory (1) 

Health & Safety management 

(3), Time & cost management 

(2), HVAC optimal control (1), 
Construction monitoring (1), 

Intelligent building design (1), 

3D datasets (1), Building 

information modelling (1), 

monument recognition (1), 

surface defect detection  (1), 

building recognition (1), Filing 
architectural drawings (1) 

Parametric design (1) 

(Šatrevičs, no date; Charoenkwan 

and Homkong, 2017; Lomio et al., 

2018; Yu et al., 2018; Ayadi et al., 
2019; Mei Yee et al., 2019; Palma, 

2019; Fisher-Gewirtzman and Polak, 

2019; Ajayi et al., 2020; Lee, 

Scarpiniti and Uncini, 2020; Norrdine 

and Motzko, 2020; Bassier and 

Vergauwen, 2020; Hu et al., 2020; 

Keshavarzi et al., 2020; Spallone and 
Palma, 2021; Su et al., 2021; Davila 

Delgado and Oyedele, 2021; 

Elsheikh et al., 2021; Kim et al., 

2021) 

Knowledge-
Based System 

 

A computerised system designed to 

capture and imitate human intellect in 

symbolic form, often through a series 

of if–then rules. 

Expert system (5), Case-

based reasoning  (2), 

Fuzzy 

logic (1) 

Health & Safety management 

(3), Building automation (1), 

Productivity estimation (1), Site 

layout (1), Building diagnosis & 
repairs (1), Performance 

evaluation (1), Construction 

negotiation & conflict 

(Koo and Tiong, 1993; Li, 1996; 

Zhang, Liu and Coble, 2002; Ko, 

Cheng and Wu, 2007; Sierra et al., 

2007; Muqeem et al., 2012; Amiri, 
Ardeshir and Fazel Zarandi, 2017; 

Ayhan and Tokdemir, 2019; 

Kruachottikul et al., 2021; Yangxuan 
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AI Technology Description Subtype Application Area Reference 

resolution (1), Occupant 

behaviour (1) 

Architectural Innovation (1) 

and Zhaoqianjing, 2021; Zhang and 

Yuen, 2022) 

Robotics 

 

A technology that deals with the 

creation, design, construction, and 
operation of programmable machines. 

Additive 

Manufacturing (4), 
Robotic beam assembly 

(1), Soft robotics (1), 

Robotic bricklaying (1), 

Mobile robot (1) 

Robotic prefabrication (2), 

Digital fabrication (1), 
Collaborative 

Robotics (1), Block assembly 

(1), Intelligent Hoisting (1), 

Health & Safety management 

(1), Environmental impact 

analysis (1) 

(Gambao, Balaguer and Gebhart, 

2000; Jung, Chu and Hong, 2013; 
García de Soto et al., 2018; Krieg 

and Lang, 2019; Firth et al., 2020; Hu 

et al., 2020; Li, Luo and Skitmore, 

2020; Wagner et al., 2020; 

Kontovourkis and Konatzii, 2021) 

Natural 
Language 
Processing 

 

An artificial intelligence technology 

that utilises computers to 
comprehend, generate, and analyse 

human languages is known as natural 

language processing. 

Text clustering (1), Word 

segmentation (1), 
Information Retrieval and 

Extraction (1), Text 

analysis (1) 

Health & Safety management 

(2), HVAC optimal control (1), 
Sustainable concrete (1), 

Regenerative sustainability (1)  

(Sonetti, Naboni and Brown, 2018; 

Zhang et al., 2018; F. Zhang et al., 
2019; Kim and Chi, 2019; Lee, Yi and 

Son, 2019; Hong et al., 2021) 

Optimisation  

 

A technique that seeks to alter an 

existing process to enhance the 

occurrence of good results and 

decrease the occurrence of bad 

outcomes  

Genetic Algorithm (2), 

Grey wolf optimization 

algorithm (1), Genetic 

Algorithm, Stochastic 

Gradient Descent (1), 
Genetic programming (1) 

HVAC optimal control (2), 

Health & Safety management 

(2), Sustainable concrete (1), 

Building structures (1)   

(Ayadi et al., 2019; Bagheri, Nazari 

and Sanjayan, 2019; Z. Zhang et al., 

2019; Koc, Ekmekcioğlu and Gurgun, 

2021) 
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AI Technology Description Subtype Application Area Reference 

Reinforcement 
Learning 

 

A type of machine learning that allows 

an agent to learn through trial and 

error while receiving feedback from its 

actions. 

Q-learning (4) Energy savings and demand 

response (1), HVAC optimal 

control (1), Health & safety 

management (1), Look-Ahead 
Schedule (1) 

(Vázquez-Canteli et al., 2019; Z. 

Zhang et al., 2019; Aghalari et al., 

2021; Soman and Molina-Solana, 

2022) 
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4.4.3 Construction project types and their lifecycle application area 

In terms of the types of construction projects in which AI technologies were used, Fig. 4.4 suggests that 

a majority of the scholarly articles included (58.60%) were related to built environment and residential 

building (28 articles in built environment and 13 articles in residential building). Following that were 

papers regarding high-rise and commercial buildings, which made for 18.60 percent of the articles 

chosen (7 articles in high-rise building and 6 articles in commercial building). Bridge/ highway project 

and office construction project were discovered in 7.10 percent and 4.30 percent of the total of 70 
articles, respectively. Moreover, power plant, timber construction, and architectural heritage projects all 

had the same number of articles (2 each), with only one article (1.40%) suggesting the use of AI 

technology in retrofit building and water treatment plants. Furthermore, Fig. 4.5 depicts the distribution 

of articles by construction project type and life cycle stage. The majority of articles on built environment 

were focused on the construction/execution stage (15 articles). However, there were only a few articles 

that focused on the planning/design stage of the built environment (3 article). Likewise, the 

planning/design and supply/facility management stages of the construction lifecycle for residential 

buildings received the greatest attention (6 articles each), with a smaller number of articles devoted to 
the construction/execution stage (1 articles). Besides, papers related to high-rise buildings had a focus 

towards the construction/execution stage (3 articles). All the included papers on commercial buildings 

(6 articles) and bridge/roadway projects (5 articles) focused on the three stages of the construction life 

cycle in near equal measure. Interestingly, articles pertaining to power plant projects (2 articles) and 

retrofit building (1 article) exhibit a distinct emphasis solely on construction/execution stage within the 

construction value chain lifecycle. Conversely, water treatment projects primarily concentrated on the 

planning/design stage of the construction value chain lifecycle. Additionally, projects involving timber 
construction, and architectural heritage shared equal number of articles across their respective stages 

in the construction value chain lifecycle. 
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Fig. 4.4: Distribution of articles based on project type. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: Distribution of articles based on project type and life cycle. 
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4.4.4 Benefits, challenges, and opportunities for technological advancement 

Benefits 

This  subsection covers a wide range of benefits that can be gained from artificial intelligence 

technologies’ growing popularity in the construction industry. Table 4.3 summarises the primary 

benefits of implementing AI technology in the construction industry, as described in twenty-six of the 
seventy selected articles. 

 

Potential for Design Expansion 

Intelligent room layouts for better natural ventilation are one example of how AI technologies can lead 

to novel design aspects. As mentioned by Sonetti (Sonetti, Naboni and Brown, 2018) who developed 

AI solutions for human-centered regenerative design, AI technologies are strong supporters of human-

centric regenerative design when it comes to developing technologies that improve interactions 
between buildings and their occupants. It is the viewpoint of Lamio (Lomio et al., 2018) that, the 

application of AI technologies to automate building design process demonstrates that an image taken 

from a virtual model can accurately distinguish the building type. They developed an AI tool using 

classical and modern machine learning techniques to categorize images of building designs into three 

classes. This is especially important considering the large number of BIM structures with missing 

information or incorrect labelling.  

 

Possibility for Big Data Analytics 

AI technologies are exposed to an unending quantity of data to learn from and improve on every day at 

a time when vast amounts of data are being produced in the industry (Egwim et al., 2022a; Egwim, 

Alaka, Pan, et al., 2023a). For instance, the research led by Palma’ (Palma, 2019) explored the 

integration of Convolutional Neural Networks (CNNs), a subset of deep learning methods, into the realm 

of architectural heritage by developing a mobile app aimed at monument recognition, pioneered the use 

of AI in this domain. Palma’ (Palma, 2019) argument is compelling, especially in terms of his pointing 

out that the output of their adoption of AI technology resulted in the creation of open datasets for testing 

and evaluating AI applications in the field of architecture and architectural heritage. In 
addition, Keshavarzi (Keshavarzi et al., 2020) who developed a generative system that addresses the 

challenge of limited 3D datasets for deep learning methodologies in the built environment stated that 

their AI technology has the potential to facilitate data augmentation of parametric 3D scan datasets by 

taking an extant 3D scan as input and generating alternative iterations of the architectural configuration, 

encompassing walls, doors, and furnishings, accompanied by corresponding textures. This process 

extends the prevailing 3D geometry datasets, which are conventionally constrained in their scope. 
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Workplace Health and Safety 

AI technology can provide a project with precise job-site safety best practices based on learnt 

knowledge. As one of the most hazardous industries to work for, this surveillance keeps people safe 

and accidents to a limit. In the pursuit of minimizing accident occurrences within construction sites, 
Zhang (F. Zhang et al., 2019) employed a diverse set of AI technologies. Specifically, an ensemble 

model was devised, integrating text mining, natural language processing (NLP), and machine learning 

methodologies for the comprehensive analysis of construction accident records. The objective was to 

discern and extract salient elements associated with accidents, ultimately mitigating potential hazards. 

With reference to Yu (Yu et al., 2018) AI technologies can be used as non-invasive tool for workload 

monitoring and thorough ergonomic assessment for various construction tasks, such as assessing risk 

factors for work-related musculoskeletal disorders by developing an AI tool that employs a smartphone 

camera with advanced deep learning algorithms to extract construction workers' skeleton data, 
complemented by smart insoles to quantify plantar pressures during various construction activities. 

More so, Su (Su et al., 2021) adopted an AI technology to predict the smoke motion and the available 

safe egress time in a typical atrium.  

 

Increase in Productivity 

Some AI technologies can complete repetitive tasks swiftly and precisely while being fatigue-free. For 

instance, Li (Li, Luo and Skitmore, 2020) detailed the creation of a vision-based intelligent mobile robot 

hoisting system to improve the hoisting process, including the process of hooks identifying the hoist 
points and autonomously releasing the components without the need of on-site construction employees. 

According to García de Soto (García de Soto et al., 2018) by offering a process for evaluating 

productivity based on total cost and time per unit installed, it is conceivable to get considerable 

economic advantage from the use of additive digital fabrication to create complicated structures through 

the development of AI-driven robotic construction method as part of digital fabrication in the construction 

industry. Furthermore, investigation by several researchers (Jung, Chu and Hong, 2013; Krieg and 

Lang, 2019; Firth et al., 2020; Hu et al., 2020; Li, Luo and Skitmore, 2020; Wagner et al., 2020) have 
shown the possibility of replacing risky and difficult manual construction work with automated robots. 

 

Enhanced Risk Mitigation  

All construction project has a few risks, which can take numerous forms, including quality, timeliness, 

and cost. A particular strength of Hong’ (Hong et al., 2021) argument is that AI technologies can assist 

in assigning time and cost contingency to completing a construction project through the development 

natural language-related AI technologies including clustering methods, including latent semantic 

analysis (LSA), latent Dirichlet allocation (LDA), and word2vec, amongst many others for quantitative 
analysis in construction scheduling. Varouqa (Varouqa, 2021) concurred and went on to say that AI 

technologies can be employed as optimization strategies in prefabricated construction projects to save 

time and money. Furthermore, Lee (Lee, Yi and Son, 2019) adopted AI technology to perform a pre-
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emptive contract-risk evaluation, which can offer stakeholders with contractual positions and rights 

based on contract facts, minimizing the number of claims and conflict cases between participating 

parties during construction. 

 

Challenges 

There several challenges described in the seventy selected articles about the implementation of AI 

technology in the construction industry (see Table 4.2). In general, low accuracy level due to scarcity 

of available data was found to be the most frequently cited challenge (41.43 percent) during the 

adoption of supervised learning AI technology (15 occurrences), followed by data transformation 

techniques not transferable to data from other regions (12.86 percent) during the implementation of the 

same AI technology (5 occurrences), lack of real-world applicability (11.43 percent) when using deep 

reinforcement learning AI technology  (3 occurrences), and incorrect image classification of structures 
(4.29 percent ) during deep learning AI technology adoption (2 occurrences). However, 2.86 percent of 

the articles considered the combination of industrial robot size and weight limits and high demand for 

sophisticated algorithms and computing power owing to massive volumes of data to be equally 

troublesome when adopting deep learning and supervised learning AI technology in the construction 

industry. Other notable challenges include difficulty in model calibration and excessive modelling errors 

for heating demand prediction, long installation time for robots, difficulties in developing inference rules 

for expert systems, misclustering of some project milestones into building works for natural language 

processing among many others. 

 

4.4.5 Practical implications of AI applications for the construction industry 

The integration of Artificial Intelligence (AI) into the construction industry heralds significant 

advancements in various operational domains, promising enhanced efficiency, safety, and productivity. 

The practical implications of AI in construction can be leveraged by practitioners in the following ways. 

Foremostly, AI technologies facilitate the generation of multiple design alternatives based on pre-

existing data, thereby augmenting the design process. Engineers and architects can input design 

objectives and parameters into AI systems, which then explore all possible permutations, providing 

innovative design solutions that might not be otherwise considered. This capability not only boosts 

creativity but also ensures that designs meet predefined requirements more effectively. Secondly, AI's 
ability to analyse and predict potential safety hazards significantly improves workplace safety. For 

instance, the integration of natural language processing (NLP) and machine learning can help analyse 

construction accident records, identifying and mitigating potential risks. Moreover, AI tools employing 

deep learning algorithms can monitor workers' ergonomics, helping to prevent musculoskeletal 

disorders by analyzing posture and pressure points during various construction tasks. Moreso,  

automating repetitive and labour-intensive tasks through AI technologies such as intelligent robotics 

can significantly increase productivity. AI-driven robotic systems can handle tasks like hoisting materials 

or precision-based construction activities without fatigue, reducing the need for manual labour and 
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minimizing human error. This leads to faster project completion times and reduced costs. Furthermore, 

the construction industry generates vast amounts of data that, when analysed using AI, can provide 

actionable insights. AI technologies, such as convolutional neural networks (CNNs), can process large 

datasets to optimize various aspects of construction projects, from material selection to project 
scheduling. This data-driven approach helps in making informed decisions that enhance overall project 

efficiency. Additionally, AI applications often face challenges due to the scarcity and imbalance of 

labelled training data. Data augmentation techniques, such as those employing undercomplete sparse 

deep and variational autoencoders, can generate synthetic data to overcome these challenges. This 

improves the robustness and accuracy of AI models, enabling their application even in data-constrained 

environments. 

 

4.4.6 Comparative analysis of AI applications across different regions and 
construction project types 

The adoption and effectiveness of AI technologies in the construction industry vary significantly across 

different regions and types of construction projects. In examining the global landscape of AI adoption 

in the construction sector, it becomes evident that certain regions are at the forefront of integrating 

these technologies into their practices. Notably, China and the Republic of Korea are leading the way, 

particularly in the construction/execution and planning stages of the construction lifecycle. This 
leadership is not coincidental but rather a result of substantial funding and robust governmental support, 

which have spurred a significant volume of both academic publications and practical implementations 

of AI technologies. These regions are setting the pace in exploring how AI can streamline and enhance 

construction processes from inception to completion. Meanwhile, in Europe and North America, there 

is also a notable momentum in the adoption of AI, albeit with a slightly different focus. Here, the 

emphasis tends to be on enhancing existing construction practices through AI-driven safety measures 

and productivity tools. European projects, for instance, often prioritize sustainable construction 
practices, leveraging AI to optimize energy use and ensure material sustainability. This reflects a 

broader regional commitment to sustainability and efficiency, which AI technologies are well-positioned 

to support. Also, the versatility of AI technologies is further illustrated when examining their applications 

across different types of construction projects. In the built environment and residential buildings, AI 

applications are predominantly concentrated on stages such as design, planning, and facility 

management. These stages benefit greatly from AI's capabilities in design automation, safety 

management, and energy optimization, leading to more efficient and effective project outcomes. For 

instance, AI can generate multiple design alternatives rapidly, allowing architects and engineers to 
explore a wider range of options and optimize building performance from the outset. In the context of 

high-rise and commercial buildings, AI technologies are extensively used during the 

construction/execution stage. These technologies play a crucial role in project management, safety 

monitoring, and optimizing construction processes. AI-driven systems can analyze vast amounts of data 

in real-time, providing insights that help manage complex construction activities more efficiently. This 

leads to improved safety standards and streamlined project timelines, which are critical in the fast-paced 
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environment of high-rise and commercial construction. Specialized construction projects, such as power 

plants, timber construction, and architectural heritage conservation, also present unique opportunities 

for AI application. In architectural heritage projects, for example, AI focuses on preserving and 

managing historical data, ensuring that restoration efforts maintain the integrity of historical sites. In 
timber construction, AI can optimize material usage and ensure structural integrity, addressing specific 

challenges associated with this type of building material. These tailored applications demonstrate AI's 

adaptability and potential to address a wide array of construction needs.
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Table 4.2. Cited challenges for integrating AI technologies and opportunities for technological advancement in the construction industry. 
Challenges Opportunities AI Technology No. of 

Articles 

Reference % 

Low accuracy level due to scarcity of available 
data 

Data augmentation Robotics, DL, Expert 

System, Optimisation, 

SL (15), NLP 

29 (Hu et al., 2020), (Muqeem et al., 

2012), (Koc, Ekmekcioğlu and 

Gurgun, 2021), [67], (Lee, Scarpiniti 

and Uncini, 2020), (Shehadeh et al., 

2021), (Bassier and Vergauwen, 

2020), (Zhang, 2021), (Sanni-Anibire, 

Zin and Olatunji, 2021), (Vahdani et 

al., 2014), (Varouqa, 2021), (Ajayi et 

al., 2020), (Kim et al., 2021), (Yu et 

al., 2018), (Kontovourkis and 

Konatzii, 2021), (Yangxuan and 

Zhaoqianjing, 2021), (Amin et al., 

2021), (Charoenkwan and Homkong, 

2017), 99], (Kruachottikul et al., 

2021), (Amini Toosi et al., 2022), 

(Milošević, Kovačević and 
Petronijević, 2021), (Cha, Moon and 

Kim, 2021b), (Ayhan, Dikmen and 

Birgonul, 2021), (Pham et al., 2020), 

(Šatrevičs, 2006), (Ayhan and 

41.4

3 
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Challenges Opportunities AI Technology No. of 
Articles 

Reference % 

Tokdemir, 2019), (Lee, Yi and Son, 

2019), (Ko, Cheng and Wu, 2007) 

Data transformation not universally applicable Model generalisability and 

Transferability 

NLP,SL,Optimisation, 

Expert System, DL 

9 (Zhang et al., 2018), (Pereira, Ramos 

and Simões, 2019), (Mahjoubi et al., 
2021), (Amiri, Ardeshir and Fazel 

Zarandi, 2017), (Li, 1996), (Xue and 

Yao, 2022), (Gondia et al., 2019), 

(Zhang, Liu and Coble, 2002), (Davila 

Delgado and Oyedele, 2021),  

12.8

6 

Only experimental with lack of real-world 
applicability 

Real-world applicability SL, Optimisation, DL, 

RL  

8 (Wang and Li, 2021), (Ayadi et al., 

2019), (Bagheri, Nazari and 

Sanjayan, 2019), (Spallone and 
Palma, 2021), (Fisher-Gewirtzman 

and Polak, 2019), (Aghalari et al., 

2021), (Su et al., 2021), (Soman and 

Molina-Solana, 2022) 

11.4

3 

Incorrect image classification of structures Computer vision and AR DL, SL  3 (Palma, 2019), (Mei Yee et al., 2019), 

(Norrdine and Motzko, 2020),  

4.29 

Size and weight restrictions of industrial robots Design optimisation Robot 2 (Krieg and Lang, 2019), (Jung, Chu 

and Hong, 2013),  

2.86 
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Challenges Opportunities AI Technology No. of 
Articles 

Reference % 

High data demands, require advanced 
algorithms. 

Cloud computing 

infrastructure 

DL, SL 2 (Elsheikh et al., 2021), (You and 

Feng, 2020) 

2.86 

Limited Computing Speed Compiling Keras 

/TensorFlow 

RL 1 (Vázquez-Canteli et al., 2019) 1.43 

Model calibration challenges, errors in 
predictions. 

Multi-objective RL RL, Optimisation 1 (Z. Zhang et al., 2019) 1.43 

Long installation time Programming safety and 

recalibration of peripherals 

Robotics 1 (Wagner et al., 2020) 1.43 

Saturated neural network accuracy, optimization 
challenges. 

Enhanced random neural 

network structure 

generation. 

SL, DL 1 (Lomio et al., 2018) 1.43 

Difficulties in developing inference rules High Optimisation 

techniques 

Expert System 1 (Sierra et al., 2007) 1.43 

Misclustering of some project milestones 

into building works 

Construction schedules 
analysis 

NLP 1 (Hong et al., 2021) 1.43 

Inadequate network architecture Large (big) datasets SL, Optimisation 1 (Barai and Nair, 2004) 1.43 

Omission of planning in robotic design. Design optimisation Robot 1 (García de Soto et al., 2018) 1.43 

Limited scope in classification of building 
structures 

Computer vision and AR SL 1 (Zhou and Chang, 2021) 1.43 
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Challenges Opportunities AI Technology No. of 
Articles 

Reference % 

Threshold limitations on Elasticsearch queried 
data 

Load balancing  NLP 1 (Kim and Chi, 2019) 1.43 

Limited customization of textures for walls 3D modelling and AR DL 1 (Keshavarzi et al., 2020) 1.43 

Control approach for large hydraulic robots New control methods Robot 1 (Gambao, Balaguer and Gebhart, 
2000) 

1.43 

Robot response hindered by image quality Hgh-definition camera  Robot 1 (Li, Luo and Skitmore, 2020) 1.43 

Natural language exhibits diverse expressions Advanced optimisation  NLP, SL 1 (F. Zhang et al., 2019) 1.43 

Inability to repair walls and columns Data-driven machine 

learning  

Expert system 1 (Koo and Tiong, 1993) 1.43 

Heterogeneous hardware and software 
integration 

AI knowledge experts SL 1 (You and Feng, 2020) 1.43 

Social barriers to the adoption of AI AI education and trainings NLP, SL, DL 1 (Sonetti, Naboni and Brown, 2018) 1.43 
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Opportunities for technological advancement 

More-so, Table 4.2 emphasises how AI technologies opens a slew of opportunities for technological 

advancement in the construction industry, giving it a competitive edge by improving efficiency across 

the whole value chain from building materials manufacturing to design/planning, construction/execution, 
and supply/facility management.  

 

Data Augmentation 

In concrete, it shows that 41.43% of the selected papers who experienced low accuracy level due to 

scarcity of available data suggested the need for future studies to augment datasets for the 

development of more robust AI technologies in the industry. For instance, Hu's (Hu et al., 2020) 

automatic robotic disinfection framework was unable to investigate the relationship between adequate 

UV light exposure and the effects of pathogen eradication due to low accuracy in segmenting the areas 
of potential contamination on small objects such as doorknobs and cabinet handles in adverse 

conditions. Furthermore, Davila Delgado (Davila Delgado and Oyedele, 2021)  successfully 

demonstrated the application of undercomplete, sparse, deep and variational autoencoders as novel 

techniques for data augmentation and generation of synthetic data in construction management which 

can provide useful insights regarding the underlying non-linear relationships among variables in the 

datasets amongst many other selected studies. 

 

Model Generalisability/ Transferability 

The opportunity for AI model generalizability and transferability became eminent as the unique data 

transformation employed in 12.86% of the selected articles are not transferable to the data from other 

regions as typical of any data driven model. Zhang's (Z. Zhang et al., 2019) argument is persuasive in 

this aspect, particularly when they pointed out that their building energy AI model has better 

generalizability because it is based on fundamental scientific laws. A building energy model, for 

example, can properly estimate the energy performance of a new unseen control technique while a 

data-driven model may not. This is the case since the data-driven model is built using a training dataset 
that contains no information about the unseen control technique. In addition, Koc (Koc, Ekmekcioğlu 

and Gurgun, 2021) raised awareness for future studies to take advantage of model generalizability, 

since he encountered the difficulty of an unbalanced dataset while using AI technology to assess 

construction workers' post-accident impairment status. 

 

Real-world Applicability 

About 11.43 percent of the selected articles only tend to have simulated the adoption of AI technologies 

in a controlled environment thus lacking the confidence to validate their methods in a real-world setting. 
According to Vázquez-Canteli (Vázquez-Canteli et al., 2019), a useful graphical user interface (GUI) 

that allows users to write machine learning code or set hyper-parameters of the algorithms after the 
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simulation environment is compiled is required for their fast AI-based building energy simulator 

implemented in an integrated simulation environment to be tested in a physical setting. Furthermore, 

as illustrated in Hong's (Hong et al., 2021) AI framework for clustering construction schedules in UK 

based construction projects, Gondia's (Gondia et al., 2019) AI-based model lacks the use of real 
construction project schedule information for their construction project delay risk prediction 

implementation in Egypt. 

 

Computer Vision and Augmented Reality 

The application of the most recent computer vision techniques and augmented reality functions followed 

suit, with 4.29 percent of selected articles recommending them as a means of advancing technology in 

the construction industry. More precisely, In the implementation of automatic image recognition of 

architectural heritage sites by Palma (Palma, 2019), for example, items in the same cultural site 
appeared to be extremely similar, or could appear together in the same view, making it impossible to 

distinguish one part from another. However, these circumstances emphasise the practical value of AI 

rather than the recognition of landmarks that are far apart. Thus, implies the most up-to-date computer 

vision algorithms will be key to obtain more detailed information than previously or the use of augmented 

reality functions to enhance their interaction. Other notable opportunities for technological advancement 

that received less attention from the selected papers includes, design optimisation and cloud computing 

infrastructure with 2.86%, followed by multi-objective reinforcement learning, safety programming and 

re-calibration of peripheral modules enterprise AI knowledge experts, AI education and trainings among 
many others (1.43% each) 

 

4.5 Discussion 
The systematic review results show foremostly the distribution of research articles according to their 

publication source has received wider coverage of this topic in academic journals which is consistent 
with the work of (Abioye et al., 2021),(Debrah, Chan and Darko, 2022) that the adoption of artificial 

intelligence in the construction industry has taken a quantum leap relatively due to the availability of 

funding in that area.  There is also, a notable constant increase in the number of academic research 

publications that are based on the application of AI technology in the construction industry within the 

entire research community ecosystem. This arguably shows a significant improvement in the promotion 

of research and development of trustworthy AI solutions by funding bodies and agencies across the 

globe. Interestingly this is in line with the findings of Rahkovsky (Rahkovsky et al., 2021) who argued 

that artificial intelligence research clusters are experiencing extreme growth due to great support from 
research funding organizations that is currently been led by the National Natural Science Foundation 

of China (NNSFC). It is no surprise from the results of this systematic review that researchers from 

China are dominating the research space of the application of AI technologies in the construction 

industry since NNSFC is the largest funder of AI technology research over other large funding bodies 

such as National Institutes of Health and National Science Foundation from the USA, European 
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Commission and European Research Council from Europe, and Japan Society for the Promotion of 

Science from Japan among others. Secondly the analysis of this study further provided answers to all 

the research questions stated in the first section. More specifically, although seven major AI technology 

types were found in the literature, supervised learning emerged as the most influential AI technology of 
choice for most researchers especially towards its applicability in health and safety management. 

Supervised learning is branch of machine learning in which computer algorithms are trained on labelled 

input dataset for a certain output.  From a labelled training dataset (i.e., a dataset that already has a 

known value for each record's output variable) supervised machine learning algorithms can find 

insights, patterns, and correlations. When proper answers for a given task during training is provided, 

the machine learning algorithm can learn how the rest of the characteristics relate to the output, allowing 

you to unlock insights and make predictions based on past data. This is extremely crucial for the industry 

and consistent with the findings of (Egwim, Alaka, Toriola-Coker, Balogun, Ajayi, et al., 2021) who 
argued that the industry can derive key benefits from AI to drive further profitability only when it 

leverages the amount of data produced from backlog of project schedules, as-built drawings and 

models, computer-aided designs, costs, invoices, among many other sources. Furthermore, the results 

showed that although AI technologies can be applied in three major stages of construction project 

lifecycle, more attention are drawn towards the supply/facility management stage (see section 3). It can 

be argued that this is owing to the massive quantity of data collected over time (from the design stage 

all the way through) making it ideal for the adoption of the most significant AI technology (supervised 

learning). Thus, creating a great opportunity for the industry to capitalise by allowing, for example facility 
managers to take proactive action. For instance,  as argued by (Z. Zhang et al., 2019), AI can recognise 

portions of buildings that aren't being utilised and automatically turn off the heating, ventilation, and air 

conditioning, substantially decreasing energy use. Recent studies have continued to validate these 

trends, emphasizing the transformative impact of AI on construction practices. For instance, Johnson 

et al. (2023) investigated AI's role in predictive maintenance, revealing significant cost savings and 

operational efficiency in large-scale construction projects. Their findings support the notion that AI can 

reduce downtime and enhance the longevity of construction equipment through predictive analytics and 
real-time monitoring. Similarly, research by Smith et al. (2023) has underscored the importance of AI in 

optimizing construction logistics. By utilizing machine learning algorithms to analyse supply chain data, 

their study demonstrated improvements in material procurement processes, reducing delays and costs 

associated with material shortages and excesses. This aligns with earlier findings on AI's capability to 

streamline construction processes and enhance project management efficiency. In terms of 

sustainability, recent work by Wang and Li (2023) has highlighted AI's potential in promoting eco-friendly 

construction practices. Their research focused on AI-driven models that optimize energy consumption 

and material usage, leading to a reduction in the carbon footprint of construction projects. This is 
particularly relevant given the increasing emphasis on sustainable development within the industry. 

Furthermore, Patel and Desai (2023) have explored the application of AI in enhancing worker safety. 

Their study introduced AI-based systems for real-time hazard detection and risk assessment on 

construction sites. The implementation of these systems resulted in a noticeable decrease in workplace 

accidents, corroborating the findings of previous studies on AI's role in improving construction site 



 81 

safety. Moreover, recent advancements in AI technologies continue to address the socio-technical 

challenges identified in earlier research. For example, Liu et al. (2024) have developed new data 

augmentation techniques to mitigate the issue of data scarcity, enhancing the robustness of AI models 

in construction applications. This innovation is crucial for ensuring that AI systems can operate 
effectively even with limited training data, a common challenge in the industry. Lastly, a study by Kim 

et al. (2024) has demonstrated the successful integration of AI with BIM to enhance project visualization 

and collaboration among stakeholders. Their research showed that AI-enhanced BIM systems could 

predict potential project delays and budget overruns with high accuracy, enabling more proactive project 

management and decision-making. Moreover, AI technologies in the construction industry were found 

to hold promise for applications in many types of construction projects and their respective lifecycle 

application area with about twenty percent of the literature reporting their implementation in any 

structures and systems that are part of the built environment (urban area, pedestrian walkways, parks 
etc.) projects. Kılkış’ (Kılkış, 2021) argument is about this is compelling, especially when they mentioned 

that the built environment impacts all parts of our life, including the buildings we live in, the distribution 

systems that provided us with water and energy, and the roads, bridges, and transportation systems 

we use to move about. Additionally, most articles acknowledged that artificial intelligence technologies’ 

growing popularity in the construction industry would offer a wide range of benefits with potential for 

design expansion as a key benefit according to most of the selected literature. We argue that as 

engineers and architects spend a lot of time working on the design of buildings as designers and with 

access to a database of many previously built building plans, an AI technology system can produce 
design alternatives based on the information it acquires from the designs in the database. As a result, 

designers can simply enter design objectives and parameters into the system, and the system will be 

able to investigate all conceivable permutations of a solution, creating design alternatives that fulfil all 

the previously defined requirements, learning what is a better design option with each iteration, and 

making it a stronger tool with each new project. Beyond these possible design benefits, generative 

design has the potential to boost creativity. Take for example, it can enable architects to discover 

previously unimaginable methods of designing forms and curves or lead them to design solutions that 
they would not have explored otherwise. However, most of the articles reported that it is challenging to 

apply AI technologies in the construction industry because of low accuracy level due to scarcity of 

available data. Data scarcity arises when there is a paucity of labelled training data or when there is 

none at all. It might be a shortage of data for a particular label as compared to the other labels (known 

as data imbalance). It was discovered from some of the selected literature (Bassier and Vergauwen, 

2020), (Zhang, 2021), (Sanni-Anibire, Zin and Olatunji, 2021), (Vahdani et al., 2014), (Varouqa, 2021) 

which is also in line with research (Egwim, Alaka, Toriola-Coker, Balogun and Sunmola, 2021a) that 

mega infrastructure projects often have access to a lot of data, however they may have data 
imbalances, whereas small sized projects typically have a limited amount of labelled training data. As 

a result, resolving this issue cannot be overstated, reported articles (41.43%) universally agreed, citing 

"Data Augmentation" as one of the quickest prospects for technical improvement in this area. For 

instance, the research (Davila Delgado and Oyedele, 2021)  successfully demonstrated the application 

of undercomplete, sparse, deep and variational autoencoders as novel techniques for data 
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augmentation and generation of synthetic data in construction management which can provide useful 

insights regarding the underlying non-linear relationships among variables in the datasets amongst 

many other selected studies. Notwithstanding, practical obstacles beyond just data accuracy persist 

around cultural readiness, ethical risks, skill shortages and flaws in security posture for many 
construction projects exploring AI solutions. As the researches (Egwim and Alaka, 2021) and (Egwim 

et al., 2023) assessed, construction has often lagged significantly in digital transformation and 

technology assimilation compared to other industries. Coupled with an aging workforce leaning on 

legacy methods, this exacerbates reluctance and barriers to AI change management. For instance, 

PwC (PwC, 2021) notes generational shifts may gradually improve receptiveness, like modelling shows 

younger workers are 67% more open to retraining on AI tools relative to senior staff. But broad culture 

change inevitably remains long-term. Customized change management programs fitting construction 

realties are hence vital to align teams behind AI via strategic internal communications campaigns and 
leadership vision as exemplified by firms such as Bechtel. Additionally, the opaque decision-making of 

AI systems poses ethical dilemmas around accountability as flagged by Parveen (Parveen, 2018). Lack 

of explainable outcomes or audit trails can impede transparency and responsible oversight of 

automated systems. There's also dearth of standardized governance principles as highlighted in Egwim 

(Egwim, Alaka, Toriola-Coker, Balogun and Sunmola, 2021a)'s delay risk assessment. The specialist 

expertise needed is another capacity challenge evidenced by widening talent gaps globally per Johnson 

(Johnson et al., 2021)'s labor market analysis. Most construction firms aren't staffed with 

multidisciplinary data scientists or algorithm auditors. As such, the shortage of such AI and analytics 
roles may worsen for small and mid-size construction companies lacking resources to reskill staff or 

attract experts. Additionally, many construction industry jobs also require on-site client coordination, 

hence diminishing flexibility that technology candidates expect. Therefore, targeted training programs 

are crucial to developing well-rounded internal capabilities. Finally, the vulnerability of connected tools 

or data handling processes to malicious threats leaves unprepared adopters exposed to crippling 

breaches as studied across industries (Saka et al., 2023, 2024). Also, lack of transparency around data 

rights or algorithmic decision-making processes also introduces major ethical risks. Furthermore, 
antiquated security postures coupled with failures to implement robust and resilient protections can 

negate any assumed productivity gains. Thus, addressing these open socio-technical problems 

demand coordinated efforts across construction stakeholders to formulate frameworks, standards and 

cultural shifts guided by construction specific nuances.  

 

4.6 Conclusions 
The systematic review study covers 70 studies that were judged to be rigorous, credible, and relevant 

in their application of AI technology in the construction sector. The research content of these 70 

publications demonstrated that artificial intelligence research in the construction sector has taken a 

quantum leap, with increased interest in academic journals, particularly in the last few years, owing to 

the availability of funding in that area. Most articles pertinent to the research topic in general were 

published by Chinese researchers. More precisely, scholars from the Republic of Korea and China 
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contributed the most publications to the construction/ execution lifecycle stage of the construction value 

chain. Furthermore, China also published most of the related articles concerning AI applications in the 

planning  and facility management lifecycle stages of the construction value chain. Construction AI 

technology was discovered to be a growing application field, with supervised learning, deep learning, 
knowledge-based systems, robotics, natural language processing, optimisation, and reinforcement 

learning AI technologies all appearing to have more potential to influence the development of AI 

research for increased efficiency and productivity. Regarding the Construction AI technology categories 

given above, the bulk of the featured publications used the supervised learning approach. A substantial 

number of the articles were connected to the built environment and residential building in terms of the 

construction project types in which such AI technologies are used. The papers on high-rise and 

commercial buildings came after that. A few studies advocated the application of AI in building retrofits 

and water treatment plants. Most publications on the built environment concentrated on the 
construction/execution stage. Similarly, the planning and facility management lifecycle stages of the 

residential building garnered the most attention. According to the findings, the most significant number 

of studies across all building construction disciplines focused on the possibility for regenerative design 

expansion. However, there are various obstacles to implementing AI technology in the construction 

industry, with low accuracy owing to a lack of relevant data being the most mentioned issue. It's also 

worth noting that, despite being the most prevalent AI construction method, supervised learning has 

been the technology of choice for the most difficult challenge to be solve in the industry. And as sparse, 

deep, and variational autoencoder approaches show promise in providing meaningful insights into the 
underlying non-linear correlations among variables in datasets, data augmentation was identified as 

one of the most promising areas for technical advancement. This study presents an all-inclusive 

systematic review of vast body of knowledge on artificial intelligence in the construction industry. The 

findings of this study present a comprehensive assessment of the many types and categories of AI 

technologies, as well as their application areas and the advantages of using them at the three lifecycle 

stages of the construction value chain. This knowledge will assist construction organisations across the 

world in recognising the efficiency and productivity advantages that AI technologies can provide while 
helping them make smarter technology investment decisions. It will point construction organisations in 

the right direction in terms of imagining the construction problems that AI technology could solve. In 

addition, it is possible to integrate evidence from the sorts of construction projects where AI technologies 

were used to address technological difficulties and see what new AI technologies can accomplish in the 

future. Evidently, the findings of this study are based on a systematic review methodology. Given that 

the research article keywords were domain specific, the principal drawback of this study approach might 

be bias in publication selection. As a result, it's possible that some important papers were overlooked 

throughout the search. Additionally, the PRISMA guideline mandated the use of predetermined 
inclusion and exclusion criteria for article selection, implying that important publications that did not 

meet these criteria may have been overlooked as well. Furthermore, any breakthroughs in the field of 

AI technology in construction are pushed by experts who are unable to publish in book series, 

conference proceedings, or academic journals. Consequently, there's a chance that any important 

research from the experts or somewhere else  were overlooked throughout the search. Although the 
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study explored a variety of AI technologies for various construction projects, further research is needed 

to figure out how to simplify these complicated systems and processes to establish an integrated AI 

system for the construction sector. Therefore, an implementation framework is crucial to soften the 

introduction of a system and bridge the adoption gap by addressing low accuracy due to a scarcity of 
available data, model generalisability, incorrect image classification of structures, high requirements for 

sophisticated algorithms, and limited computing speed across the existing construction value chain.  

 

4.7 Chapter Summary 
This chapter presents a systematic review of the application of artificial intelligence (AI) technologies in 

the construction industry, synthesizing findings from a rigorous examination of seventy relevant 
research articles. The review follows the PRISMA guidelines, ensuring a structured and reproducible 

methodology. The analysis reveals a surge in research publications related to AI in construction, 

particularly in recent years, reflecting the growing interest and investment in this domain. Chinese 

researchers emerge as prominent contributors, alongside scholars from the Republic of Korea and the 

United States, indicating the global significance of this field. Seven primary AI technologies are identified 

and categorized: supervised learning, deep learning, knowledge-based systems, robotics, natural 

language processing, optimization, and reinforcement learning. The review explores into the specific 

subtypes and applications of each technology within the construction context, providing a detailed 
understanding of the technological landscape. The chapter explores the three major stages of the 

construction project lifecycle where AI technologies have been implemented: planning/design, 

construction/execution, and supply/facility management. Notably, the review synthesizes the potential 

benefits of AI adoption in construction, including the potential for design expansion, facilitation of big 

data analytics, improved workplace health and safety, increased productivity, and enhanced risk 

mitigation. Concurrently, the chapter critically examines the challenges encountered, such as low 

accuracy due to data scarcity, data transformation issues, and the lack of real-world applicability in 
certain studies. Recognizing the importance of technological advancement, the chapter identifies 

opportunities for further progress, including data augmentation techniques, model generalizability and 

transferability, real-world application testing, and the integration of advanced computer vision and 

augmented reality technologies.  
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CHAPTER 5  

5.0 RESEARCH METHODOLOGY4 
 

 

5.1 Chapter Overview 
The previous chapter provided a systematic review of the application of AI technologies in the 

construction industry, synthesizing findings from a rigorous examination of seventy relevant research 

articles. This chapter now describes the specific methodology that will be used to conduct the research 

study. The purpose of this chapter is to explain and justify the philosophical assumptions, approaches, 
designs, strategies, and techniques that will guide how data is collected, analysed, and interpreted. It 

lays out the overarching research process and methods that will be employed. At the end it explains 

and rationalizes the methodology adopted to effectively carry out this research project on construction 

delays. 

 

5.2 Research Philosophy 

A research philosophy is a collection of assumptions about how the world under investigation works 

(Bryman, 2012). It is the fundamental explanation of what knowledge is. Research philosophies might 

also differ with regard to the objectives of the study and the most effective strategy for achieving these 

objectives (Goddard and Melville, 2005). These are not always distinct, but the research project's 

chosen research philosophy is determined by the kind of information being examined (May, 2011). 

According to Mark & Lyles, (2005) and  Rose et al., (2014), knowing research philosophy is important 

because it helps researchers to clarify their research designs, detect the effects of various research 

 
4 This chapter is primarily derived from the following journal articles: 
 
Egwim, C.N., Alaka, H., Toriola-Coker, L.O., Balogun, H. and Sunmola, F. (2021) ‘Applied artificial 
intelligence for predicting construction projects delay’, Machine Learning with Applications, 6, p. 
100166. doi:10.1016/j.mlwa.2021.100166.  
 
Egwim, C.N., Alaka, H., Toriola-Coker, L.O., Balogun, H., Ajayi, S., et al. (2021) ‘Extraction of 
underlying factors causing construction projects delay in Nigeria’, Journal of Engineering, Design and 
Technology, ahead-of-p(ahead-of-print). doi:10.1108/jedt-04-2021-0211. 
 
Egwim, C.N. et al. (2023) ‘Artificial Intelligence in the Construction Industry: A Systematic Review 
of the Entire Construction Value Chain Lifecycle’, Energies 2024, Vol. 17, Page 182, 17(1), p. 182. 
doi:10.3390/EN17010182. 
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designs, and create new research designs. According to Rouse, (1997), the focus of any research will 

determine its course. It is impossible to overstate the benefits of comprehending philosophical concerns 

in research. For instance, it helps in defining the type of evidence required as a component of the study 

strategy to address the research questions. Also, it aids in choosing the ideal research approach to 
achieve the goals and aid in the modification of the study design on the limits of many fields of 

knowledge (Mark and Lyles, 2005). The research paradigm or philosophy is highly important and critical 

since it comprises the fundamental beliefs about how knowledge develops, which will influence the 

research methods and research strategies. There is no one philosophical perspective that fits all 

research problems, and none is superior to the others, according to Saunders et al. (2009). Ontology, 

epistemology, and axiology make up the three aspects of philosophical beliefs that are crucial to the 

research process.  

 

5.2.1 Ontology 

Essentially, ontology is the study of reality. It explains the nature of reality, what thoughts occur to mind 

when doing research, and what effects it has on people and the environment (Ritchie and Lewis, 2003). 
More precisely, ontology examines whether entities should be viewed as originating from the 

perceptions and acts of social actors or from sources outside of these actors (Crotty, 1998). The 

distinction between reality and how we see it is made obvious by ontology. Additionally, it teaches us 

about how people's conduct is affected by nature. Researcher confidence in the nature and presence 

of the objects they study is increased thanks to ontology (Ritchie, 2003). What "truth claims" about 

reality may a researcher, for instance, make? Who judges what is "genuine" and legitimate? How do 

researchers handle contrasting and incompatible views of reality? In addition, Bryman (2012) introduces 
the idea of "social ontology," which he describes as a philosophical question in research that addresses 

the nature of social entities, i.e., whether these social entities are or can be objective entities that exist 

independently from social actors or rather they are social constructions in themselves created from the 

perceptions, actions, and interpretations of the individuals in society. Likewise, Snape & Spencer (2003) 

claim that ontology is concerned with the question of "whether or not there is a shared social reality or 

only multiple, context-specific ones and, closely related to this, whether there is a social reality that 

exists independently from human conceptions and interpretations. For instance, a real world exists 

independently of human experience according to realist ontology; this reality may be studied, 
understood, and experienced as a "truth." Relativist ontology, on the other hand, is founded on the idea 

that reality is created by the human mind and that there is no such thing as a "true" reality. Instead, 

reality is "relative" to how people see it in any moment and location". The ontological worldview primarily 

encompasses two philosophical perspectives. They are subjectivism and objectivism. This study adopts 

objectivism as its ontological standpoint foremostly because it aims to develop AI technologies for delay 

risk prediction, which inherently involves analyzing empirical data related to construction projects. 

Objectivism aligns with this aim by emphasizing the importance of gathering and analyzing data 

objectively to uncover underlying patterns and relationships. Secondly, as the study objectives 
emphasize systematic reviews and expert surveys to gather empirical evidence regarding factors 
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affecting construction project delays and the applicability of AI technologies in the industry, objectivism 

provides a suitable ontological framework for conducting such research activities, as it emphasizes the 

importance of unbiased observation and systematic analysis of data to generate reliable and 

generalizable findings. Furthermore, the utilization of gathered data to develop hyperparameter 
optimized AI predictive models relies on the assumption that there are underlying patterns and 

relationships within the data that can be objectively identified and utilized for predictive purposes. As 

such, objectivism supports this assumption by asserting the existence of objective reality that can be 

measured and analysed to uncover predictive insights. 

 

5.2.2 Epistemology  

In general, epistemology refers to the presumptions we have on the type or form of knowledge or how 

one might learn about the outside world (Richards, 2003; Snape and Spencer, 2003). Epistemology is 

frequently utilised in scientific study, and this is because it aids in the discovery of knowledge that can 

be proven beyond a reasonable question; in other words, it looks for generally accepted knowledge and 

addresses the facts accordingly. As such, one must specify what level of expertise is appropriate in the 
area of their study and provide details on the findings of in-depth testing. According to Crotty (1998), 

epistemology is a means of understanding the world and how to look at it. It incorporates knowledge, 

and thus, it embodies a certain perception of what that knowledge means. The 'nature' of knowledge, 

its possibility (what knowledge is conceivable and may be pursued and what is not), its extent, and its 

validity are all topics encompassed by epistemology, according to him. Cohen et al. (2002) asserted 

that epistemology is concerned with one's presumptions about "the basic roots of knowledge - its nature 

and form, how it may be gained, and how it is conveyed to other human beings" in order to further clarify 
what epistemology is all about. The authors also emphasise how our epistemological presumptions 

about knowing have a significant impact on how we approach learning about social behaviour. They 

are referring to the choices the researcher will have to make on the type(s) of methods they will employ 

in their research in light of their epistemological presumptions. In other words, if knowledge is seen as 

something that is hard, objective, and tangible, then the researcher must take on the position of an 

observer and adhere to natural scientific procedures like testing, measuring, etc. The researcher is 

forced to reject the techniques of natural science and become more involved with their topics if 

knowledge, on the other hand, is seen as being personal, subjective, and unique. The philosophical 
stances that fall under the epistemological worldview include idealism, and realism. This study adopts 

realism epistemological standpoint because in construction projects, there are concrete and 

measurable phenomena, such as project timelines, resource allocation, and environmental factors, 

which exist independently of individual perceptions. By adopting a realist epistemological standpoint, 

the study acknowledges the importance of uncovering these objective realities through systematic 

observation and analysis. Secondly, realism acknowledges the role of causal mechanisms and 

structures that underlie observable phenomena. Therefore, in the quest to implement delay risk 

prediction in construction projects, there are underlying causal factors and relationships that contribute 
to project delays. Realism will obviously help to identify and understand these causal mechanisms, 
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rather than merely describing observable patterns. This approach allows for a deeper understanding of 

the underlying dynamics driving delay risks, thereby enabling more effective predictive modelling and 

risk mitigation strategies. 

 

5.2.3 Axiology  

In the philosophy subfield of axiology, value judgments are examined (Saunders, Lewis and Thornhill, 

2019). The word "axiology" is Greek in origin and means "value" or "worth." Axiology evaluates the 
impact of the researcher's own value at every stage of the research process (Yan, 2016). It is a relatively 

new contribution to the field of philosophy study. The term "axiology" generally relates to the research's 

"aims." This area of research philosophy tries to make it clear if your goal is only to comprehend the 

world, or whether you're also looking to explain or forecast it (Lee and Lings, 2008). In other words, 

axiology focuses on what you value in your research. This is significant because it determines what you 

value in your study and how you perform your research. Axiology teaches us how views and values 

affect the gathering and evaluation of one’s study data. According to Silverman (2000), it helps one 

comprehend the influence that public opinion has on the gathering and analysis of research. It aids in 
your comprehension of how important it is to include others' opinions when conducting research. Thus, 

the name "axiology" refers to an endeavour to bring together and critically assess a wide range of 

previously existing and overlapping problems about what constitutes goodness, moral behaviour, worth, 

and responsibility (Given, 2012). In other words, axiology deals with issues around what is valued and 

seen as desirable or "good" for people and society. This study adopts a pragmatic axiological standpoint 

as pragmatism aligns with the practical orientation of the study, which aims to address real-world 

challenges in the construction industry by developing predictive models that can improve project 
management and efficiency. By prioritizing practical outcomes and focusing on solutions that work in 

practice, this pragmatic approach helps to ensure that the research findings are relevant and applicable 

to industry stakeholders. Additionally, pragmatism allows for flexibility in research methods and 

approaches, enabling researchers to adapt their strategies based on the specific needs and constraints 

of the construction industry. 

 

5.3 Research Paradigm 

Different research paradigms, including positivism, realism, interpretivism, pragmatism among many 

others, are derived from these three philosophical elements. We learn about social events and the many 

meanings that individuals give them through objectivism as shown in Figure 5.1 (Saunders et al., 2009). 

It distinguishes between the effects of various social occurrences on various persons. Contrary to 

objectivism, constructivism holds that individuals are the ones who produce social phenomena. 

According to Creswell (2014), pragmatism paradigm places more emphasis on research issues and 

questions than procedures. It derives from results and actions rather than antecedents' circumstances. 
As a result, the philosophy applies to the mixed method where the researcher has the freedom to make 

their own decisions and does not follow a particular philosophy or reality. It should "focus on practical 
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applied research, combining multiple viewpoints to assist interpret the results," according to Saunders 

et al. (2009). Theories are employed by pragmatism to find a solution to a particular problem. It is an 

alternative to others and is relatively new in comparison to others. 

 

Figure 5.1: Research Onion (Saunders et al., 2009) 

Positivism is often known as scientific method, empirical science, or positivist research. This paradigm 

is founded on the concepts of philosophers such as August Comte, Newton, and Locke and embraces 

a deterministic worldview in which causes determine effects (Creswell, 2014). It is based on 

observation, experimentation, and objective reality. According to Saunders et al. (2009), what defines 

knowledge in this paradigm is observable phenomena with a focus on causality law, generalisation, and 

a reductionistic approach. The researcher is supposed to remain impartial and value-free when doing 

the research. As a result, the data are gathered from highly structured, huge samples and are primarily 
quantitative. Johnson and Onwuegbuzie (2004), on the other hand, pointed out that the paradigm is not 

as objective and value-free as its proponents claimed because the researcher would determine what to 

study, develop the instrument, select a specific test, interpret the results, and determine which results 

are practically significant and subjective. Realism is a platonic philosophy that maintains that reality 

exists irrespective of human brains and discernment. It is, however, perceived by societal conditioning 

(Saunders et al., 2009). It is based on observable occurrences and is contextual in nature. As a result, 

unlike positivism, it is value-laden, and the researcher is likely to be influenced by world views, 

upbringing, and cultural experience (Saunders et al., 2009). According to the interpretivism paradigm, 
knowledge may be acquired through a variety of different methods and that reality is socially created, it 

entails gathering data through observation and giving it arbitrary interpretations. As a result, the 

researcher is involved and is inextricably linked to the research (Saunders et al., 2009). According to 

Johnson and Onwuegbuzie (2004), there are issues with the relativism or constructivism approach, it is 

challenging to determine which claim is reliable, and the concept of different realities raises issues.  
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5.3.1 Research Paradigm Adopted 
Positivism research is the most appropriate paradigm to be used for this study since one of its objectives 

is set out to establish the true (most) applicable factor causing construction projects delay. The premise 

of positivism is that through observing social life, scientists may get accurate and consistent information 

about how society functions. Scientists frequently search for connections, or "correlations," between 
two or more variables while conducting positivist research. The comparative technique is what is used 

in this. In order to gain a comprehensive picture of society and identify social patterns, such as the link 

between educational attainment and social class, the positivist tradition emphasises the value of doing 

quantitative research such as large-scale surveys. Positivists advocate quantitative approaches with 

high reliability and representativeness, such as social surveys, structured questionnaires, and 

government statistics. Bryman (2008) proposed four key elements of positivism: only knowledge proven 

by the sciences is actual knowledge; theory creates hypotheses that may be examined for verifiable 
'laws' according to deductive paradigm; science must be value-free in order to be objective; and 

inductive paradigm holds that knowledge is obtained through accumulating facts that serve as the 

foundation for laws. Furthermore, positivism paradigm has been widely adopted in related research. 

For instance, Egwim et al. (2021) adopted the positivism approach to extract the underlying factors 

causing construction project delay in Nigeria from the most applicable. Similarly, Egwim, Alaka, Toriola-

Coker, Balogun, & Sunmola (2021) found the positivism paradigm suitable for developing a multilayer 

high-performing ensemble of ensembles predictive model utilising hyperparameter optimised ensemble 

machine learning techniques for construction projects delay risk mitigation.  

 

5.4 Research Approach 

The second layer of the research onion comprises the phrases deductive and inductive approaches. 

Knowing the purpose of the research and its constraints is crucial since the previous layer of the onion 

has an impact on this one. The deductive approach creates a hypothesis or set of hypotheses based 

on an existing theory before formulating a research strategy to test them (Silverman, 2013). The 
positivism paradigm, which allows for the formation of hypotheses and the statistical testing of 

anticipated findings to an agreed degree of probability, can be seen of as being particularly well suited 

to the deductive approach (Russell, 2010). It is defined as the progression from general to specific: first, 

the general theory and knowledge foundation are developed, and then the particular information 

obtained via the research process is compared to it (Kothari, 2012). However, a deductive approach 

may also be employed with qualitative research methods, howbeit in those situations, the expectations 

established by prior research would be created differently than through hypothesis testing (Saunders, 
Lewis and Thornhill, 2019). Deductive approach employs questionnaires to develop understanding of 

observation, allowing you to contrast various interpretations of individuals using actual facts. The 

acquired information aids in confirming or disproving the question; the procedure can be repeated. In 

contrast to the deductive method, which requires you to embrace an established theory, the inductive 

method lets you develop your own theories. This demonstrates how the two strategies differ from one 
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another. The inductive approach is distinguished by a shift from the particular to the universal (Bryman, 

2012). Since there is no framework that guides the data gathering in this approach, the study topic can 

be determined after the data has been gathered (Flick, 2011). Although the analysis of the data may 

reveal that it fits into an existing theory, it is also true that this may be considered as the moment at 
which new ideas are produced (Bryman, 2012).  

 

5.4.1  Research Approach Adopted 

Deductive approach was adopted for this study because it is consistent with positivist epistemology. By 

using empirical data, the deductive research approach enables understanding of many perspectives on 

corporate social responsibility activities. For this study, the deductive research approach will offer the 

observations required in formulating the conclusions that will answer the study's objectives. This is done 

by conducting primary research using a structured questionnaire in order to better comprehend the 

observations and address the research questions. Furthermore, because this study also used 

objectivism as the ontological philosophical stance, the choice was made to use a deductive research 

approach in the assessment of the observations. In contrast, an inductive research approach would 
have depended on subjectivity in the appraisal of observations to support the study findings. 

Additionally, the deductive approach, which employs questionnaires to develop understanding of 

observation by allowing researchers to contrast various interpretations of individuals using facts, aligns 

with one of the objectives of this study, which tends to carry out a survey of experts in the form of a 

questionnaire on the aggregated factors to establish the most applicable factors of construction delay 

in BIM-based infrastructure projects. The acquired information aids in confirming or disproving the 

research questions; and the procedure can be repeated. 

 

5.5  Research Design 

According to Johnson and Onwuegbuzie (2004), this is the strategy for going from gathering data to 

presenting the study findings. It is connected to research paradigms. It includes the research topics, the 

data gathering techniques, and the data analysis procedures. The research strategy or design might be 

either quantitative, mixed-method, or qualitative. As illustrated, there is little difference between the 
quantitative and qualitative techniques. A midway ground between the far-quantitative right's approach 

and the far-qualitative left's approach is said to be the mixed-method (Creswell, 2014; Johnson & 

Onwuegbuzie, 2004). The positivist paradigm is frequently associated with the quantitative method, the 

interpretivist paradigm with the qualitative approach, and the pragmatic paradigm with the mixed 

approach. The natural sciences are the foundation of quantitative design. This entails employing 

statistics and quantitative representations of the beliefs, patterns, and attitudes of a sampled population 

or testing whether a given therapy has an effect on a certain result using control and test groups. In this 

way, experimental or nonexperimental quantitative design is possible (Creswell, 2014). The 
generalizability, use of a large sample, creditability to many people in power, testing and validation of 

already constructed theories are highlighted by Johnson and Onwuegbuzie (2004) as the strengths, 
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while the difficulty in application to a particular situation, lack of contexts, and the focus on theories that 

may lead to overlooking of relevant phenomena are highlighted as the weaknesses.  With roots in the 

arts, sociology, and anthropology, qualitative design emphasises description and storytelling above 

quantitative. Examples include case studies, grounded theory, ethnography, phenomenological 
research, and narrative research (Creswell, 2014). In-depth analysis, description of complex events, 

context-oriented, and responsiveness to change are highlighted by Johnson and Onwuegbuzie (2004) 

as positives in contrast to its lack of generality and difficulties in producing a quantitative forecast. The 

drawbacks of the study include the time-consuming data processing and the researchers' subjective 

opinions. Mixed Design is described as "the type of research where the researcher mixes or integrates 

quantitative and qualitative research methodologies, methods, approaches, concepts, or language into 

a single study" by Johnson and Onwuegbuzie (2004). It seeks to minimise the shortcomings of both 

quantitative and qualitative design while maximising their benefits. Triangulation, complementarity, 
commencement, development, and growth can all be reasons for choosing a certain approach. 

According to Creswell (2014), the application of qualitative and quantitative methodologies throughout 

a research stage might take the form of convergent parallel, explanatory sequential, and exploratory 

sequential mixed approaches. Johnson and Onwuegbuzie (2004), on the other hand, argue that it can 

be a mixed model (combining qualitative and quantitative design within or across phases of the research 

process) or a mixed method (combining qualitative and quantitative design in the entire research 

process). 

 

5.5.1  Research Design Adopted 
This study adopts the quantitative design approach. Quantitative design was chosen for this study firstly 
because it helps to achieve the research aim as ML algorithms uses quantitative data (numerical values) 

for prediction. Also as a positivist research (positivists predict) quantitative data is required  (Fuller et 

al., 2001). Secondly quantitative design helps to achieve the research objectives – use of statistical 

analysis methods to find correlations between construction delay and potential covariates.  Other 

research design (qualitative / mixed methods) was not selected since this research employs empirical 

process and empirical accounts – focusing on real world issues rather than ideology. Also qualitative 

method was not considered as its data cannot be read by most ML algorithms for classification-

predictive purposes (Chen et al., 2018). More so, quantitative research method is based on objectivity 
and is especially useful when it is possible to obtain empirical measures of variables and findings from 

population samples. For the purpose of gathering numerical data, quantitative research uses formal 

tools and systematic processes. The numerical data is gathered methodically, objectively and often 

analysed through statistical tools such as SPSS, Python, R, Stata, or Scikit-Learn among many others. 
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5.6  Research Strategy 

The research questions steer the study in the path that is chosen for it by the research strategy. It also 

goes by the name "research method" and includes techniques/approaches like "experiment," "survey," 

"case study," "action research," "grounded theory," “Interviews,” “systematic review” "archival 

research," and "ethnography" (Creswell, 2014; Saunders et al., 2009). These could be illustrative, 

descriptive, or exploratory. Experimental research is the strategy of developing a research procedure 

that compares the findings of an experiment to the predicted results. It can be applied to any field of 
study and generally requires the evaluation of a small number of variables (Saunders, Lewis and 

Thornhill, 2019). The research onion's survey strategy is frequently associated with the deductive 

approach. It is a superb and cost-effective research technique. This strategy allows you to acquire rich 

and trustworthy data. Surveys are commonly employed in quantitative research initiatives and involve 

a representative sample of the population (Bryman, 2012). The Survey strategy is usually used to 

identify contributing factors among many data sets. It enables the collecting of massive amounts of data 

that will be utilised to address the study question. Case study strategy is concentrated on a single 

person or group of people. It may provide insight into the particulars of every example and demonstrate 
the significance of culture and context in the variations among examples (Silverman, 2000). Case study 

research involves analysing a single unit to determine its important characteristics and make 

generalisations (Bryman, 2012). Action research strategy is mostly employed to identify a potential 

answer to a problem. In fields like teaching or nursing, action research is frequent so that practitioners 

may evaluate how to better their professional approach and understanding among many others (Wiles, 

Crow and Pain, 2011). A research strategy called "grounded theory" focuses on developing theories 

that are "grounded" in evidence that has been methodically gathered and examined. Data collecting in 

grounded theory begins without the development of a prior theoretical framework. A theory is built using 
information gathered from several observations. An ethnographic research strategy uses observing 

and/or interacting with study participants in their natural surroundings. Administrative records and 

papers are used as the main source of data in archival research. This category includes using 

documentation as the primary source of information in systematic reviews and other forms of 

documentation. 

 

5.6.1  Research Strategy Adopted 
In this study, surveys in the form of questionnaires were adopted as research strategy. Surveys are 

commonly used to answer questions like who, what, where, how much, and how many. It permits data 

collection from a large sample that can then be analysed using descriptive or inferential statistics to 
clarify links between variables or to create models of the relationships. Organized interviews, structured 

observation, and questionnaires are all methods of gathering data. The survey adopted comprises a 

questionnaire on a Likert scale with a range of one to five connected together in such a way that their 

individual responses will cumulatively aid to arrive at a discovery. The use of questionnaire research 

signifies independent observation – implies the questionnaire is completed in the absence of the 
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researcher, and since this research is out to establish the true (most) applicable driver to construction 

delay makes it positivist research. A positivist researcher is usually independent (of the subject) as an 

observer, reduces a phenomenon to simpler measurable drivers (causes of delay in construction 

projects to be deduced from several literature will be reduced using Likert scale.), explains the elements 
with regards to how they affect the phenomenon (cause and effect) and often uses large samples 

(Burrell and Morgan 2008; Easterby Smith et al. 1991). The questionnaire was divided into sections 

such that each section deals with a specific feature of event under investigation (delay risk drivers). The 

questionnaire was divided into five sections A to E, such that each section deals with a specific feature 

of event under investigation (delay risk drivers).  Section A gathered the responder’s information, 

section B asked for frequency of occurrence of thirty-four factors, section C enquired what percentage 

a responder would give to fifteen factors and section D enquired to what level of detail one factor had. 

All these made a total of fifty factors as drivers (features/ independent variables). Also, the responders 
were asked to rate how long the entire project delayed for in the final section E; this represents the 

target (dependent variable). 

 

5.7  Research Choice  
Research choice is a term used to describe the fourth layer of the research onion. This layer enables 

researchers to determine whether using either one approach or a combination of quantitative and 
qualitative research is appropriate. The research onion has three described choices, including the 

Mono, Mixed, and Multi method research choices, according to Saunders et al. (2019). When employing 

the Mono research choice, researchers are required to collect only one sort of information, which might 

be quantitative or qualitative as the two cannot be combined. To get a precise collection of data, one 

might combine quantitative and qualitative techniques in a study using the mixed method. According to 

(Flick, 2011), the mixed approach mixes methodologies to generate a single dataset, while the multi 

method is utilised when the study is separated into segments, with each creating a particular data set. 
Since both the mixed method and the multi-method include quantitative and qualitative technique in a 

study, they are comparable. Despite their similarities, they yet differ in certain ways. Multi-method does 

not integrate methodologies to establish a specific collection of data, whereas mixed method does. 

 

5.7.1  Research Choice Adopted 

This study adopts the Mono research choice since it uses quantitative method as a single method for 

gathering its quantitative data (numerical values) for prediction. Also as a positivist research (positivists 

predict) quantitative data is required  (Fuller et al., 2001). Secondly quantitative design helps to achieve 

the research objectives – use of statistical analysis methods to find correlations between construction 

delay and potential covariates.  In quantitative research as this, the data is often presented in numerical 

form, and this information is examined using techniques for quantitative data analysis. The quantitative 
research design is first and foremost concerned with the act of "measuring variables or counting 
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instances of a phenomena." The qualitative research approach, in addition, emphasises "the themes 

and patterns of meanings and experiences associated to the phenomenon." (Collis and Hussey, 2009). 

 

5.8  Sampling Technique 

The idea of sampling is to obtain high-quality data when access to the complete population is not 

possible (Saunders, Lewis and Thornhill, 2019). By directly monitoring a subset of the complete 

population, sampling enables the estimation of a population's characteristics. Researchers are more 

interested in what can be inferred about the overall population from the sample than they are in the 

sample itself. A sample survey needs to be well prepared and characterised. The obtained data won't 

help in achieving the survey's goals if the improper questions are asked. The statistics won't provide a 
good representative of the population if the questions are posed to the incorrect individuals thus can 

lead to skewed outcomes. As Neuman (2014)  suggests, the sample techniques assist in gathering the 

necessary data in a manageable, affordable, and time-efficient manner. Probability sampling and non-

probability sampling are the two categories into which sampling techniques are classified (Saunders, 

Lewis and Thornhill, 2019). Probability sampling is the process of selecting a sample from a population 

when the selection is based on chance, random selection, or the randomization principle (Bell, Bryman 

and Harley, 2018). Bell et al. (2018) claims that a research based on surveys addresses the idea of 

probability sampling. There is an equal opportunity to be chosen for the research sample, and it permits 
the statistical generalisations of a population that is necessary for the study (Saunders, Lewis and 

Thornhill, 2019). Conversely, the non-probability technique selects samples for a carefully designed 

direction. Comparing probability sampling to non-probability sampling entails greater complexity, longer 

processing times, and often higher costs. However, since the population's units are chosen at random 

and the selection probability for each unit can be determined, accurate estimates can be generated, 

and the population may be inferred statistically. While using a non-probability technique, the researcher 

is free to choose the study sample in accordance with their own assessment (Saunders, Lewis and 
Thornhill, 2019). For this study, probability sampling technique is adopted. The objective of selecting a 

probability sample design is to reduce the sampling error of the estimates for the most significant survey 

variables obtained from the construction project experts via online questionnaire while also decreasing 

the survey's time and expense. The features of the survey frame, for example, might influence that 

decision due to operational restrictions. More precisely, this study adopts the stratified probability 

sampling method over other methods such as simple random sampling, systematic sampling etc 

because foremostly in the case of stratified sampling, the population is split into homogenous, mutually 

exclusive groups known as strata, and independent samples are then chosen from each stratum. The 
second reason is that the sampling strategy can differ from one stratum to the next since any of the 

other sampling techniques previously stated can be utilised to sample within each stratum. One last 

justification is that stratified sampling guarantees an appropriate sample size for population subgroups 

of interest. A sample size is determined for each stratum when a population is stratified, which turns 

each stratum into an autonomous population. By using the standard formula, sample size can be 

systematically determined in a quantitative study. In which the determination of the sample size is based 
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on the size of the intended population, the allowable margin of error, the degree of confidence, and the 

distribution of the responses. Determining an appropriate sample size is critical in survey-based 

research to ensure the validity and reliability of the findings. In this study, the sample size for the survey 

was determined using a standard formula, considering the total population, desired confidence level, 

and acceptable margin of error. The calculation of the sample size (𝑛 = 342) in this study follows the 

established principles of inferential statistics, particularly designed for survey-based research. The 

formula applied is: 

𝒏 =	
𝑵 ∗ 𝒁𝟐 ∗ 𝐩 ∗ (𝟏 − 𝐩)

𝑬𝟐 ∗ (𝑵 − 𝟏) + 𝒁𝟐 ∗ 𝒑 ∗ (𝟏 − 𝒑)……………………𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5.1 

Where: 𝑛 n denotes the sample size, 𝑁 represents the population size, 𝑍 is the Z-score corresponding 

to the chosen confidence level, 𝑝 signifies the estimated proportion of an attribute in the population, and 

𝐸 refers to the margin of error, also known as the confidence interval. The total population considered 

for this study encompasses professionals and organizations engaged in BIM-based construction 

projects estimated at 𝑁 = 2060. Estimating the precise number involved was crucial to accurately 

determine the population size. A standard confidence level of 95% was adopted for this study, aligning 
with common practices in social sciences research. The Z-score associated with this confidence level 

is 1.96, ensuring that the sample accurately reflects the population within the bounds of the selected 

confidence interval. Given the absence of specific data on the proportion of the population familiar with 

or utilizing BIM, a conservative estimate of 𝑝 = 0.5 p=0.5 was used. This choice is prudent as it 

maximizes the required sample size, thereby guaranteeing adequate representation across different 

segments of the population. The margin of error was established at ±5%, a commonly accepted 

threshold that strikes a balance between precision and practical constraints. This margin ensures the 

results are accurate while remaining within the feasible limits of survey distribution and data collection 

efforts. By incorporating these parameters, the sample size calculation ensures a robust and statistically 

significant sample, thereby supporting the reliability and validity of the research findings. 

 

5.9 Unit of Analysis  
The level at which data are utilised to represent a single data point in an analysis is known as the unit 

of analysis (Tainton B.E., 1990). It is the social unit about which data is gathered, theories are 

developed, and judgments are drawn (Yang and Miller, 2017). This is a complex task to identify since 

the data are frequently at various levels, the study design, and the analysis's underlying assumptions 
may call for distinct analysis units from the measurement units. The unit of analysis selected has an 

impact on the study design, the number of participants or classes required, and the level of confidence 

we may have in the findings and conclusions. The categories of unit of analysis listed by Bless et al. 

(2013) are as follows: Individuals: This refers to situations in which a group of people, such as young 

adults, Christians, or black Africans, are the subject of a research study and analysis. Each person is a 

unit, and this unit of analysis is the most common. Groups: This entails researching several groups and 

maybe contrasting the groups. In this instance, each group symbolises a unit rather than just its 
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individual members. Organizations: One form of group that is frequently employed as an analytical unit 

in social science research is an organisation, with each organisation in the study serving as a unit. 

Some companies can be contrasted based on their earnings, percentage of workers from particular 

backgrounds, efficacy of policies, corporate social responsibility, etc. Social artefacts: These are 
"products of social beings" and can range from poetry and letters to cars and farming equipment. Such 

artefacts may yield insightful knowledge about the people and organisations that used or made them 

through a methodical investigation. Period of time: This includes examining how something has evolved 

throughout time. Despite the apparent simplicity of these explanations, it is easy to misunderstand what 

a study's real unit of analysis is. The main challenge in choosing and deciding on an acceptable unit of 

analysis is deciding what you want to be able to say about at the conclusion of the study (Grünbaum, 

2007). With the aforementioned explanations, it was determined that the construction project itself 

would be this research's unit of analysis, falling within the unit of analysis's "social artefacts" category. 
This is so because the research's data collection and analysis focused on the construction project delay. 

Additionally, delay in construction projects were a dominant problem in the conclusions of this study. 

The unit of analysis in research may differ from the unit of observation, which is "the entity on which the 

initial measurements are performed," even if they are often the same (Tainton B.E., 1990). The initial 

measurements in this study, such as late payment by the client or ineffective project supervision, were 

established specifically to gauge the extent of construction project delay; hence, construction project 

itself was also the unit of observation. 

 

5.10  Data Collection 

The two basic kinds of data collection methods are primary data collection and secondary data 

collection. These data collection methods are mainly used by researchers for many research initiatives. 

The primary data collection method that are most frequently used include surveys, interviews, and 

observations. Since the primary data collection is done with a specific goal in mind, it may be far more 
accurate and relevant for the research topics that have been selected. However, the significance of 

collecting secondary data is still valid for research endeavours. Reassessing previous data collected 

for a different reason is the essence of secondary data collection. In order to conserve resources like 

time and money, researchers gather secondary data. Researchers have divided the secondary data 

into two categories: raw data and compiled data. According to this viewpoint, researchers obtain 

previously verified data and use it for the objectives of their projects. Howbeit, even while ethical issues 

can be included in the study article, the researchers who want to use the secondary data have no 

influence over how reliable the information has been acquired. For this study, the primary data collection 
method is adopted since the study set out a specific goal to survey experts in the construction industry 

on critical drivers of construction projects delay as a way of approaching its quantitative data collection. 

Furthermore, primary data collection method is adopted since this study’s research data were generated 

by the researcher through an expert survey in the form of a questionnaire (see Appendix A) created 

specifically for comprehending and resolving the research topic at hand. The questionnaire used in this 

study is methodically structured on a Likert scale into five sections, A through E, each designed to 
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capture specific data points relevant to the research objectives. This approach ensures that the survey 

generates detailed and nuanced responses, facilitating a robust analysis of the factors affecting 

construction project delays and the adoption of AI technologies in BIM-based construction projects. 

Section A of the questionnaire focuses on the frequency with which various factors associated with 
construction delays occur. Respondents are asked to rate the frequency of specific events on a scale 

from 1 (Zero) to 5 (Very Frequently). This section directly supports Objective 1, which aims to identify 

and categorize the most common factors affecting construction project delays. By quantifying the 

frequency of occurrences such as equipment breakdowns, labour disputes, and natural disasters, the 

survey provides empirical data that help in ranking these factors based on their impact and prevalence 

in BIM-based projects. In Section B, respondents are asked to estimate the percentage impact of certain 

factors, such as the proportion of late payments by the owner or the percentage of project activities 

affected by ineffective government regulations. This section's design allows for a deeper exploration of 
the severity and scope of each delay factor, correlating with Objective 1's goal of establishing a 

comprehensive understanding of delay factors. The use of percentage-based questions helps quantify 

the extent to which these issues affect projects, providing a clearer picture of their relative significance. 

Section C investigates the detail level of the project's schedule, ranging from 'No Schedule' to 'Detailed 

and Frequently Updated Schedule.' This section addresses both Objectives 1 and 3, by highlighting the 

importance of detailed scheduling in mitigating delays and assessing how these schedules influence 

the effectiveness of AI predictive models. A detailed schedule can be a critical feature in developing 

these models, as it provides a structured dataset for analysis.  Finally, section D asks respondents to 
indicate the percentage by which the project exceeded its initial schedule, providing a direct measure 

of project delays. This section directly feeds into Objective 1 by quantifying the delay's extent, allowing 

for a more precise analysis of the impact of various factors. It also sets the stage for Objective 3, where 

these data points become critical variables in developing and validating AI models. The research 

questions and strategies influence the data collection techniques. As a result, various study 

questions/objectives may necessitate different data collection techniques. For each of the study's 

objectives, Table 5.1 lists the methods for collecting and analysing data. The objectives and deliverables 
are included in Figure 5.2's illustration of the general methodological flow of the study. 

 

Table 5.1: Methods for collecting and analysing data 

Objective Data collection 
method 

Tool 

Conduct a systematic review toward gathering 

the most common factors affecting construction 

project delays and use it to conduct survey of 

experts to establish the most applicable factors 
affecting construction project delays in BIM-

based construction projects. 

Systematic 

Review, Expert 

Survey 

Preferred Reporting Items for 

Systematic Reviews and 

Meta-Analyses (PRISMA) 
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Objective Data collection 
method 

Tool 

Conduct a systematic review of AI in the 

construction industry and use it to establish the 

most appropriate AI technologies during 

construction 

Systematic 

Review 

Preferred Reporting Items for 

Systematic Reviews and 

Meta-Analyses (PRISMA) 

Utilize the applicable drivers in the first objective 

as independent features (variables) to develop 

hyperparameter optimised AI predictive 

model(s) established in the second objective. 

Expert Survey Reliability Analysis, 

Exploratory Data Analysis, 

Data cleaning, Outlier 

detection, feature selection, 

and engineering, 

hyperparameter tuning, AI 

technologies 

 

As an approach to its data collection, this study used online survey software to implement the questions 

in the questionnaire to gather data from respondents. In line with government policies on data protection 

regulations enforced by the university of Hertfordshire for all research activities involving the use of 

human participation, this study has obtained ethics approval - BUS/PGR/UH/05077 for its data 

collection method from the Social Sciences, Arts and Humanities ECDA.  Prior to distribution of the 

questionnaire, pilot testing was conducted over a period of one month by asking group of experts in 

construction via email to comment on the representativeness and suitability of the questions. This is to 

ensure thorough understanding of the questions to be shared amongst potential participants and to 
avoid errors when recording data, to assess questions validity and the likely reliability of data to be 

collected (Saunders et al, 2015: p.425). These experts are highly experienced construction 

professionals with over ten years’ experience in construction industries, including contractors, quantity 

surveyor, architects, technical consultants, civil engineers, site engineer, procurement managers 

among many others. Feedback, suggestions, and recommendations from them were used to readdress 

the questionnaire before making available its final version to all participants online. All participants had 

four months period (from 28th of July 2021 to 1st of October 2021) to complete the questionnaire. These 

participants were highly experienced construction professionals with over five years experience in 
construction sector, including contractor, quantity surveyor, consultants, and architects amongst many 

others, completed the online questionnaire. Consequently, resulting in a total of 324 responses received 

from 430 online questionnaire distributed. 
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Figure 5.2: The general methodological flow of the study 
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5.11  Chapter Summary 
This chapter talked about the research methodology for this study. First, it discussed the research 

philosophy. There are three parts to it - ontology (the study of reality), epistemology (the assumptions 

about knowledge), and axiology (the study of values and ethics). It then took a positivist, objectivist 

philosophical stance. Next, it covered the research paradigm. The main paradigms are positivism, 

realism, interpretivism, and pragmatism. The research adopted the positivism paradigm. It then 

discussed the research approach - whether to use deductive or inductive approaches. This study used 

a deductive approach. The research design refers to whether the study will be quantitative, qualitative, 

or mixed methods. This study adopted a quantitative research design. For the research strategy, this 
study used a survey method by administering an expert questionnaire. The research choice is whether 

to use a mono method (single data type), mixed methods, or multi-methods approach. This study used 

a mono-method quantitative approach. For sampling, it adopted a probability sampling technique, 

specifically stratified random sampling, to ensure representative samples. The unit of analysis explains 

what the study aims to analyse and draw conclusions about. For this study, the unit of analysis was 

construction project delays. For data collection and, the study used primary data collected through an 

expert survey questionnaire.  
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CHAPTER 6  

6.0 DATA ANALYSIS5  
 

6.1 Chapter Overview 

By using clear visual aids like charts and tables together with their explanations, this chapter present 

the detailed data analysis of the research data collected through expert survey in the form of 

questionnaire. The data collected via the questionnaire (see chapter five) is analysed in this chapter to 

generate the quantitative variables (features) required for the development of artificial intelligence 

models for predicting potential delays in BIM-based construction projects, which will be developed in 

the following chapter. There are two major divisions in this chapter: exploratory data analysis detailing 

respondent profiles, and descriptive statistics. 

 

6.2 Exploratory Data Analysis 

One of the study's objectives, which was to provide answers to the research questions, was considered 

in the questionnaire design. The questionnaire was designed after much research and brainstorming. 

Meetings with representatives from the construction sector were held in order to determine the 

appropriate questions to ask and how best to deliver the answers. Additionally, special consideration 
was given to how well the questions would be understood by the responders. There were two main 

parts to the questionnaire. General background information about the respondents is provided in the 

first part, including their highest degree of education, position, and number of years of experience in the 

construction business and addressing the broad industry traits that respondents had in mind, such as 

the location and the type of construction project. A total of four hundred and thirty (430) online surveys 

were issued over a four-month period, and the researcher received three hundred and twenty-four (324) 

responses from them. This implies that the response rate was 75.35%. It was found while comparing 
their highest level of education that two hundred and five (205) (63.27%) of the respondents, who had 

the highest degree of education, held PhDs (see Figure 6.1). 

 
5 This chapter is primarily derived from the following journal articles: 
Egwim, C.N., et al. (2021) ‘Extraction of underlying factors causing construction projects delay in 
Nigeria’, Journal of Engineering, Design and Technology, ahead-of-p(ahead-of-print). doi:10.1108/jedt-
04-2021-0211. 
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Figure 6.1: Highest level of education of respondents. 

 

As shown in figure 6.2, 60% of the respondent year of experience was largely distributed between six 

and fifteen years – 33% fell between six and ten years and 27% between eleven and fifteen. This 

suggests that vast majority of the respondents are more aware of the working conditions on a 

construction site based on the construction project they had in mind when completing the survey and 

what their employers anticipated from them in terms of their job functions or performance. 
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Figure 6.2: years of experience of the respondents. 

 

For clarification, Figure 6.3 illustrated the specifics of the various construction project’s professional 

cadres of respondents together with their percentages. More precisely, it shows that highly experienced 

construction professionals with over five years’ experience in the construction sector including 

contractor (29.32%), quantity surveyor (27.78%), consultants (21.91%), and architects (17.59%) 

amongst many others completed the online survey. It is rather noteworthy that contractors make up a 
larger percentage of these experts that completed the survey as contractors are primarily responsible 

for carrying out and finishing major construction project tasks in accordance with the contract's terms, 

standards, specifications, timescale, and agreed-upon pricing(s). 
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Figure 6.3: professional cadres of respondents 

The majority of respondents represent stakeholders in the construction industry who have participated 

in project(s) with a budget of between one million and one hundred million pounds (see figure 6.4). This 

is very significant since it implies that the bulk of these construction projects are classified as medium 

or large projects, which is consistent with the European Commission's classification of project sizes 
(see chapter 1). 

 

Figure 6.4: approximate construction project size. 
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Furthermore, an exploratory study of the survey results uncovered several types of construction projects 

that the respondents had previously worked on (see Figure 6.5). In more specific terms, it reveals that, 

out of the 324 responses, roughly 160 respondents (or 49.38%) have experience working on residential 

construction projects, followed by those who have experience working on infrastructure projects with 
85 respondents (26.23%). This proves the viability of the proposed artificial intelligence model, which 

will be developed using this data as being capable of resolving delay issues in a range of construction 

projects. Additionally, it supports the conclusions of the first systematic review of this subject (see 

chapter 2), which identified infrastructure and residential projects as two of the three most crucial 

construction projects that encounter delays. 

 

Figure 6.5: approximate construction project type 

 

6.3 Descriptive Statistics 
A comprehensive statistical analysis of the survey dataset, encompassing fifty-two factors as 

independent variable (F1 to F52) and project delay as dependent variable (F53), is undertaken (see 

Figure 6.6). This rigorous examination employs descriptive statistics (summary statistics) to provide an 

extensive understanding of the data. It includes measures of central tendency, dispersion, and 
position, offering a holistic view of the dataset's characteristics. Table 6.1 highlights the fifty-two 
applicable factors consolidated at the end of the survey exercise. 
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Table 6.1: Compilation of Independent Variables (Features) and the Dependent Variable 
(Target) 

Factor ID Factors 

F1 Quality control issues 

F2 Conflict between contractor and subcontractor 

F3 Reworks due to error in construction 

F4 Conflicts between consultant and contractor 

F5 Inflation or sudden increase in commodities 

F6 Labour dispute or strikes  

F7 Unfavourable weather conditions  

F8 Natural disasters like floods earthquakes etc. 

F9 Contractors’ financial difficulties 

F10 Variation in structural design 

F11 Late delivery of construction materials 

F12 Change orders 

F13 Discrepancies issues in contract documents 

F14 Fluctuation in material prices 

F15 Contractor cash flow issues 

F16 Client cash flow issues 

F17 Consultant cash flow issues 

F18 Unforeseen site conditions 

F19 Political Influence. 

F20 Shortage of resources 

F21 Space limitations at site for temporary equipment 

F22 Space limitations at site for permanent equipment 

F23 Changes in site topography after design 

F24 Poor site investigation or management 

F25 Shortage of materials 

F26 Change of requirements by client 

F27 Corruption issues 
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Factor ID Factors 

F28 Staff use of outdated construction methods 

F29 Staff use of new technologies 

F30 Site accident 

F31 Change of specifications during construction 

F32 Low productivity level of workers 

F33 Poor decision making 

F34 Change in economic conditions 

F35 Equipment break 

F36 Late payment by the owner  

F37 Unskilled labourer 

F38 Late delivery of ordered materials by suppliers 

F39 Inaccurate budgeting 

F40 Inaccurate resource planning 

F41 Poor communication among stakeholders 

F42 Ineffective project planning 

F43 Poor contract management 

F44 Ineffective government regulations 

F45 Damaged storage materials  

F46 Nature of equipment(s) used 

F47 Ineffective project management 

F48 Ineffective project supervision 

F49 Pandemic 

F50 Traffic restrictions 

F51 Building permit  

F52 Schedule/program of work 

F53 Project delay 
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6.3.1 Measures of Central Tendency: 

The measures of central tendency, namely mean, median, and mode, are fundamental to any statistical 

analysis. These measures provide a snapshot of the dataset by identifying a central value that best 

represents the data. For instance, the mean of unfavourable weather conditions (F7) as a delay driver 

is 2.69, suggesting that the average value of all observations by the respondents in the occurrence of 
unfavourable weather conditions during construction activities is approximately 2.69. This mean value 

on a scale of one to five suggests that the respondents' perceptions of unfavourable weather conditions 

during construction were neither extremely severe nor completely absent. This finding implies that the 

construction projects considered in the dataset were subject to varying degrees of unfavourable weather 

conditions. Additionally, it suggests that the respondents, who are individuals involved in the 

construction industry, reported encountering weather conditions that had some impact on the progress 

or execution of construction activities.  The median, being the middle value when the data is arranged 
in ascending order, provides a robust measure of central location that is not skewed by outliers. From 

the survey data it is observed that the median of each independent variables also varies. The mode - 

the most frequently occurring value in a dataset, especially for categorical survey type of data, further 

enriches our understanding of the data by highlighting the most common observation. More so, the 

mode is not affected by extreme values or outliers in the dataset, making it a robust measure of central 

tendency. This is particularly beneficial when dealing with skewed distributions where the mean may 

be significantly influenced by extreme values, and the median may not adequately represent the most 

common outcome. The presence of multiple modes (bimodal or multimodal distributions) is eminent 
from the survey data (see Figure 6.6). For instance, independent variable F29 which represents 

adoption of new technologies among construction workers as delay risk driver share the mode value of 

4.00. Similarly, independent variables F40, F42, and F43, which represents inaccurate resource 

planning, ineffective project planning, and poor contract manage as delay risk drivers respectively also 

shares the same mode value of 2.00 amongst many others. This suggests the presence of two or more 

distinct groups within the survey data, each centred around its own mode, indicating a concentration of 

respondents' ratings or perceptions in specific categories or levels of the independent variables. This 

can be indicative of underlying patterns or groupings that may not be immediately apparent from other 
measures of central tendency. More precisely, the adoption of new technologies, represented by F29, 

share the mode value of 4.00 suggests a notable group of construction workers who highly prioritize 

and extensively new technologies in their work. This finding implies the presence of a subgroup within 

the survey respondents who have embraced advanced technologies, such as BIM, and consider them 

integral to addressing delays and improving project outcomes. These construction workers likely have 

a shared perspective on the benefits and effectiveness of BIM and new technologies in mitigating delays 

and enhancing project efficiency. Similarly, the shared mode value of 2.00 for inaccurate resource 
planning (F40), ineffective project planning (F42), and poor contract management (F43) suggest a 

single factor underlying these responses. 
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Figure 6.6: Central Tendency of the Dependent and Independent Variables (Mean, Median, Mode) 
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6.3.2 Measures of Dispersion: 

The measures of dispersion, specifically the standard deviation, are equally critical in understanding 

the variability within the survey dataset because it quantifies the amount of variation or dispersion of a 

set of values. A low standard deviation indicates that the values tend to be close to the mean, while a 

high standard deviation suggests that the values are spread out over a wider range. This measure, 

therefore, provides a sense of the reliability of the mean, indicating whether the mean is representative 

of the data or if it is skewed by extreme values. Examining the survey data, the independent variable 
F41, which represents poor communication among construction stakeholders as a delay driver, exhibits 

a standard deviation value of 1.24 (see Figure 6.7) and a mean value of 2.76 (see Figure 6.6). This 

information has implications for the understanding of the data and the interpretation of the mean value. 

The values are spread out over a range, indicating that some respondents perceive poor communication 

as a significant delay driver, while others may not consider it as influential. The standard deviation of 

1.1 was used as cut-off to visually distinguish between variables with relatively low and high variability. 

By using this threshold, variables that have higher dispersion in their values were highlighted, potentially 

indicating greater variability in responses. The higher standard deviation implies that there may be 
diverse perspectives or varying degrees of severity attributed to poor communication by the 

respondents. In relation to the mean value of 2.76, the standard deviation provides insights into the 

reliability of the mean as a representative measure of the data. With a relatively high standard deviation, 

there is an indication that the mean value may be influenced by extreme values or significant variations 

among the responses. It suggests that the mean value of 2.76 may not fully capture the range and 

diversity of opinions regarding the impact of poor communication on project delays. Hence, justifying 

the importance of considering the standard deviation alongside the mean to understand the distribution 
and variability of responses for a more comprehensive interpretation. Furthermore, the standard 

deviation helps identify potential outliers or extreme values that can significantly impact the mean. In 

the case of poor communication as a delay driver (F41), the standard deviation of 1.24 suggests the 

presence of substantial variation in perceptions, possibly influenced by unique or extreme viewpoints 

within the dataset. These outliers or extreme values, when present, can significantly influence the 

overall interpretation and decision-making processes related to addressing poor communication as a 

delay driver. 
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Figure 6.7: Measure of Dispersion of the Dependent and Independent Variables (Standard 
Deviation (STD)) 

 

6.3.3 Measures of Position: 

The measures of position, including the minimum, 25th percentile, 50th percentile, 75th percentile, and 

maximum, provide further insights into the distribution of the data. These measures, also known as the 

five-number summary, provide a comprehensive overview of the data's spread. The minimum and 
maximum values define the range of the dataset, while the 25th, 50th, and 75th percentiles, also known 

as quartiles, divide the data into four equal parts. The 50th percentile is essentially the median which 

has been discussed in the previous subsection, providing a measure of central tendency that is not 

affected by outliers. The interquartile range, defined as the difference between the 75th and 25th 

percentiles, provides a measure of statistical dispersion that, like the median, is not influenced by 

outliers. Analysing the measures of position for these variables helps us grasp the distribution and 

relative severity of delay risk drivers in construction projects. The 25th percentile values provide insights 
into the lower quartile, indicating the level below which a significant portion of the projects fall. For 

instance, independent variable F8, which represents the occurrence of natural disasters, we observe 

that the 25th percentile value is 2.00 (see Figure 6.8). It is thus likely that less than half of the responses 

are more than 2.00 since the median of F18 is also 2.00. This information helps us understand the 

prevalence of natural disasters as a delay driver and provides a benchmark for comparison with other 

variables. On the other hand, the 75th percentile value represents the upper quartile or the value below 

which 75% of the projects experienced a frequency or severity equal to or lower than that value.  As 

shown in Figure 6.8, the 75th percentile value of F8 (occurrence of natural disasters) being 3.00 
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indicates that 75% of the projects surveyed experienced a frequency of natural disasters equal to or 

lower than 3.00. This suggests that while the majority of the projects encountered a relatively low to 

moderate frequency of natural disasters, a significant portion still faced notable occurrences of these 

events, implying that natural disasters pose a substantial risk to construction projects, potentially 
causing delays and disruptions. In the same vein, as shown in Figure 6.8, the 75th percentile value of 

F34 (change in economic conditions) being 4.00 indicates that 75% of the projects experienced a 

change in economic conditions equal to or less severe than 4.00. This suggests that economic 

fluctuations have a considerable impact on construction projects, potentially leading to delays and 

uncertainties. Furthermore, comparing the 75th percentile values of F8 and F34 allows for a 

comparative analysis of the impact and severity of different delay risk drivers. In this case, the higher 

75th percentile value of F34 (4.00) compared to F8 (3.00) suggests that economic conditions have a 

more significant influence on project delays than natural disasters. Additionally, comparing the 25th 
percentile value and the 75th percentile value of a particular delay driver, such as F8 (occurrence of 

natural disasters), can help identify potential patterns or trends in the impact of the delay driver(s) in 

construction projects. 

 

 

Figure 6.8: Measure of Position of the Dependent and Independent Variables (25th and 75th 
Percentiles) 
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6.4 Chapter Summary  
This chapter presents a data analysis of the gathered research survey results with the principal objective 

of generating the requisite quantitative variables for the subsequent development of artificial intelligence 

models to predict potential delays in BIM-based construction projects. An exploratory study of the 

survey results reveals that the bulk of the erudite respondents, of whom approximately 63% held 

doctorates, had between 6 and 15 years of experience in the construction domain. This implies they 

likely possessed extensive discernment regarding the on-site working conditions and were cognizant 
of their employers' performance expectations based on the construction projects they had in mind when 

diligently completing the survey. Further analysis uncovers that contractor constituted the predominant 

share, approximately 29%, of the experts that completed the survey. This is particularly notable given 

that contractors bear principal responsibility for spearheading and concluding major construction project 

tasks in accordance with the contract's stipulations, benchmarks, specifications, timeframes, and 

agreed pricing(s). Additionally, an examination employing descriptive statistics, encompassing 

measures of central tendency, dispersion, and position, is undertaken to procure extensive 

comprehension of the dataset's characteristics. The measures of central tendency, namely the mean, 
median and mode provide a concise representation of the dataset by pinpointing a central value that 

best characterizes the data. For instance, the median facilitates a robust evaluation of the central 

tendency, being relatively unaffected by outliers and skewed data. Moreover, the presence of multiple 

modes in the dataset suggests two or more distinct respondent groups, each concentrated around a 

particular perspective regarding the impact of factors such as BIM usage. Furthermore, the measures 

of dispersion and position offer additional insights into the variability and spread of the data. The 

standard deviation quantifies the dispersion, indicating whether the mean reliably represents the data 

or is skewed by extreme values. The minimum, maximum, quartiles and percentiles outline the 
distribution range and spread, enabling comparative analysis of factor impacts across the projects.  
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CHAPTER 7  

7.0 DEVELOPMENT OF AI PREDICTIVE MODELS 
FOR BIM-BASED AND NON-BIM-BASED 

CONSTRUCTION PROJECTS 
 

7.1 Chapter Overview 
This chapter explores into the intricate process by which the expert survey data, in conjunction with 

robust predictive algorithms, was harnessed to develop sophisticated predictive AI models aimed at 

addressing delays in both BIM-based and non-BIM-based construction projects. The chapter unfolds 
as a structured account of these endeavours, which commenced with a comprehensive data analysis. 

This process involved the judicious selection of relevant quantitative variables, as previously expounded 

upon in chapter six. This is achieved through processes such as data cleaning, the judicious selection 

of relevant features, and data engineering. Furthermore, the journey extends to the optimization of 

model parameters, fine-tuning them to enhance predictive accuracy. This iterative procedure aids in 

selecting the most suitable algorithmic frameworks, enriching our understanding of the complex 

dynamics within construction projects. This chapter plays a crucial role in transforming raw survey data 

into sophisticated AI models, which, in turn, enhance project efficiency by proactively addressing and 
mitigating delays. 

 

7.2  Data Pre-processing  
The process of data pre-processing assumes a paramount role as part of data preparation, 

encompassing various operations executed on raw data to render it amenable for subsequent data 

processing methodologies. It has long been underscored as an indispensable initial phase in the data 
mining continuum, poised not only for the training of artificial intelligence (AI) and machine learning 

models but also for the formulation of inferences derived from these models. This study, in its pursuit 

of comprehensive data pre-processing, explores into data profiling as a precursor, entailing a careful 

examination, evaluation, and review of data to extract statistical insights into its quality. The initial 

exploration of the expert survey data, unfolded through Exploratory Data Analysis (EDA). This analysis 

disclosed that the data manifests as a two-dimensional array, featuring 324 rows and 53 columns. The 

initial 52 columns (F1 – F52 factor IDs) represent features or independent variables, while the 53rd 
column (F53) serves as the target or dependent variable, as presented in Table 5.2 of section 5.  
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Descriptive statistics unveiled the discrete categorical nature of these columns, housing ordinal values 

ranging from one to five. Moreover, Figure 7.1 illustrates the distribution shape of the dataset, 

spotlighting that the median predominantly aligns with ordinal values two and three across most 

columns. The interquartile range, indicative of the concentration of central data, spans from 
approximately ordinal value two to three. Notably, the upper whisker extends predominantly to ordinal 

value four, encapsulating the majority of values, while the lower whisker reaches down to ordinal value 

one, signifying the presence of lower values that, however, do not qualify as outliers. Subsequently, the 

focus shifts to data cleaning, a process integral for rectifying quality issues within the dataset, such as 

addressing missing data, filling data gaps, and ensuring the overall adequacy of raw data for 

subsequent feature engineering endeavours. Notably, amidst the array of data imputation techniques 

available, including multiple imputation, interpolation, forward-fill, and backward-fill, this study adopts a 

judicious median imputation strategy for its ordinal data. The rationale behind this choice lies in the 
identification of missing values as completely at random during the survey, aligning with the suitability 

of median imputation for handling missing ordinal data in comparable studies (Graham, Olchowski, and 

Gilreath, 2007). Empirical evidence from studies, such as that by Enders and Peugh (2004), 

underscores the comparable performance of median imputation in terms of bias and standard errors, 

particularly when the extent of missing data remains low. Similarly, Cugnata and Salini (2017) affirm 

the supremacy of median imputation over alternative methods, citing its consistent outperformance in 

accuracy and reliability for handling missing values in ordinal data. The absence of outliers in the data 

distribution further attests to the robustness of the chosen imputation strategy, with all ordinal data 
values falling within the anticipated range (refer to figure 7.1). Post the exploratory phase, 

encompassing EDA, data profiling, and data cleaning, the analytical journey proceeds to a correlation 

analysis aimed at elucidating potential multicollinearity among predictors (features) in relation to the 

target variable. The correlation analysis relies on the computation of correlation coefficient values, which 

are subsequently visualized in Figure 7.2. This correlation matrix plot outlines the cross correlations 

between each feature (F1 – F52) and the target (F53). For instance, the positive correlation of 0.67 

between F31 and F23, or the negative correlation of -0.27 between F29 and F28, signifies the interplay 
between different features. Notably, the criterion for identifying multicollinearity, an absolute correlation 

coefficient surpassing 0.7 among two or more predictors (Dormann et al., 2013), is rigorously adhered 

to in this analysis. The outcome is unequivocal as no evidence of multicollinearity exists among any 

pair of features or between the predictors (features) and the target variable, as discerned from the 

insights presented in Figure 7.2. 
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Figure 7.1: Distribution Pattern of the Dataset.
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Figure 7.2: Distribution Pattern of the Dataset

 
Figure 7.2: Visualization of the Correlation Matrix. 
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7.3 Feature engineering 

Feature Engineering entails the systematic procedure of selecting, altering, or generating features 
(variables) derived from raw data with the aim of augmenting the efficacy of machine learning models. 

This process encompasses the conversion of the initial data into a refined representation, thereby 

enhancing the model's proficiency in discerning patterns, relationships, and underlying structures. 

Working with machine learning models necessitates feature engineering as a poor feature will directly 

affect your model, regardless of the data or architecture. Various tasks within the domain of feature 

engineering are extant, encompassing operations such as feature transformation, encoding, and 

scaling amongst many others. Furthermore, machine learning models often require numerical inputs, 

necessitating the conversion of categorical data into numeric representations. Encoding categorical 
data (such as the expert survey data for this study) serves the purpose of generating variables for model 

training and predictive features based on categories. Various encoding techniques exist, with this study 

opting for one-hot encoding for categorical data variables. One-hot encoding represents each category 

with a set of Boolean variables, indicating the presence or absence of a category for each observation. 

The chosen encoding technique retains all information of the categorical variable, does not assume 

category distribution, enhances data expressiveness, and allows for easy rescaling. Additionally, we 

more readily establish a probability for our values by utilising numeric numbers. In consequence, one-

hot encoding is used for output values because it delivers more complex predictions than single labels. 
In this study, One-hot encoding (k-1 variant) was implemented as shown in Figure 7.3 on the target 

variable (F53). This procedure entailed encoding the data from column F53 into binary values: 0 

(indicating no delay) for ordinal values less than or equal to 3, and 1 (indicating delay) for ordinal values 

of 4 and 5 (see Figure 7.3). This encoding facilitates the representation of the presence or absence of 

a specific category (delay) through the binary values of 0 or 1, respectively.  
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Figure 7.3: Visualizing One-Hot Encoding of the Target Variable 

 

While one-hot encoding facilitates the bifurcation of the target variable into binary designations denoting 
the presence or absence of construction project delays, this encoding resulted in the introduction of 

class imbalance within the newly encoded target variable. Specifically, evaluation of the target variable 

distribution after one-hot encoding indicated that the ‘delay’ designation was substantially more 

represented within the dataset compared to the ‘no delay’ category. An analysis of the encoded column 

indicated the presence of 244 cases of project delays compared to only 79 instances of projects devoid 

of delays, highlighting a significant class imbalance in the ratio of 3:1 approximately (see Figure 7.3). 

The presence of skewed distributions with a predominant class poses an impediment during model 
development and evaluation, potentially encouraging overfitting towards the majority class. Class 

imbalance hampers model generalizability by diminishing performance on the minority class and 

associated edge cases. Furthermore, evaluation metrics conventionally employed under balanced class 

assumptions like classification accuracy become ineffective for imbalanced problems. Therefore, 

addressing this polarity in the bifurcated target variable distribution constitutes a vital step to facilitate 

an unbiased AI model, prevent majority class overfitting, and ensure generalization capability to unseen 

minority cases. Techniques commonly employed to address class skews include both data-level 

solutions of resampling the dataset and algorithmic methods of cost-sensitive learning. Oversampling 
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the minority class through synthesis of new ‘no delay’ cases can ameliorate imbalance issues by 

balancing distributions. Specifically, the application of the Synthetic Minority Oversampling Technique 

(SMOTE) will generate synthetic samples of the minority category through interpolation along nearest 

neighbour instances. The key phases in SMOTE encompass the computational identification of k-
nearest neighbours for each minority class sample based on feature space proximities, followed by 

stochastic linear interpolation to produce synthetic samples similar to but distinct from original 

neighbours. This strategic oversampling curtails overfitting by introducing acceptable data diversity, 

besides balancing distributions. Additionally, SMOTE will retain the original minority instances during 

this controlled oversampling process aimed at distribution parity between ‘delay’ and ‘no delay’ 

categories. Furthermore, cost-sensitive boosting or weighting techniques applicable during model 

training constitute complementary algorithmic approaches towards counteracting residual effects of 

imperfectly balanced classes. 

 

Figure 7.4: Feature and Target Distribution Before and After SMOTE Oversampling 
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In consideration of the threat imposed towards model efficacy and generalizability by skewed target 

variable distribution, this study implemented SMOTE based oversampling of the minority (no delay) 

class to achieve improved balance. Figure 7.4 illustrates the frequency distribution plots of the target 

variable both pre- and post-SMOTE implementation. Additionally, for the purpose of visually inspecting 
the synthetic sample data introduced to the feature variables, Figure 7.4 depict scatter plots comparing 

two specific features (F18 vs. F24) before and after SMOTE oversampling. This examination is of 

paramount importance for discerning the locations where synthetic samples are incorporated, thereby 

enhancing our understanding of how oversampling influences the feature space. The SMOTE process 

resulted in the generation of an additional 166 new samples, supplementing the initial set of 324 

samples, thereby culminating in a comprehensive dataset comprising a total of 490 records. Machine 

learning models work better if the variables follow a normal distribution, often requiring specific 

transformations of features to achieve this normality (Raymaekers and Rousseeuw, 2021; Sun and Xia, 
2024). However, primary datasets such as the data for this study commonly exhibit variables with 

skewed distributions. Consequently, enhancing the efficacy of machine learning models involves 

diversely transforming these variables and aligning their skewed distributions with a normal distribution. 

The procedures employed to standardize the range of values for independent variables are denoted as 

feature scaling. This is imperative due to the predisposition of variables with larger magnitude ranges 

to exert greater influence than those with smaller ranges. Additionally, expeditious convergence of 

gradient descent is facilitated when features possess comparable magnitudes. Therefore, maintaining 

uniformity in the scale or magnitude of all features is imperative to preclude disparate impacts, 
particularly when models are sensitive to magnitude. Various feature scaling techniques are available, 

encompassing mean normalization, min-max scaling, standardization, robust scaling, among others. 

This study adhered to the standardization feature scaling technique. This method was employed to fulfil 

the requirement by executing the subtraction of the mean from each observation of a feature and 

subsequently dividing the result by the standard deviation, as articulated in the equation and Figure 7.5 

below:  

𝑿! =	
𝑿 −	𝐱0
𝝈 		…………………………… . 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏	𝟕. 𝟏 

Here, 𝑋′ denotes the standardized value, 𝑋 represents a specific feature observation, 𝐱M signifies the 

mean, and 𝜎 denotes the standard deviation. Consequently, the resultant dataset, post feature scaling, 

attains a variance of 1, centres its mean at 0, and exhibits a dynamic range between minimum and 

maximum values (see Figure 7.5). Subsequently, the dataset underwent partitioning, establishing a 

ratio of 60:40 for training (294 data points) and testing (196 data points). This rigorous approach ensures 

the model's proficiency in recognizing patterns and generalizing to unseen data instances, thereby 

contributing to the robustness of the analytical framework. 
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Figure 7.5: Feature Distribution Before and After Standardization Feature Scaling Technique 

 

7.4 Feature selection 

Feature selection constitutes an integral component within the machine learning pipeline by attenuating 

dimensionality and generalization error while enhancing model interpretability (Ling et al., 2023). The 

identification and extraction of the most informative predictor variables from the raw dataset facilitates 

efficacious development of predictive models . As shown in Figure 7.6, two predominant paradigms of 
feature selection exist, supervised and unsupervised, differentiated by utilization of labelled output data. 

Supervised techniques harness the target variable to guide the selection process, evaluating predictor 

relevance founded on statistical relationships between features and responses. This enables the 

distillation of explanatory variables with maximal predictive capacity regarding the outcome of interest. 

Conversely, unsupervised methods disregard output data, instead detecting latent data patterns and 

intrinsic characteristics (Kong et al., 2022). Thereby unsupervised feature selection explores feature 

relevance devoid of specified objectives in an undirected manner. Optimal feature selection for the 
present study necessitates deliberation of the survey dataset structure comprising the table of features 

F1 through F52. These features annotate potential indicators and drivers of delay. The target variable 

is manifested in the ordinal feature F53, quantifying construction delay on a Likert scale. Therefore, the 

predictive modelling objective entails prognosticating the construction delay response founded on the 

predictor features. This thus renders supervised feature selection techniques most suitable by 
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leveraging correlations of features (F1 to F52) with the target (F53) to deduce explanatory variables 

relevant to delay prediction. Consequently, the study employs the supervised feature selection 

techniques encompass filter methods, wrapper methods, and embedded methods to evaluate and 

select features predictive of the target variable. The study thereby capitalizes on supervised feature 
selection to inform predictive model development through selection of delay-relevant predictors from 

the domain-specific expert survey data. 

 

 

 

Figure 7.6: Feature Selection Methods 

 

7.4.1 Filter-based Approach 

Filter-based feature selection refers to techniques that apply a statistical measure to score and rank the 
relevance of features based on intrinsic data properties, independent of any machine learning model 

(Theng and Bhoyar, 2024a). The core premise relies on filtering features prior to model fitting guided 

solely by characteristics of the data itself through univariate relationships between the feature and target 

variable. These approaches quantify the descriptive utility of each feature in isolation and retain those 

demonstrating statistical significance for predicting the output. Common scoring criteria include 

distance, information, dependence, and consistency metrics that rank feature correlation, mutual 

information, or separability between classes (Gong et al., 2024). Methods generally order features by 

the computed metric and eliminate those below a threshold. Many apply sequential searches greedily 
adding or removing based on ranking. As the methodology filters variables without reference to a model, 

advantages of pre-filter methods focus on their universality, efficiency, and reusability. Statistical 
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evaluations scale well to ultra-high dimensions and run faster than wrappers or embedded routines. 

The capability to pre-process once and apply across diverse models makes this stage amenable to 

pipelining. However, filters assessing individual relevance overlook multivariate interactions and 

struggle with collinear groups of useful predictors. Next, we explore the predominant techniques and 
metrics leveraged in filter-based feature selection schemes. This study explores into the implementation 

of various statistical filter approaches, encompassing information gain, the chi-squared test, and 

Fisher’s score. Notably, the missing value ratio, another filter method, is omitted from consideration due 

to prior handling of missing values during dataset pre-processing.  

 

Information Gain 

Information gain constitutes a prominent filter-based feature selection technique leveraging the principle 

of entropy from information theory to quantify the predictive signal within features (Zhou et al., 2024). It 
operates by measuring the reduction in uncertainty about the target variable when knowing the feature 

versus when ignoring it. A higher decrease in output unpredictability in the presence of a given input 

signifies elevated information content encoding greater predictive utility. Mathematically, information 

gain computes the divergence between target variable's entropy without and with conditioning on that 

feature (Lim et al., 2022). The term entropy quantifies unpredictability within a random variable, or the 

information required to describe it. For categorical outcomes, it tracks the homogeneity versus 

heterogeneity of class distribution. Higher entropy indicates more balanced class splits demanding 

more information to predict correctly. Figure 7.7 illustrates the outcome of the information gain 
implementation, revealing that features F5, F22, F35, F42, and F51 are among the top five features 

based on the feature importance score. Information gain, quantifying the reduction in output uncertainty 

achieved by knowledge of the predictor variable, highlights variables causing substantial decreases in 

target entropy as broadly relevant, irrespective of the model. Consequently, features useful for 

classification will reduce this target entropy thereby exhibiting higher information gains. The 

computation proceeds by first tabulating the unconditional entropy for just the output vector based on 

its class probability distribution. Thereafter, it incorporates conditioning on the candidate feature by 
averaging target entropy across the feature's values weighted by those probabilities. The final gain 

emerges from the deviation between the conditional and unconditional terms - larger drops in 

uncertainty signal variables more informative for the task. Beyond classification contexts, information 

gain generalizes for ranking usefulness of features with respect to continuous numerical regression 

problems too (Bolón-Canedo, Sánchez-Maroño and Alonso-Betanzos, 2015). Here, it measures the 

variance reduction for the target when incorporating knowledge of the predictor. Intuitively, features 

explaining more variation in the output demonstrate greater association and predictive merit. 

Calculation simply replaces entropy with variance while maintaining an identical relative conditioning 
framework. The innate sensitivity to both categorical and real-valued data coupled with low 

computational demands enable widespread adoption of information gain filters. Also, it avoids strict 

assumptions or distributional requirements while detecting monotonic and non-linear interactions.  
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Figure 7.7: Information Gain Ranking of Features 

 

Chi-Squared Test 

The chi-squared test constitutes a statistical filter for evaluating association between categorical 

features and a target variable(Dey et al., 2022). It tests divergence from the null hypothesis that a given 

categorical predictor and output are independent. High chi-squared values indicate dependence thus 

rejecting the independence assumption signalling useful classification features. Computationally, it 
contrasts observed frequencies of predictor-target combinations against expected counts if they were 

unrelated (De Caro et al., 2023). Higher discrepancies reveal statistical dependency worthy of retention. 

Formally, it calculates normalized sum of squared differences between observed and expected 

frequencies across the contingency cells. Interpretation examines deviation between the resultant score 

distribution against a theoretical chi-squared distribution with degrees freedom equal to number of cells 

minus 1. Scores situated at distribution tails with low probability thresholds reject independence. Typical 

filtration retains features whose p-values from chi-squared test fall below 0.05 or 0.01 levels as 
thresholds for statistical significance of dependency. Figure 7.8 demonstrates its examination of the 

correlation between features and outcomes, resulting in features F50, F13, F2, F5, and F15 as the top 

features based on the feature score. Predictors with significant p-values indicate predictive associations 

with the response variable. As a univariate statistical filter, chi-squared analyser enjoys certain 

advantages aligned with filter methodology (Egwim, Alaka, Pan, et al., 2023b). It avoids expensive 

model training and hyperparameter tuning. Robustness against collinearity and high dimensions 
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enables excellent scalability. Also, the adjustment of the p-value cut-off provides smooth control over 

filtered subset size. Furthermore, subsequent multivariate validators on retained features improve 

optimality. However, limitations such as use of rigid thresholds and isolation from modelling context 

hinder selectivity relative to wrappers. Still, as the most common calculation for testing categorical 
association, chi-squared filter retains merit for rapidly pruning irrelevant high-cardinality spaces. 

Coupling with pre-binning methods for numerical features and ensemble aggregation to improve 

stability keeps it relevant amidst fierce filter competition. Integrative pipelines blending with other 

categories henceforth present a pragmatic path forward.  

 

Figure 7.8: Chi-Squared Ranking of Features 

 

Fisher’s Score 

Fisher’s score operates as a supervised statistical metric for gauging relevance of features through the 

lens of class separability (Niwas et al., 2015). Conceptually, it aims to quantify the extent of 
discrimination between subgroups partitioned by the target variable based on evaluation feature 

dispersion within those segmented strata. Mathematically, the formula factors class means showcasing 

separation and inverse in-class variances capturing compactness. Specifically, it evaluates the 

difference of means adjusted by a normalizing constant equalling arithmetic average of the variances 

of that feature restricted within samples from each target class. Intuitively, the numerator targeting mean 

divergence seeks higher values indicating greater subclass differentiation power for that predictor 
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variable towards segregating the decision groups. Meanwhile, the denominator aims for lower intra-

class variances implying tighter homogeneous clustering per group to aid partitioning. Division of the 

two terms thereby distils class distinction factor with balance. Fisher’s score, computing a relevance 

metric based on the ratio of inter-class separation and intra-class cohesion, yields feature F2, F50, F5, 
F15, and F37 as the most important features in Figure 7.9. High scores, signifying discrimination 

between categories of the target variable along with homogeneity within groups, suggest informational 

relevance. Features manifesting elevated Fisher’s scores demonstrate substantial shift or alteration 

between class-conditional densities aiding discrimination. Thus, filtration via Fisher's criterion retains 

variables exceeding a threshold that contribute most towards distributional divergence between target 

categories to assist classification. Selection relies on sorting scores across predictors and pruning away 

subsets associated with insignificant scores (Sun et al., 2021). Although limited to labelled data as a 

supervised metric, advantages such as linear complexity, resilience to correlations and outlying values 
make Fisher’s filter suitable for expediting high-dimensional searches. Limitations around univariate 

nature prone to missing multivariate interactions find mitigation in ensemble, bootstrap, and combined 

filtering remedies. Overall, as a pioneering discriminatory measure, Fisher’s score persists relevant 

given its speed, scalability and sensitivity towards informing classifiers through computed estimates of 

class separability.  

 

Figure 7.9: Fisher’s Score Ranking of Features 
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7.4.2 Wrapper-based Approach 

While these statistical filter approaches provide a rapid indication of feature relevance without relying 

on model induction or scoring on a specific validation dataset, they do not optimize relevance for the 

nuances of a particular model algorithm or peculiarities of dataset partitions. Instead, filtering techniques 

estimate generalized predictor utility, introducing the risk of retaining redundancies or excluding 
interacting variables relevant only for specific algorithms. As such, this study employs filtering as an 

initial screen to extract broadly useful features and eliminate consistently underperforming variables. 

Subsequent wrapper-based and embedded feature selection techniques refine relevance, tailored to 

the chosen model and intrinsic dataset structure (Maldonado, Riff and Neveu, 2022). This consolidation 

of filter, wrapper, and embedded approaches aims to achieve an optimal feature space, balancing 

computational efficiency, statistical power, generalized utility, and tailored model-specific selection. 

Wrapper methods constitute a systematic search approach that evaluates subsets of predictors by 
gauging their influence when presented to a particular machine learning model. Inherently, these 

methodologies intricately link the process of feature selection to the overall performance of the model, 

systematically exploring various combinations to derive the most optimal features tailored to the specific 

algorithm (Talukder et al., 2024). The quintessence of wrapper methods lies in their ability to confer a 

personalized selection of features, aligning variables with the nuanced inductive biases of the model. 

Moreover, these techniques implement iterative approach, employing greedy sequential search 

methodologies such as forward selection, backward elimination, recursive feature elimination, and 

exhaustive feature selection. This iterative nature emphasizes a methodical exploration of the feature 
space, allowing the model to incrementally assess the relevance and impact of each variable. Such a 

deliberate process aims to unravel the intricacies and dependencies among predictors, ensuring a 

comprehensive understanding of their individual contributions to the model's predictive capacity. The 

essence of wrapper methods lies in their capacity to tailor the selection of features to the specific 

requirements and nuances of the machine learning model (Eskandari et al., 2024). By integrating the 

assessment of subsets directly into the model's evaluation process, wrapper methods transcend mere 

feature filtering. Instead, they encapsulate a holistic approach that considers the interplay and synergies 

between variables, recognizing that their collective impact is greater than the sum of individual 
contributions. Furthermore, wrapper methods operate with a consideration of model performance, 

consistently seeking to enhance predictive accuracy and generalization capabilities(Sahebi et al., 

2020). The iterative nature of these methodologies facilitates an ongoing refinement process, where 

the model dynamically adapts its feature set based on the evolving understanding of predictor 

importance. This dynamic adaptability ensures that the selected features not only align with the intrinsic 

biases of the model but also evolve with the changing dynamics of the dataset. It is imperative to 

acknowledge that wrapper methods introduce an element of computational intensity due to their 
exhaustive exploration of feature subsets. However, this computational cost is justified by the nuanced 

and tailored selection process, which ultimately leads to improved model performance. The trade-off 

between computational resources and enhanced predictive accuracy underscores the strategic value 

of wrapper methods in the realm of feature selection. Moreover, wrapper methods offer a principled 

framework for navigating the vast landscape of potential feature combinations. By employing sequential 
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search techniques, these methodologies systematically traverse the feature space, evaluating various 

configurations to pinpoint the most influential predictors.  The figures 7.10, 7.11, 7.12, and 7.13 below 

uses radar charts to present complex multivariate survey data used in this study in a visual format. 

Radar charts are standard figures is appropriate and widely accepted in the discipline to compare 
multiple variables across different categories or groups and for summarizing and visualizing complex 

datasets in a clear and accessible format(Zhang et al., 2015; Abeynayake et al., 2023). These charts 

allow for an intuitive understanding of how different variables interact or contrast with each other, 

providing a comprehensive view that is easier to interpret. These radar charts illustrate the performance 

or characteristics of different features used in the study. For example, it compares the contributions of 

various delay factors in BIM and non-BIM construction projects / the effectiveness of different AI models 

in predicting project delays. By displaying each factor on a separate axis, radar charts visually convey 

the relative magnitude and differences across these dimensions, making it easier to identify patterns, 
strengths, and weaknesses (Chen et al., 2022).  

Forward Selection  

Forward selection is a prominent technique in feature selection, distinguishes itself by its systematic 

approach to initiating the search process with an empty set, gradually incorporating features to optimize 

model performance (Saha, Patikar and Neogy, 2020). This method involves a careful inclusion of 

variables, prioritizing their individual contributions and aggregating them based on their significance in 

enhancing efficacy. An illustrative example of the strategic implementation of forward selection is 

depicted in Figure 7.10, where a line plot portrays the progressive augmentation of top features, 
resulting in a notable improvement in the model's accuracy to an impressive 79% and 77% for BIM-

based and non-BIM-based construction projects respectively. At each iterative stage of forward 

selection, the model undergoes thorough scrutiny, evaluating the remaining variables to identify the 

most beneficial feature that maximizes the scoring metric. This incremental addition of features, though 

myopic, proves to be computationally efficient and tailored to the model's requirements, persisting until 

specific termination criteria, such as reaching a saturation point, are met. However, it is paramount to 

underscore the significance of selecting appropriate stopping criteria to forestall the pitfalls of overfitting 
and unnecessary computational burdens. Furthermore, the efficacy of forward selection hinges upon 

the discerning choice of stopping criteria, ensuring a delicate balance between model complexity and 

predictive performance (Puggini and McLoone, 2017). By adhering to stringent criteria, forward 

selection not only mitigates the risk of overfitting but also streamlines the computational overhead, 

thereby yielding a parsimonious yet robust feature subset conducive to superior model generalization. 
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Figure 7.10: Forward Selection Ranking of Features 
 

Backward Elimination  

Backward elimination operates within the antithetical framework of wrapper search direction, 

commencing with the complete feature set and progressively discarding the least contributory features 

guided by their efficacy (Austin, 2008). Consequently, trivial variables are sequentially pruned, 

contingent upon the subsequent variance observed in performance metrics upon their exclusion from 

the feature set. As illustrated in Figure 7.11, the ramifications stemming from the execution of the 

backward selection methodology are striking, revealing a nuanced interplay between the selected 
features and the efficacy of a logistic model. The model's performance, set out through its accuracies 

across various feature subsets, is vividly portrayed on a unified plot, facilitating a comparative analysis 

between BIM-based and non-BIM-based projects. This iterative process intensifies computationally, 

particularly with larger initial feature sets. Furthermore, the elimination of feature clusters introduces 

instability, while allowing for the re-entry of previously removed variables can enhance the final 

outcomes. In essence, backward elimination serves to refine an approximate feature set obtained from 

filter methods through a process of tailored subtraction (Foithong, Pinngern and Attachoo, 2012). 
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However, the staggering dimensions inherent in certain datasets render the initialization with all features 

impractical, if not impossible. Thus, a judicious selection process becomes imperative, wherein the most 

pertinent features are identified and retained, while the less informative ones are systematically pruned. 

This thorough curation of features not only streamlines the computational complexity but also ensures 
that the final model is more robust and interpretable. Moreover, the iterative nature of backward 

elimination fosters a deeper understanding of the underlying relationships between features and the 

target variable, thereby facilitating insights into the dataset's structure and potential avenues for further 

refinement (Khodadadi et al., 2023). Consequently, while challenging in its execution, backward 

elimination emerges as a potent technique for feature selection in high-dimensional datasets, offering 

a nuanced balance between computational efficiency and model performance optimization. 

 

Figure 7.11: Backward Selection Ranking of Features 
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Exhaustive Feature Selection  

Exhaustive feature selection is a wrapper-based technique that conducts an extensive search through 

all possible combinations of features in a dataset to determine the optimal subset for a given machine 
learning model (Uncu and Türkşen, 2007). This approach iteratively constructs models using different 

subsets of features, evaluates their performance, and compares them to select the top-performing 

subset. More specifically, exhaustive feature selection initializes by training separate models on each 

individual feature. It then progresses to evaluate dual combinations of features, followed by triple 

combinations, and so forth, until reaching models encompassing all features in the dataset. At each 

iteration, the technique records model accuracy metrics for the respective feature subsets. After 

completing the exhaustive traversal of the feature space, exhaustive selection chooses the subset 

yielding the best model performance based on the defined scoring metric. Therefore, an exhaustive 
search guarantees discovering the globally optimal feature subset for a particular model, unlike greedy 

iterative approaches such as forward selection or backward elimination. However, this comes at a 

computational cost exponential to the number of features. Accordingly, exhaustive selection remains 

feasible only for datasets with fewer than 30–40 features. For problems involving higher dimensionality, 

the exploding search space renders an exhaustive approach intractable. In such cases, an alternative 

suboptimal method may prove pragmatic (Mnich and Rudnicki, 2020). The most common scoring 

function for exhaustive feature selection is classification accuracy or AUC for supervised learning 

problems. However, other metrics like precision, sensitivity, specificity, or model interpretability may 
also constitute valid scoring schemes based on the project goals. For exhaustive selection, the choice 

of the underlying machine learning model is open (Deeba et al., 2018). But tree-based ensemble 

methods like random forests and gradient boosting machines operate efficiently for this wrapping 

purpose. Their inherent multicollinearity handling ability and transparency of computed feature 

importance scores enable simplified exhaustive selection wrappers. 
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Figure 7.12: Exhaustive Feature Selection Ranking of Features 

 

Recursive Feature Elimination  

Recursive feature elimination (RFE) operates as a greedy, iterative wrapper method for feature 

selection in machine learning (Richhariya, Tanveer and Rashid, 2020). It repeatedly trains a model, 

ranks feature importance, and eliminates the least useful features until reaching a predefined number. 

The central notion of RFE relies on fitting models to differing subsets of features, assessing those 
contributing most to predicting the target, and progressively removing those having little predictive 

power (Liu and Wang, 2021). Initially, RFE trains the chosen model, ranks all features by importance, 

and removes those falling under a cut-off threshold. In subsequent iterations, RFE retrains the model 

on the remaining features, re-ranks their new importance, and again eliminates the least useful ones 

based on the updated ranking. Most implementations prune away 10-20% of the lowest ranking features 

per loop. This recursive procedure loops until the desired number of features persists or model metrics 

plateau. The final optimal subset contains the features still remaining after the successive pruning. 
Accordingly, unlike exhaustive search exploring all combinations, RFE only samples the space of 

possible feature subsets guided by model feedback. The incremental greediness provides 

computational efficiency but risks getting trapped in local optima. Still, for high-dimensional datasets, 
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RFE stands as one of few pragmatically feasible selection routines. And ensemble approaches training 

multiple RFE iterations in parallel and aggregating their votes for feature rankings enhance robustness 

(Theerthagiri, 2022). The default feature importance ranker in RFE is the linear coefficient magnitude 

from logistic regression and SVM models or the Gini importance from tree classifiers. However, 
dependence on these metrics’ biases RFE towards removing noisy but potentially useful features. 

Alternative scoring schemes assessing multivariate interactions, such as linear correlation, mutual 

information, or statistical tests can improve stability. Furthermore, combining RFE with complementary 

filter methods upfront reduces computational overhead. Filter pre-processing retains features meeting 

univariate statistical thresholds for the target before applying RFE model-based selection. 

 

Figure 7.13: Recursive Feature Elimination Ranking of Features 
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Embedded Methods 

Embedded feature selection refers to a set of techniques built into the model construction process that 

inherently perform feature selection concurrently while training (Liu, Zhou and Liu, 2019). These 
methods encode automatic feature selection as part of the objective function optimization. Unlike 

wrapper methods that employ an external model to test subsets of variables, embedded approaches 

directly encode feature selection into internal model optimization. Mathematically, the objective function 

consists of two opposing components - the loss function tracking model prediction error on training data, 

and a penalty term called regularization that encodes complexity control (Imani, Keyvanpour and Azmi, 

2013). An overparameterized complex model with excess noisy variables tends to overfit exhibiting high 

variance. Two main subcategories exist - regularization-based embedding and intrinsic metric-based 

embedding. The regularization applies constraints to simplify the model preventing overfitting. It 
provides a knob for trading off between model fit and generalization. The most common form uses L1 

norm regularization that penalizes sum of absolute magnitudes of model parameters. By imposing a 

constraint that limits sum of parameters, the solver has to push some parameters exactly to zero to 

satisfy the constraint (Theng and Bhoyar, 2024b). This applies aggressive shrinkage pruning away non-

informative parameters. Features associated with zeroed out parameters automatically detach from 

model influence. Thereby, L1 regularization induces inherent feature selection by filtering unimportant 

variables whose coefficients become zero. Accordingly, by baking regularization directly into the loss, 

embedded methods accomplish joint optimization simultaneously fitting model and selecting features 
in one shot training paradigm. The level of sparsity or number of eliminated features depends on the 

regularization strength coefficient - higher penalty prunes more features. Popular L1 regularized 

algorithms containing inherent feature selection include lasso regression, elastic net, and sparse logistic 

models. The efficient solvers optimize the regularization path across full spectrum of penalty settings in 

mostly automatic black box fashion (Fan et al., 2024). Beyond inducing sparsity in generalized linear 

models, intrinsic feature importance metrics native to certain model classes also facilitates embedded 

selection. Decision tree-based ensemble methods like random forest, gradient boosting and XGBoost 
efficiently calculate variable importance score of each feature. The importance signifies how much 

removing that feature degrades model accuracy thereby quantifying its predictive contribution. 

Following greedy backward elimination approach, features with importance below a cut-off threshold 

get iteratively pruned away until desired model sparsity reaches, or performance slows. Therefore, 

whether via regularization penalties or intrinsic importance computations, embedded methodologies 

fuse the processes of model optimization and feature selection instead of discrete wrapping stages. 

This helps limit overfitting and improves computational efficiency over wrappers. However, they are not 

guaranteed to achieve globally optimal subset and often get trapped in local solutions based on the 
embedded heuristics. Regularization approaches may also suffer from high collinearity dropping 

informative groups of correlated features. Recent innovations in this domain aim to overcome those 

limitations via global optimization or multivariate penalties. 
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Regularization-Based Embedding 

Regularization-based approaches impose constraints on the objective function to shrink model 
coefficients towards zero (Armeshi, Sahebi and Aghababaei, 2024). This implicitly filters out 

features(see Figure 7.14) with little predictive contribution as their coefficients diminish to zero. The 

most universal variant, L1 regularization, penalizes the absolute sum of coefficients thereby forcing 

sparse solutions with many zeros. Consequently, features with zeroed coefficients automatically detach 

from the model. Though all coefficients shrink, only the least useful ones reduce fully to zero. Therefore, 

L1 regularization manifests as an embedded feature selection procedure. It removes redundant and 

noisy features without needing a separate selection step. The level of sparsity depends on the 

regularization strength - higher penalty coefficients induce greater sparsity and more feature elimination 
(Nokhwal and Kumar, 2023). Multiple optimized implementations of L1 regularized algorithms exist 

including lasso regression, elastic net, and sparse logistic regression. These models efficiently compute 

the entire regularization path of solutions for all penalty values. Such embedded regularized techniques 

garner wide adoption given their joint execution of feature selection and model fitting. They provide 

insightful, interpretable models that generalize well by removing non-informative variables. However, 

L1 methods exhibit limitations when features demonstrate high collinearity. Groups of correlated 

relevant variables often get entirely eliminated in favour of a single representative feature. Therein 

arises the need for intrinsic methods examining multivariate interactions (Khattab et al., 2020). 

 

Figure 7.14: Regularization-Based Embedding Ranking of Selected Features 
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Intrinsic Metric-Based Embedding 

This second variety of embedded selection stems from intrinsic variable importance metrics native to 
certain model classes (Liang et al., 2019). While training complex non-linear models, intrinsic variable 

ranking procedures determine predictive utility of features based on how removing that feature impacts 

model performance. The feature importance extractor forms an inbuilt component of the model itself. 

For tree-based methods including random forest, gradient boosting machines, and XGBoost, the 

classifiers compute a variable importance score for each feature. Features producing nodes that reduce 

impurity most influence the predictions and thereby gain higher importance. Such tree intrinsic 

measures consider higher-order multivariate interactions overlooked by penalization. Embedded 

intrinsic selection follows a greedy backward elimination routine guided by variable importance (Wang, 
Wu and Kittler, 2021). First, the model trains on the full feature set, compiles importance, and removes 

all features (see Figure 7.15) below an importance threshold. Next, the pruned model refits and 

reassesses new importance on the remaining features to perform subsequent pruning iterations. The 

procedure repeats until few features stay or model metrics start degrading. Despite not guaranteeing 

global optima, intrinsic embedded techniques efficiently navigate complex feature spaces while 

handling nonlinear relationships and collinearity well. They deliver compact, performant models with 

capped compute times unlike wrappers. Their stability improves further with ensemble aggregation of 

multiple runs (Yuan and Yang, 2023). However, importance computations remain model-specific with 
questionable transferability across model families. 
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Figure 7.15: Intrinsic Metric-Based Embedding Ranking of Selected Features 

 

7.4.3 Synthesizing the Feature Selection Techniques 

Given the contentious nature of the discourse surrounding the optimal feature selection technique, this 

study embraces a comprehensive approach, employing two distinct ranking systems to evaluate 
features and ultimately converge on a final selection. It is noteworthy that Tables 7.3 and 7.4 present 

these ranking systems, while Table 7.5 amalgamates their outcomes, culminating in a refined feature 

selection for the development of artificial intelligence models, as showcased in Table 7.6. The 

percentage score ranking system underscores a thorough evaluation process, wherein each 

independent feature variable is assigned a quantitative score by various feature selection techniques. 

These scores, albeit diverse in scale across methods (as evidenced in Table 7.2), are harmonized into 

percentage values within each technique to ensure an equitable contribution. Consequently, the 
cumulative percentage scores afford a comprehensive basis for feature ranking (Table 7.3), 
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transcending mere ordinal positioning to encapsulate nuanced differentials in feature importance, as 

elucidated by Lu et al. (2019) in their seminal work on feature selection methodologies. Conversely, the 

summed ranking system espouses a pragmatic approach, wherein feature variables are individually 

ranked within each selection method, and subsequently, these rankings are aggregated across all 
techniques. This summation yields a consolidated ranking, wherein lower values denote a higher 

precedence of feature variables (see Table 7.4). Notably, this system accords parity to all selection 

techniques, mitigating potential biases and affording a holistic appraisal of feature significance, in 

alignment with the principles espoused by Jia et al. (2020) in their influential research on feature ranking 

strategies. The culmination of these disparate systems coalesces in the final ranking system, wherein 

the average value of the percentage score ranking and the summed ranking informs a comprehensive 

re-ranking of feature variables (see Table 7.5). This amalgamation, epitomizing a synthesis of diverse 

evaluation paradigms, begets a refined hierarchy of feature importance, facilitating the judicious 
selection of the top twenty feature variables for model development. Notably, this culmination 

underscores the study's commitment to methodological rigor and empirical robustness, reflective of 

contemporary best practices in feature selection methodologies, as elucidated by Zhao et al. (2021) in 

their authoritative treatise on the subject. The column denoted as 'BIM Status' served as a differentiating 

criterion, facilitating the delineation of ranking scores for the two distinct project typologies that 

constituted the focus of this empirical investigation. To elucidate further, a BIM Status value of 1 was 

assigned to represent the respective ranking scores attributed to all feature variables pertaining to 

projects executed through the implementation of BIM methodologies. Conversely, a BIM Status value 
of 0 was employed to denote the corresponding ranking scores ascribed to all feature variables 

associated with projects undertaken through traditional, non-BIM-based approaches. This binary 

classification system enabled a comprehensive comparative analysis of the ranking profiles exhibited 

by the feature variables across the two project delivery paradigms under scrutiny. The culmination of 

this analysis yielded an empirically validated framework elucidating the critical determinants of project 

delays, a pivotal prerequisite for the development of predictive models aimed at quantifying delay risks 

across both BIM-based and traditional non-BIM construction projects, as depicted in Figure 7.16. This 
rigorously substantiated framework serves to corroborate the initial conceptual framework formulated 

in Section 2, thereby fortifying the theoretical foundations underpinning this research initiative. 

Additionally, through this analytical process, the salient factors contributing to project delays have been 

systematically identified and integrated into a coherent validated schema. This validated framework 

constitutes an indispensable foundation for the formulation of predictive models capable of anticipating 

and evaluating the potential risks of schedule delays, irrespective of whether the construction project 

adheres to cutting-edge BIM methodologies or more conventional non-BIM approaches.
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Table 7.2: Allocation of Raw Scores to Features Across Selection Techniques 

Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

F1 1 0.23 2.61 20.38 -0.015 0 0 0.29 0 0 

 0 0.1 0.03 0.17 0 0 0 -0.71 0 0 

F2 1 0.23 8.16 60.03 0 0 0 -0.45 0 0 

 0 0 0.34 2.35 0.525 0 0 0.64 0.63 0.017 

F3 1 0.18 1.32 8.80 0 0 0 0.52 0 0 

 0 0 0.30 1.81 0 0.874 0 0.98 0 0.027 

F4 1 0.29 6.23 38.03 0 0 0.012 0.56 0 0 

 0 0 0 0.03 0 -0.817 0 -0.61 0 0 

F5 1 0.27 7.42 53.27 0 0 0 -0.58 0 0 

 0 0.06 0.23 1.69 0 -0.728 0 -0.97 0.75 0.020 

F6 1 0.28 3.53 20.40 0 0 0 0 0 0 

 0 0.06 0.78 3.64 0 0.619 0 0 0 0.012 

F7 1 0.30 6.47 45.66 0 0 0 -0.85 0.91 0 

 0 0 0 0.03 0 0 0 0 0 0.033 

F8 1 0.26 4.11 24.85 0 0 0 0 0 0 
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

 0 0.03 0.03 0.15 0 -0.575 0 -0.42 0 0.019 

F9 1 0.31 5.13 28.75 0 0 0 0 0 0.008 

 0 0.02 0 0 0.012 0 0 0 0 0.022 

F10 1 0.22 6.17 41.79 -0.716 -0.444 0 -0.59 0 0 

 0 0.02 0.04 0.22 0.023 0 0 0 0 0 

F11 1 0.25 3.67 28.75 -0.270 0 0 0 0 0 

 0 0.02 0.02 0.16 -0.539 -0.262 0 0 0 0.020 

F12 1 0.23 2.18 12.72 0 0 0 0.47 0 0 

 0 0 0.16 1.02 0.162 -0.954 0 -.056 0 0 

F13 1 0.21 8.28 45.05 0 -1.076 0 -0.96 1.14 0 

 0 0.08 0.54 3.77 -0.5 0 0  0 0.019 

F14 1 0.30 4.86 33.25 0 0 0 -0.67 0.93 0 

 0 0.07 0.27 1.67 0 0.903 0 0.45 0 0.019 

F15 1 0.23 7.21 47.71 0 -1.112 0.026 -0.96 0.95 0 

 0 0.08 0 0 -0.169 0 0 0 0 0.026 

F16 1 0.23 2.39 16.11 0 0 0 0 0 0 

 0 0 0.47 2.90 0 0 0 0 0 0 
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

F17 1 0.28 5.73 36.30 0 0 0 0 0 0.015 

 0 0 0.10 0.66 0 0 0 0 0 0 

F18 1 0.25 1.95 12.12 0 0 0 0 0 0.043 

 0 0.03 0.32 1.71 0 0 0 0 0 0 

F19 1 0.16 0.01 0.05 0 1.295 0 0.83 1.11 0.019 

 0 0.02 0.38 2.35 0 0 0 0 0 0 

F20 1 0.25 0.71 4.62 0.328 0 0.034 0 0 0 

 0 0 0.12 0.55 0.015 0 0 0 0 0 

F21 1 0.20 2.45 16.77 0 0 0 0.64 0 0 

 0 0 0.23 1.34 0 0 0 0.86 0.87 0.012 

F22 1 0.28 0.98 7.13 0 0 0 0.41 0 0 

 0 0 0.01 0.04 0 0 0 0 0 0 

F23 1 0.25 0.84 5.61 0 0 0.007 0.86 1.07 0 

 0 0.05 0.72 4.75 0 0.529 0 0.67 0 0 

F24 1 0.22 5.17 33.02 0 0 0 0.69 0 0 

 0 0 0.19 1.53 0 -0.611 0 -0.62 0.87 0.019 

F25 1 0.21 2.12 12.51 0.084 0 0 -0.42 0 0 
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

 0 0.05 0.22 1.18 0 0 0 0 0 0 

F26 1 0.23 6.98 45.76 0 -1.131 0 -1.4 0 0 

 0 0 0 0.01 0 0 0 -0.64 0.74 0.027 

F27 1 0.19 0.07 0.37 0 0 0 1.01 1.18 0 

 0 0.01 0.13 0.59 0 0 0 0.58 0 0 

F28 1 0.24 4.79 27.50 0 0 0 0 0 0 

 0 0 0.86 4.73 0.467 0 0 0 0 0.023 

F29 1 0.28 0.35 4.48 0 0.837 0 1.04 1.05 0.015 

 0 0.02 0.07 0.32 0 0 0 0 0 0 

F30 1 0.29 2.43 17.05 0 0 0 -0.38 0 0.014 

 0 0 0.01 0.08 0 0 0 -0.46 0 0 

F31 1 0.22 6.03 38.41 0 0 0 -1.02 1.11 0 

 0 0 0.03 0.23 0 0 0 0 0 0 

F32 1 0.22 3.35 21.64 0 0 0 0 0 0 

 0 0.06 0.22 1.43 0.185 0 0 0 0 0.008 

F33 1 0.21 1.98 11.15 0 0 0 0.7 0 0 

 0 0.05 0.10 0.83 0 0 0 -0.69 0 0.027 
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

F34 1 0.26 2.81 19.37 0 0 0 0 0 0.028 

 0 0 0 0 0 -0.72 0 -0.37 0 0 

F35 1 0.21 3.13 21.63 0 0 0 0.24 0 0 

 0 0 0.10 0.80 0.069 0 0 0.43 0 0 

F36 1 0.26 4.07 23.98 0 -0.206 0 -0.85 0 0 

 0 0 0.26 1.56 0 0.918 0 0.68 0  

F37 1 0.30 7.05 46.08 0 -0.678 0 -0.79 0 0.012 

 0 0.04 0.31 2.42 0 0 0 0 0 0 

F38 1 0.29 2.45 17.87 0.128 0 0 0 0 0 

 0 0 0.17 1.19 0 -0.359 0 0 0  

F39 1 0.25 2.33 15.90 0 0 0 1.07 0.64 0.015 

 0 0.10 0.51 3.57 0 0 0 0 0 0 

F40 1 0.25 4.45 29.07 0 0 0 0 0 0 

 0 0.02 0.32 2.20 0 0 0 0 0 0.011 

F41 1 0.23 4.80 26.40 -0.284 0 0 0 0 0 

 0 0 0.39 2.97 0 0 0 0 0 0 

F42 1 0.29 4.45 24.85 -0.263 0 0 -0.79 0.73 0 
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

 0 0 0.03 0.24 0 0 0 0 0 0 

F43 1 0.25 7.02 41.71 0 0 0 -0.65 0 0 

 0 0 0.01 0.05 0  0 -0.51 0 0 

F44 1 0.23 0.21 1.30 0 1.11 0 1.26 1.61 0 

 0 0 0.31 1.39 0.597 0 0 0 0 0.012 

F45 1 0.27 1.21 8.28 0 0 0 0.85 0 0 

 0 0.04 1.32 5.94 0 0 0 0.53 0 0.039 

F46 1 0.25 0.30 2.42 -0.028 0 0 0 0 0 

 0 0 0.29 1.24 0 0.795 0 0.64 0 0.015 

F47 1 0.23 0.67 4.57 0.369 1.337 0 0.94 1.58 0 

 0 0 0.03 0.18   0 -0.36 0 0 

F48 1 0.20 2.40 15.19 -0.122 0.893 0 0.83 0 0 

 0 0.08 1.42 9.67 0 1.016 0 0.68 0.85 0.014 

F49 1 0.28 4.73 26.28 0 -0.8 0 -1.03 1.05 0 

 0 0.03 0 0.02 0 0 0 -0.52 0 0 

F50 1 0.31 8.84 54.33 0 -2.148 0 -2.1 0 0 

 0 0.10 1.26 8.69 0 0.893 0 1.11 0.51 0.036 
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Feature Selection 

Recursive Feature 
Selection 

Regulariz
ation 

Intrinsic Metric 
Selection 

F51 1 0.25 0.17 1.06 0 1.136 0 1.5 1.53 0 

 0 0 0.62 4.56 0 0 0 0.37 0 0 

F52 1 0.23 0.38 4.40 0 0.836 0.001 0.55 0 0.013 

 0 0.09 0.12 0.61 0.056 0 0 0 0 0.018 

Total 1/0 12.84/1.3
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Table 7.3: Ranking Determined by the Percentage Score of Features within Each Selection Method 

Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

F1 1 1.791 1.395 1.692 1.901 0 0 37.662 0 0 44.441 19th  

 0 7.519 0.229 0.190 0 0 0 -60.169 0 0 -52.231 46th  

F2 1 1.791 4.360 4.983 0 0 0 -58.441 0 0 -47.307 39th  

 0 0 2.591 2.633 58.140 0 0 54.237 12.069 3.424 133.094 4th  

F3 1 1.402 0.705 0.730 0 0 0 67.532 0 0 70.369 16th  

 0 0 2.287 2.028 0 57.4622 0 83.051 0 5.455 150.283 3rd  

F4 1 2.259 3.329 3.157 0 0 0.150 72.727 0 0 81.622 15th  

 0 0 0 0.034 0 -53.715 0 -51.695 0 0 -105.376 52nd  

F5 1 2.103 3.965 4.422 0 0 0 -75.325 0 0 -64.835 41st  

 0 4.511 1.753 1.894 0 -47.863 0 -82.203 14.368 4.040 -103.5 51st  

F6 1 2.181 1.881 1.693 0 0 0 0 0 0 5.755 32nd  

 0 4.511 5.945 4.079 0 0.407 0 0 0 2.424 17.366 19th  

F7 1 2.336 3.457 3.790 0 0 0 -110.390 5.485 0 -95.322 52nd  

 0 0 0 0.034 0 0 0 0 0 6.667 6.701 28th  

F8 1 2.025 2.196 2.063 0 0 0 0 0 0 6.284 30th  

 0 2.256 0.229 0.168 0 -37.804 0 -35.593 0 3.838 -66.906 48th  
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

F9 1 2.414 2.741 2.386 0 0 0 0 0 4.396 11.937 27th  

 0 1.504 0 0 1.329 0 0 0 0 4.444 7.277 24th  

F10 1 1.714 3.297 3.469 90.748 294.040 0 -76.623 0 0 316.645 7th  

 0 1.504 0.305 0.247 2.547 0 0 0 0 0 4.603 31st  

F11 1 1.947 1.961 2.386 34.221 0 0 0 0 0 40.515 21st  

 0 1.504 0.152 0.178 -59.690 -9.928 0 0 0 4.040 -63.744 47th  

F12 1 1.791 1.165 1.056 0 0 0 61.039 0 0 65.051 17th  

 0 0 1.220 1.143 17.940 -0.954 0 -47.458 0 0 -28.109 40th  

F13 1 1.636 4.424 3.739 0 712.583 0 -124.675 6.872 0 604.579 3rd  

 0 6.015 4.116 4.225 -55.371 0 0 0 0 3.838 -37.177 43rd  

F14 1 2.336 2.597 2.760 0 0 0 -87.013 5.606 0 -73.714 42nd  

 0 5.263 2.058 1.871 0 59.369 0 38.136 0 3.838 110.535 7th  

F15 1 1.791 3.853 3.960 0 736.424 0.325 -124.675 5.726 0 627.404 2nd  

 0 6.015 0 0 -18.715 0 0 0 0 5.253 -7.447 38th  

F16 1 1.791 1.277 1.337 0 0 0 0 0 0 4.405 34th  

 0 0 3.582 3.259 0 0 0 0 0 0 6.841 26th  

F17 1 2.181 3.062 3.013 0 0 0 0 0 8.242 16.498 26th  
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

 0 0 0.762 0.740 0 0 0 0 0 0 1.502 34th  

F18 1 1.950 1.042 1.006 0 0 0 0 0 23.626 27.624 24th  

 0 2.256 2.439 1.916 0 0 0 0 0 0 6.611 29th  

F19 1 1.246 0.005 0.056 0 -857.616 0 107.792 6.691 10.440 -731.386 50th  

 0 1.504 2.896 2.633 0 0 0 0 0 0 7.033 25th  

F20 1 1.947 0.379 0.383 -41.572 0 0.425 0 0 0 -38.438 38th  

 0 0 0.915 0.616 1.661 0 0 0 0 0 3.192 32nd  

F21 1 1.558 1.309 1.637 0 0 0 83.117 0 0 87.621 14th  

 0 0 1.753 1.502 0 0 0 72.881 16.667 2.424 95.227 9th  

F22 1 2.181 0.524 0.696 0 0 0 53.247 0 0 56.648 18th  

 0 0 0.076 0.045 0 0 0 0 0 0 0.121 37th  

F23 1 1.947 0.449 0.547 0 0 0.088 111.688 6.450 0 121.169 10th  

 0 3.759 5.488 5.323 0 34.780 0 56.780 0 0 106.13 8th  

F24 1 1.713 2.763 3.222 0 0 0 89.610 0 0 97.308 12th  

 0 0 1.448 1.714 0 -40.171 0 -52.542 16.667 3.838 -69.046 49th  

F25 1 1.636 1.133 1.221 -10.646 0 0 -54.545 0 0 -61.201 40th  

 0 3.759 1.677 1.322 0 0 0 0 0 0 6.758 27th  
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

F26 1 1.791 3.730 4.466 0 749.007 0 -181.818 0 0 577.176 4th  

 0 0 0 0.011 0 0 0 -54.237 14.176 5.455 -34.595 42nd  

F27 1 1.480 0.037 0.036 0 0 0 131.169 7.113 0 139.835 9th  

 0 0.752 0.991 0.661 0 0 0 49.153 0 0 51.557 13th  

F28 1 1.869 2.560 2.684 0 0 0 0 0 0 7.113 29th  

 0 0 6.555 5.300 51.717 0 0 0 0 4.646 68.218 12th  

F29 1 2.181 0.187 0.437 0 -553.305 0 135.065 6.329 8.242 -400.864 45th  

 0 1.504 0.534 0.359 0 0 0 0 0 0 2.397 33rd  

F30 1 2.259 1.298 1.664 0 0 0 -49.351 0 7.692 -36.438 37th  

 0 0 0.080 0.090 0 0 0 -38.983 0 0 -38.813 44th  

F31 1 1.714 3.222 3.748 0 0 0 -132.468 6.691 0 -117.093 44th  

 0 0 0.229 0.258 0 0 0 0 0 0 0.487 36th  

F32 1 1.714 1.790 2.112 0 0 0 0 0 0 5.616 33rd  

 0 4.511 1.677 1.602 20.487 0 0 0 0 1.616 29.893 17th  

F33 1 1.636 1.058 1.088 0 0 0 90.909 0 0 94.691 13th  

 0 3.760 0.762 0.930 0 0 0 -0.585 0 5.455 10.322 21st  

F34 1 2.025 1.502 1.890 0 0 0 0 0 15.385 20.802 25th  
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

 0 0 0 0 0 -47.337 0 -31.356 0 0 -78.693 50th  

F35 1 1.636 1.673 2.222 0 0 0 31.169 0 0 36.700 22nd  

 0 0 0.762 0.896 7.641 0 0 36.441 0 0 45.740 14th  

F36 1 2.025 2.175 2.340 0 136.424 0 -110.390 0 0 32.574 23rd  

 0 0 1.982 1.748 0 60.355 0 57.627 0 0 121.712 5th  

F37 1 2.336 3.767 4.497 0 449.006 0 -102.597 0 6.593 363.602 6th  

 0 3.008 2.363 2.712 0 0 0 0 0 0 8.083 23rd 

F38 1 2.259 1.310 1.744 -16.223 0 0 0 0 0 -10.91 35th  

 0 0 1.296 1.333 0 -23.603 0 0 0 0 -20.974 39th  

F39 1 1.947 1.245 1.552 0 0 0 138.961 3.858 8.242 155.805 8th  

 0 7.519 3.887 4.000 0 0 0 0 0 0 15.406 20th  

F40 1 1.947 2.378 2.837 0 0 0 0 0 0 7.162 28th  

 0 1.504 2.439 2.465 0 0 0 0 0 2.222 8.63 22nd  

F41 1 1.791 2.565 2.576 35.995 0 0 0 0 0 42.927 20th  

 0 0 2.973 3.328 0 0 0 0 0 0 6.301 30th  

F42 1 2.259 2.378 2.425 33.333 0 0 -66.949 4.400 0 -22.154 36th  

 0 0 0.229 0.269 0 0 0 0 0 0 0.498 35th  
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

F43 1 1.947 3.751 4.070 0 0 0 -84.416 0 0 -74.648 43rd  

 0 0 0.076 0.056 0 0 0 43.220 0 0 43.352 15th  

F44 1 1.791 0.112 0.127 0 -735.099 0 163.636 9.705 0 -559.728 49th  

 0 0 2.363 1.558 66.113 0 0 0 0 2.424 72.458 10th  

F45 1 2.103 0.647 0.808 0 0 0 110.390 0 0 113.948 11th  

 0 3.008 9.984 6.656 0 0 0 44.915 0 7.879 72.442 11th  

F46 1 1.947 0.160 0.236 3.549 0 0 0 0 0 5.892 31st  

 0 0 2.210 1.390 0 52.268 0 54.237 0 3.030 113.135 6th  

F47 1 1.791 0.358 0.446 -46.768 -885.430 0 122.078 9.524 0 -798.001 51st  

 0 0 0.229 0.202 0 0 0 -30.508 0 0 -30.077 41st  

F48 1 1.558 1.282 1.482 15.463 -591.391 0 107.792 0 0 -463.814 46th  

 0 6.015 10.823 10.836 0 66.798 0 57.627 16.284 2.828 171.211 2nd  

F49 1 2.181 2.528 2.565 0 529.801 0 -133.766 6.329 0 409.638 5th  

 0 2.256 0 0.022 0 0 0 -44.068 0 0 -41.79 45th  

F50 1 2.414 4.724 5.302 0 1422.517 0 -272.727 0 0 1162.23 1St  

 0 7.519 9.604 9.738 0 58.711 0 94.068 9.770 7.272 196.682 1st  

F51 1 1.947 0.090 0.103 0 -752.318 0 194.805 9.222 0 -546.151 48th  
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Feature BIM 
Status 

Informati
on Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regular
ization 

Intrinsic Metric 
Selection 

Total 
Percentage 

Rank
ing 

 0 0 4.726 5.110 0 0 0 31.356 0 0 41.192 16th  

F52 1 1.791 0.203 0.429 0 -553.642 0.013 71.429 0 7.143 -472.634 47th  

 0 6.767 0.915 0.684 6.202 0 0 0 0 3.636 18.204 18th  
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Table 7.4: Ranking Determined by the Summed Ranking of Features within Each Selection Method 

Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

F1 1 9 28 28 5 17 2 18 14 9 130 20th  

 0 1 30 40 13 17 4 23 8 17 153 32nd  

F2 1 9 3 1 13 17 2 22 14 9 90 2nd  

 0 11 13 13 2 17 4 6 5 11 82 7th  

F3 1 13 38 40 13 17 2 15 14 9 161 37th 

 0 11 16 16 13 5 4 2 8 4 79 5th  

F4 1 3 10 12 13 17 2 13 14 9 93 4th  

 0 11 34 46 13 15 4 19 8 17 167 42nd  

F5 1 5 4 3 13 17 2 23 14 9 90 2nd  

 0 5 20 18 13 14 4 24 3 8 109 16th  

F6 1 4 24 27 13 17 2 35 14 9 145 30th  

 0 5 5 8 13 7 4 25 8 14 89 9th  

F7 1 2 9 7 13 17 2 28 11 9 98 6th  

 0 11 34 46 13 17 4 25 8 3 161 36th  

F8 1 6 21 22 13 17 2 35 14 9 139 26th  

 0 8 30 42 13 11 4 21 8 9 146 28th  
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Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

F9 1 1 15 18 13 17 2 35 14 8 123 16th  

 0 9 34 50 10 17 4 25 8 7 164 39th  

F10 1 10 11 9 12 10 2 24 14 9 101 7th  

 0 9 39 38 8 17 4 25 8 17 165 40th  

F11 1 7 23 17 10 17 2 35 14 9 134 22nd  

 0 9 31 41 12 9 4 25 8 8 147 29th  

F12 1 9 34 36 13 17 2 16 14 9 150 33rd  

 0 11 24 28 5 16 4 18 8 17 131 25th  

F13 1 11 2 8 13 13 2 30 5 9 93 4th  

 0 3 8 7 11 17 4 25 8 9 92 10th  

F14 1 2 16 14 13 17 2 26 10 9 109 10th  

 0 4 18 19 13 3 4 9 8 9 87 8th  

F15 1 9 5 4 13 14 1 30 9 9 94 5th  

 0 3 34 50 8 17 4 25 8 5 154 33rd  

F16 1 9 32 33 13 17 2 35 14 9 164 38th  

 0 11 10 11 13 17 4 25 8 17 116 18th  

F17 1 4 13 13 13 17 2 35 14 4 115 12th  
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Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

 0 11 27 31 13 17 4 25 8 17 153 32nd 

F18 1 7 37 38 13 17 2 35 14 1 164 38th  

 0 8 14 17 13 17 4 25 8 17 123 23rd  

F19 1 14 50 52 13 2 2 9 6 3 151 34th  

 0 9 12 14 13 17 4 25 8 17 119 20th  

F20 1 7 42 44 2 17 2 35 14 9 172 39th  

 0 11 26 34 9 17 1 25 8 17 148 30th  

F21 1 12 29 32 13 17 2 12 14 9 140 27th  

 0 11 20 24 13 17 4 3 1 14 107 15th  

F22 1 4 40 42 13 17 2 17 14 9 158 36th  

 0 11 33 45 13 17 4 25 8 17 173 43rd  

F23 1 7 41 43 13 17 3 7 7 9 147 31st  

 0 6 6 4 13 8 4 5 8 17 71 4th  

F24 1 10 14 15 13 17 2 11 14 9 105 9th  

 0 11 22 21 13 12 4 20 1 9 113 17th  

F25 1 11 35 37 4 17 2 14 14 9 143 29th  

 0 6 21 27 13 17 4 25 8 17 138 28th  
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Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

F26 1 9 8 6 13 15 2 33 14 9 109 10th  

 0 11 34 49 13 17 4 21 4 4 157 35th  

F27 1 13 49 51 13 5 2 5 4 9 151 34th  

 0 10 25 33 13 17 4 7 8 17 134 26th  

F28 1 8 18 19 13 17 2 35 14 9 135 23rd  

 0 11 4 5 3 17 4 25 6 6 81 6th  

F29 1 4 45 46 13 7 2 4 8 4 133 21st  

 0 9 28 35 13 17 4 25 8 17 156 34th  

F30 1 3 30 31 13 17 2 20 14 5 135 23rd  

 0 11 33 43 13 17 4 15 8 17 161 36th  

F31 1 10 12 11 13 17 2 31 6 9 111 11th  

 0 11 30 37 13 17 4 25 8 17 162 37th  

F32 1 10 25 25 13 17 2 35 14 9 150 33rd  

 0 5 21 22 4 17 4 25 8 16 122 22nd  

F33 1 11 36 39 13 17 2 10 14 9 151 34th  

 0 6 27 29 13 17 4 22 8 4 130 24th  

F34 1 6 27 29 13 17 2 35 14 2 145 30th  
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Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

 0 11 34 50 13 13 4 13 8 17 163 38th  

F35 1 11 26 26 13 17 2 19 14 9 137 25th  

 0 11 27 30 6 17 4 10 8 17 130 24th  

F36 1 6 22 24 13 9 2 29 14 9 128 19th  

 0 11 19 20 13 2 4 4 8 17 98 12th  

F37 1 2 6 5 13 11 2 27 14 7 87 1st  

 0 7 15 12 13 17 4 25 8 17 118 19th  

F38 1 3 29 30 3 17 2 35 14 9 142 28th  

 0 11 23 26 13 10 4 25 8 17 137 27th  

F39 1 7 33 34 13 17 2 3 13 4 126 18th  

 0 1 9 9 13 17 4 25 8 17 103 14th  

F40 1 7 20 16 13 17 2 35 14 9 133 21st  

 0 9 14 15 13 17 4 25 8 15 120 21st  

F41 1 9 17 20 11 17 2 35 14 9 134 22nd  

 0 11 11 10 13 17 4 25 8 17 116 18th  

F42 1 3 20 23 9 17 2 27 12 9 122 15th  

 0 11 30 36 13 17 4 25 8 17 161 36th  
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Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

F43 1 7 7 10 13 17 2 25 14 9 104 8th  

 0 11 33 44 13 17 4 16 8 17 163 38th  

F44 1 9 47 49 13 4 2 2 1 9 136 24th  

 0 11 15 23 1 17 4 25 8 14 118 19th  

F45 1 5 39 41 13 17 2 8 14 9 148 32nd  

 0 7 2 3 13 17 4 8 8 1 63 3rd  

F46 1 7 46 48 6 17 2 35 14 9 184 40th  

 0 11 17 25 13 6 4 6 8 12 102 13th  

F47 1 9 43 45 1 1 2 6 2 9 118 13th  

 0 11 30 39 13 17 4 12 8 17 151 31st  

F48 1 12 31 35 7 6 2 9 14 9 125 17th  

 0 3 1 1 13 1 4 4 2 13 42 2nd  

F49 1 4 19 21 13 12 2 32 8 9 120 14th  

 0 8 34 48 13 17 4 17 8 17 166 41st  

F50 1 1 1 2 13 16 2 34 14 9 92 3rd  

 0 1 3 2 13 4 4 1 7 2 37 1st  

F51 1 7 48 50 13 3 2 1 3 9 136 24th  
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Featur
e 

BIM 
Status 

Informat
ion Gain 

Chi-square 
Test 

Fisher’s 
Score 

Forward 
Selection 

Backward 
Selection 

Exhaustive 
Selection 

Recursive 
Selection 

Regulari
zation 

Intrinsic Metric 
Selection 

Sum of all 
positions 

Summed 
Ranking 

 0 11 7 6 13 17 4 11 8 17 94 11th  

F52 1 9 44 47 13 8 2 14 14 6 157 35th  

 0 2 26 32 7 17 4 25 8 10 131 25th  
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Table 7.5: Ranking Determined by the Mean of the Percentage and Summed Ranking System 

Feature 
BIM 

Status 
Percentage 

Score Ranking 
Summed 
Ranking 

Mean of the Percentage  
and Summed Ranking  

Ranking Derived from 
the Mean Values 

F1 1 19 20 19.5 8th 

  0 46 32 39 37th  

F2 1 39 2 20.5 9th 

  0 4 7 5.5 4th  

F3 1 16 37 26.5 17th 

  0 3 5 4 3rd  

F4 1 15 4 9.5 4th 

  0 52 42 47 41st  

F5 1 41 2 21.5 11th 

  0 51 16 33.5 31st  

F6 1 32 30 31 23rd 

  0 19 9 14 13th  

F7 1 52 6 29 21st 

  0 28 36 32 28th  

F8 1 30 26 28 20th 

  0 48 28 38 35th  

F9 1 27 16 21.5 11th 

  0 24 39 31.5 27th  

F10 1 7 7 7 3rd 

  0 31 40 35.5 32nd  

F11 1 21 22 21.5 11th 

  0 47 29 38 35th  

F12 1 17 33 25 14th 

  0 40 25 32.5 29th  

F13 1 3 4 3.5 2nd 

  0 43 10 26.5 24th  
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Feature 
BIM 

Status 
Percentage 

Score Ranking 
Summed 
Ranking 

Mean of the Percentage  
and Summed Ranking  

Ranking Derived from 
the Mean Values 

F14 1 42 10 26 16th 

  0 7 8 7.5 7th  

F15 1 2 5 3.5 2nd 

  0 38 33 35.5 32nd  

F16 1 34 38 36 29th 

  0 26 18 22 20th  

F17 1 26 12 19 7th 

  0 34 32 33 30th  

F18 1 24 38 31 23rd 

  0 29 23 26 23rd  

F19 1 50 34 42 33rd 

  0 25 20 22.5 21st  

F20 1 38 39 38.5 31st 

  0 32 30 31 26th  

F21 1 14 27 20.5 9th 

  0 9 15 12 11th  

F22 1 18 36 27 18th 

  0 37 43 40 38th  

F23 1 10 31 20.5 9th 

  0 8 4 6 5th  

F24 1 12 9 10.5 5th 

  0 49 17 33 30th  

F25 1 40 29 34.5 27th 

  0 27 28 27.5 25th  

F26 1 4 10 7 3rd 

  0 42 35 38.5 36th  

F27 1 9 34 21.5 11th 
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Feature 
BIM 

Status 
Percentage 

Score Ranking 
Summed 
Ranking 

Mean of the Percentage  
and Summed Ranking  

Ranking Derived from 
the Mean Values 

  0 13 26 19.5 17th  

F28 1 29 23 26 15th 

  0 12 6 9 9th  

F29 1 45 21 33 26th 

  0 33 34 33.5 31st  

F30 1 37 23 30 22nd 

  0 44 36 40 38th  

F31 1 44 11 27.5 19th 

  0 36 37 36.5 34th  

F32 1 33 33 33 26th 

  0 17 22 19.5 17th  

F33 1 13 34 23.5 12th 

  0 21 24 22.5 21st  

F34 1 25 30 27.5 19th 

  0 50 38 44 40th  

F35 1 22 25 23.5 12th 

  0 14 24 19 16th  

F36 1 23 19 21 10th 

  0 5 12 8.5 8th  

F37 1 6 1 3.5 2nd 

  0 23 19 21 18th  

F38 1 35 28 31.5 24th 

  0 39 27 33 30th 

F39 1 8 18 13 6th 

  0 20 14 17 15th  

F40 1 28 21 24.5 13th 

  0 22 21 21.5 19th  
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Feature 
BIM 

Status 
Percentage 

Score Ranking 
Summed 
Ranking 

Mean of the Percentage  
and Summed Ranking  

Ranking Derived from 
the Mean Values 

F41 1 20 22 21 10th 

  0 30 18 24 22nd  

F42 1 36 15 25.5 15th 

  0 35 36 35.5 32nd  

F43 1 43 8 25.5 15th 

  0 15 38 26.5 24th  

F44 1 49 24 36.5 30th 

  0 10 19 14.5 14th  

F45 1 11 32 21.5 11th 

  0 11 3 7 6th  

F46 1 31 40 35.5 28th 

  0 6 13 9.5 10th  

F47 1 51 13 32 25th 

  0 41 31 36 33rd  

F48 1 46 17 31.5 24th 

  0 2 2 2 2nd  

F49 1 5 14 9.5 4th 

  0 45 41 43 39th  

F50 1 1 3 2 1st 

  0 1 1 1 1st  

F51 1 48 24 36 29th 

  0 16 11 13.5 12th  

F52 1 47 35 41 32nd 

  0 18 25 21.5 19th  
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Table 7.6: The Top Twenty Ranked BIM and Non-BIM Features Selected for AI Model 
Development 

Feature Category Serial Number  Feature Name Feature ID 

BIM-Based Features 
(BIM Status = 1) 

1 Traffic restrictions F50 

2 Unskilled labourer F37 

3 Variation in structural design F10 

4 Conflicts between consultant and contractor F4 

5 Poor site investigation or management F24 

6 Inaccurate budgeting F39 

7 Consultant cash flow issues F17 

8 Quality control issues F1 

9 Conflict between contractor and subcontractor F2 

10 Late payment by the owner F36 

11 Corruption issues F27 

12 Poor decision making F33 

13 Inaccurate resource planning F40 

14 Change orders F12 

15 Staff use of outdated construction methods F28 

16 Fluctuation in material prices F14 

17 Reworks due to error in construction F3 

18 Space limitations at site for permanent equipment F22 

19 Change of specifications during construction F31 

20 Natural disasters like floods earthquakes etc. F8 

    

 Non- BIM-Based 
Features(BIM Status = 

0) 

1 Traffic restrictions F50 

2 Ineffective project supervision F48 

3 Reworks due to error in construction F3 
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Feature Category Serial Number  Feature Name Feature ID 

4 Conflict between contractor and subcontractor F2 

5 Changes in site topography after design F23 

6 Damaged storage materials F45 

7 Fluctuation in material prices F14 

8 Late payment by the owner F36 

9 Staff use of outdated construction methods F28 

10 Nature of equipment(s) used F46 

11 Space limitations at site for temporary equipment F21 

12 Building permit F51 

13 Labour dispute or strikes  F6 

14 Ineffective government regulations F44 

15 Inaccurate budgeting F39 

16 Equipment break F35 

17 Corruption issues F27 

18 Unskilled labourer F37 

19 Inaccurate resource planning F40 

20 Client cash flow issues F16 
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Figure 7.16: Validated framework of delay factors essential for developing predictive models 
assessing delay risks in both BIM and Non-BIM construction projects. 
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7.5 The AI technologies/ Algorithms Employed for Developing the 
Predictive Models. 

As established from the findings of the second systematic review conducted in section 3 of this study, 

the two most powerful Artificial Intelligence (AI) technologies/algorithms widely employed to tackle 

issues in the construction industry are both supervised and deep learning. Consequently, this study 

employs these paradigms for developing predictive models. More precisely, therefore, the following 
subtypes of supervised and deep learning algorithms will be employed They include, Decision Tree, 
Logistic Regression, K-Nearest Neighbour, Support Vector Machine, Ensemble Method 

(including Random Forest , Gradient Boosting Machine, Adaptive Boosting, Naïve Bayes, Extreme 

Gradient Boosting, Extra Trees, and Light Gradient Boosting Machine), and Artificial Neural Network 

(including Multi-Layer Perceptron (MLP), Radial Basis Function Network (RBFN), and Fully Connected 

Neural Network (FCNN)) (Egwim et al., 2024).  

 

I. Decision Tree (DT): DT is a versatile supervised learning algorithm that can perform both 

classification and regression tasks(Egwim and Alaka, 2021). It partitions the feature space into 

disjoint regions and assigns a class label or predicts a continuous value for each region. The 

algorithm recursively splits the data based on the features that best separate the classes or 

minimize the impurity in each partition. This process continues until a stopping criterion is met, 

such as reaching a maximum depth or minimum number of samples in a leaf node. The decision 

tree can be represented as a tree structure, where each internal node represents a decision 

based on a feature, and each leaf node represents the predicted class or value. 
 

II. Logistic Regression (LR): LR is a popular supervised learning algorithm used for binary 

classification tasks. Despite its name, it is a linear model that predicts the probability of an 

instance belonging to a particular class (Charizanos, Demirhan and İçen, 2024).The logistic 

function, also known as the sigmoid function, is used to map the output of the linear model to 

a probability between 0 and 1. Mathematically, the logistic regression model can be 

expressed as: 
 

𝑃(𝑦 = 1|𝑥;𝑤) 	= 	'

	'(		)!"#$
  −−−−−−−−−−−−−− 	Equation	7.2   

 

where:  

𝑃(𝑦 = 1|𝑥;𝑤) is the probability of class 1 given input vector x,  

w is the weight vector, and  

e is the base of the natural logarithm.  

LR optimizes the parameters (weights) using techniques like gradient descent to minimize the 

logistic loss function. 
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III. K-Nearest Neighbour (KNN): KNN is a simple, yet effective supervised learning algorithm 

used for classification and regression tasks. It makes predictions based on the majority class 

or the average value of the k-nearest data points in the feature space(Yuk Carrie Lin, 2024). 

Given a new instance, KNN calculates the distance to all training instances and selects the k 
closest ones. For classification, the class label is determined by majority voting among the k-

nearest neighbours, while for regression, the predicted value is the average of the target values 

of the k-nearest neighbours. KNN's performance heavily relies on the choice of distance metric 

and the value of k. 

 

IV. Support Vector Machine (SVM): SVM is a powerful supervised learning algorithm used for 

classification and regression tasks (Roy and Chakraborty, 2023). It works by finding the 

hyperplane that best separates the data points into different classes. The hyperplane is chosen 
in such a way that it maximizes the margin between the classes, thereby enhancing the 

generalization ability of the model. Mathematically, the objective of SVM is to find the optimal 

hyperplane that separates the data points into two classes. This hyperplane can be represented 

as: 

 

𝑤*𝑥 + 𝑏	 = 0 − −−−−−−−−−−−−−−−− 	Equation	7.3 
 

where:  

𝑤	is the weight vector,  

𝑥 is the input vector, and  

𝑏 is the bias term. 

The distance between the hyperplane and the closest data points from each class is known as 

the margin. SVM aims to maximize this margin while minimizing the classification error. 

 
V. Ensemble Methods (EMs): EMs combine multiple base models to improve predictive 

performance (Egwim et al., 2022b). By aggregating the predictions of diverse models, 

ensemble methods can reduce overfitting and increase robustness. This study examines seven 

distinct EMs, identified as leading techniques for solving construction-related problems, as 

presented in Table [reference] in Section 3. They include the following: 

 

• Random Forest: A collection of decision trees trained on random subsets of the data 
and features, with the final prediction being the mode of the individual tree predictions.  

• Gradient Boosting Machine: Builds a series of decision trees sequentially, with each 

tree correcting the errors of the previous ones, leading to a highly accurate model.  

• Adaptive Boosting (AdaBoost): Focuses on misclassified instances by assigning 
higher weights to them, allowing subsequent models to pay more attention to these 

instances.  
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• Naïve Bayes: A probabilistic classifier based on Bayes' theorem with strong 

independence assumptions between features.  

• Extreme Gradient Boosting (XGBoost): An advanced implementation of gradient 
boosting with regularization and parallel processing capabilities.  

• Extra Trees: Similar to Random Forest but with random splits at each node, leading to 

a higher degree of randomness.  

• Light Gradient Boosting Machine (LightGBM): Another gradient boosting framework 
designed for large-scale datasets with faster training and lower memory usage. 

 

VI. Artificial Neural Network (ANN): ANN is a computational model inspired by the biological 

neural networks in the human brain (Egwim, Alaka, Toriola-Coker, Balogun and Sunmola, 

2021b). It consists of interconnected nodes, called neurons, organized in layers: an input layer, 

one or more hidden layers, and an output layer. ANNs are capable of learning complex patterns 

and relationships from data through a process called backpropagation, where the errors in 
predictions are propagated backward through the network to adjust the weights and biases. 

Within the broader scope of ANN techniques, which have been recognized as leading 

methodologies for addressing construction-related challenges (see section 3), this study will 

incorporate the following specialized neural network architectures for further investigation and 

analysis: 

 
• Multi-Layer Perceptron (MLP): A feedforward neural network with one or more hidden 

layers between the input and output layers. Each neuron in the network is connected 

to every neuron in the adjacent layers, allowing for nonlinear transformations of the 

input data. The output of an MLP can be calculated as follows: 

 

	𝑦+ = 𝑓 ab 𝑤,+𝑥, + 𝑏+
-

,.'
c − −−−−−−−−−−−	Equation	7.4 

 

where:  

𝑦+  is the output of neuron	𝑗 in the output layer,  

𝑓() is the activation function,  

𝑤,+  is the weight of the connection between neuron 𝑖 in the previous layer and neuron 

𝑗 in the current layer,  

𝑥,  is the input to neuron 𝑖,  

𝑏+  is the bias of neuron 𝑗, and  

𝑛 is the number of neurons in the previous layer.  

 

The architecture of an MLP typically consists of an input layer, one or more hidden 

layers, and an output layer. Each layer is composed of multiple neurons, and 

connections between neurons are represented by weighted edges.  
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• Radial Basis Function Network (RBFN): A type of neural network that uses radial 

basis functions as activation functions in the hidden layer (Dai, Wu and Zhang, 2024). 
The output of an RBFN can be calculated as follows: 

𝑦(𝑥) =b 𝑤,Æ(||𝑥 − 𝑐,||)
/

,.'
−−−−−−−−−−−−	Equation	7.5 

where:  

𝑦(𝑥) is the output of the RBFN for input  x,  

𝑁 is the number of neurons in the hidden layer,  

𝑤,  are the weights associated with each neuron,  

𝑐, are the centres of the radial basis functions,  
||𝑥 − 𝑐,||	represents the distance between input	𝑥 and centre 𝑐, , and  

Æ() is the radial basis function.  

 

The architecture of an RBFN typically consists of an input layer, a hidden layer with 
radial basis functions as activation functions, and an output layer. The centres of the 

radial basis functions are often determined through clustering algorithms such as k-

means. 

 

• Fully Connected Neural Network (FCNN): Also known as a dense neural network, it 

is characterized by every neuron in one layer being connected to every neuron in the 

subsequent layer (Bertschinger et al., 2023; Sun et al., 2024). FCNNs are capable of 
learning complex nonlinear mappings but may suffer from overfitting on large datasets. 

Mathematically the output of an FCNN is expressed as follows: 

 

𝑦 = 𝑓(𝑊*𝑥 + 𝑏	) − − −−−−−−−−−−−−−−− 	Equation	7.6 
 

where:  

𝑦 is the output vector,  

𝑊 is the weight matrix,  

𝑥 is the input vector,  

𝑏 is the bias vector, and  

𝑓()is the activation function.  

 
The architecture of an FCNN consists of an input layer, one or more hidden layers, and 

an output layer. Each layer is fully connected to the next layer, forming a dense network 

of connections. 
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7.6 Performance Evaluation Metrics 

The AI technologies/ algorithms employed exhibit a spectrum of transparency, each offering distinct 

levels of insight. While certain approaches yield tangible models—albeit not always readily 

interpretable—others operate without producing a discernible model. Consequently, within this 

subsection, this study explores into the intricacies underpinning the resultant AI models tailored for both 

BIM and Non-BIM-based construction projects. Furthermore, it details the specifics pertaining to these 

developed models, shedding light on their inner workings and implications via performance evaluation 
metrics below. These metrics provide insights into different aspects of the model's behaviour and 

effectiveness in classifying instances correctly. Also, these metrics provide critical insights into which 

features most significantly impact delay predictions. For instance, if certain features consistently result 

in high precision but low recall, this may indicate a need for additional features that capture missed 

delay cases. Conversely, features leading to high recall, but low precision might indicate a need for 

more granular or specific features to reduce false positives. 

 

I. Accuracy: Accuracy measures the proportion of correctly classified instances out of the total 
number of instances in the dataset (Padilla, Netto and Da Silva, 2020). It provides a general 

assessment of the model's overall performance. While accuracy provides an overall snapshot 

of the model's performance, it can sometimes be misleading, especially in cases of class 

imbalance where one class significantly outnumbers the other. In this study, focusing on BIM 

and Non-BIM-based construction projects, accuracy alone may not fully capture the model's 

effectiveness. This is because accuracy can be inflated by the predominant class's correct 

predictions. Therefore, accuracy should be considered alongside other metrics that provide a 

more nuanced understanding of the model's performance across all classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
𝑇𝑁 + 	𝑇𝑃

𝑇𝑃 + 	𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	) − − −−−−−−	Equation	7.7 

where:  

𝑇𝑃 is the number of true positives (correctly predicted positive instances),  

𝑇𝑁 is the number of true negatives (correctly predicted negative instances),  

𝐹𝑃 is the number of false positives (incorrectly predicted positive instances), and  

𝐹𝑁 is the number of false negatives (incorrectly predicted negative instances). 

 

II. Precision: Precision measures the proportion of true positive predictions among all positive 

predictions made by the model (Padilla et al., 2021). It indicates the model's ability to avoid 

false positive predictions. Precision is particularly relevant in scenarios where false positives 

have significant consequences. For instance, in predicting delays in construction projects, a 

false positive (predicting a delay where there isn't one) could lead to unnecessary reallocation 
of resources or adjustments in project planning. High precision is thus crucial in ensuring that 

when a delay is predicted, it is indeed likely to occur, thereby optimizing decision-making 

processes and resource allocation in project management. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 =
	𝑇𝑃

	𝑇𝑃 + 		𝐹	𝑃 	− − −−−−−−	Equation	7.8 

 

 

III. Recall (Sensitivity): Recall measures the proportion of true positive predictions among all 
actual positive instances in the dataset (Tharwat, 2018). It indicates the model's ability to 

capture positive instances. Recall is crucial in contexts where capturing all relevant instances 

is essential. In this study, high recall is vital to ensure that most, if not all, potential delays are 

identified. This metric is particularly important for risk management in construction projects, 

where failing to identify a delay (false negative) could result in unanticipated costs and 

disruptions. Thus, a model with high recall is effective in minimizing the risk of missing critical 

delay indicators. 

 

𝑅𝑒𝑐𝑎𝑙𝑙	 =
	𝑇𝑃

	𝑇𝑃 + 		𝐹𝑁 	− − −−−−−−	Equation	7.9 

   

IV. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a balanced 

measure that considers both false positives and false negatives (Miao and Zhu, 2022). The F1 

score balances precision and recall, providing a single metric that considers both the false 

positives and false negatives. This balance is crucial in construction project management, 

where both over-predicting and under-predicting delays can have significant ramifications. The 

F1 score helps in understanding the trade-offs between precision and recall, ensuring that the 
model's predictions are both accurate and comprehensive. 

 

𝐹'	𝑠𝑐𝑜𝑟𝑒 =
	2

	 	1
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +	

	1
	𝑅𝑒𝑐𝑎𝑙𝑙

	= 	2		𝑥
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑅𝑒𝑐𝑎𝑙𝑙
	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 		𝑅𝑒𝑐𝑎𝑙𝑙 	− − − 	Equation	7.10 

 

V. Specificity: Specificity measures the proportion of true negative predictions among all actual 

negative instances in the dataset (Tharwat, 2018). It indicates the model's ability to correctly 

identify negative instances. Specificity, or the true negative rate, is particularly important in 

scenarios where it is crucial to correctly identify non-delayed projects. High specificity ensures 
that projects not experiencing delays are not incorrectly flagged, which is important for 

maintaining trust and efficiency in project management. In the context of this study, specificity 

helps prevent the misallocation of resources that might occur if non-delayed projects are 

incorrectly identified as delayed. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 =
	𝑇𝑁

	𝑇𝑁 + 		𝐹𝑃 	− − −−−−− 	Equation	7.11 

 

VI. Receiver Operating Characteristic Area Under the Curve (ROC-AUC): ROC- AUC 

measures the area under the ROC curve, which plots the true positive rate (sensitivity) against 
the false positive rate (1 - specificity) at various threshold settings (Miao and Zhu, 2022). It 
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provides a measure of the model's ability to discriminate between positive and negative 

instances across different threshold values. This is particularly useful in construction delay 

prediction, where the decision threshold can vary based on the project's criticality and the 

acceptable risk levels. A high ROC-AUC value indicates that the model is effective at 
distinguishing between delayed and non-delayed projects across various decision thresholds, 

providing flexibility in its application. 

 

VII. Log Loss (Cross-Entropy Loss): Log loss measures the performance of a classification 

model based on the predicted probability of the true class (Mei et al., 2024; Mushava and 

Murray, 2024). It is commonly used as the loss function during training and can be used for 

evaluation, with lower values indicating better performance. Log loss is essential for assessing 

the confidence level of predictions regarding project delays. Lower log loss values indicate that 
the model assigns higher probabilities to the correct class, thus providing more reliable 

predictions. This metric is critical when the model's output is used for making probabilistic 

decisions in resource allocation and risk management. 

 

VIII. Confusion Matrix: A confusion matrix is a tabular representation (see Table 7.7) of the model's 

predictions compared to the actual class labels (Egwim, Alaka, Toriola-Coker, Balogun and 

Sunmola, 2021b). It provides detailed information about true positive, true negative, false 

positive, and false negative predictions, allowing for a deeper understanding of the model's 
performance. The confusion matrix offers a detailed breakdown of the model's performance, 

showcasing the distribution of true positives, true negatives, false positives, and false 

negatives. This detailed view is crucial for understanding specific areas where the model may 

be overestimating or underestimating delays. By analyzing the confusion matrix, stakeholders 

can identify specific patterns or biases in the model's predictions, allowing for targeted 

improvements in model training and feature selection. 

 
 Table 7.7 Confusion Matrix 

 

 

 

 

Actual 

                                                     Prediction 

 Negative  

(delay < threshold limit) = 0 

Positive  

(delay > threshold limit) = 1 

   

Negative  

(delay < threshold limit) = 0 

True Negative False Positive 

Positive 

(delay > threshold limit) = 1 

False Negative True Positive 
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7.7 AI Model Development 
In this study, the respective AI models were developed by importing a running instance of Jupiter 

Notebook using Scikit-learn - an integral Python programming language module with a broad spectrum 

of state-of-the-art algorithms for supervised and unsupervised medium-scale problems (Pedregosa et 

al., 2011). Furthermore, the experimentation was performed on an Apple MacBook Pro macOS 

Monterey version 12.4 with an Apple M1 chip, 16 gigabyte random access memory, and 8 cores 

hardware. The training dataset (70% of the total dataset) was used to fit the fourteen different algorithms 

listed in the previous subsection, while their hyperparameters were optimized during successive runs 

to further improve the performance for making predictions on the unseen test dataset (30% of the total 
dataset). The model development process began with data pre-processing, which involved handling 

missing values, encoding categorical variables, and scaling numerical features as detailed in previous 

sections. The model development process involved creating the separate models for BIM and non-BIM-

based construction projects. The dataset was split accordingly, and the pre-processing, training, and 

evaluation steps were performed independently for each project type. The pre-processed data was then 

split into training and testing sets, with the training set used for model fitting and the testing set reserved 

for evaluating the models' performance on unseen data. Each of the fourteen algorithms (four classical 

algorithms, seven ensemble methods, and three artificial neural networks) was implemented using the 
respective libraries and functions provided by Scikit-learn. Hyperparameter tuning was performed using 

techniques such as grid search and randomized search cross-validation to optimize the models' 

performance. For instance, in the case of Decision Trees, parameters like the maximum depth of the 

tree, the minimum number of samples required to split a node, and the criteria for splitting nodes (e.g., 

Gini impurity or entropy) were tuned. Similarly, for Logistic Regression, the regularization strength and 

the solver algorithm were optimized. The number of neighbours in the K-Nearest Neighbour algorithm 

and the kernel function in Support Vector Machines were also fine-tuned. Ensemble Methods required 
careful selection and tuning of the base learners and their respective hyperparameters. For example, 

in Random Forest, the number of trees, the maximum depth of each tree, and the number of features 

to consider at each split were optimized. In Gradient Boosting techniques like XGBoost and LightGBM, 

parameters like the learning rate, the maximum depth of each tree, and the regularization strengths 

were tuned. Artificial Neural Networks, being more complex models, required extensive hyperparameter 

optimization. The number of hidden layers, the number of neurons in each layer, the activation 

functions, the optimization algorithm, the learning rate, and the regularization techniques were all 

carefully tuned to prevent overfitting and improve generalization performance. After training and tuning 
the models for both BIM and non-BIM-based construction projects, their performances were evaluated 

on the testing dataset using various evaluation metrics, including Accuracy, Confusion Matrix, 

Precision, Recall, F1-Score, and the ROC-AUC. These metrics provided insights into different aspects 

of the models' behaviour and effectiveness in correctly classifying instances. The results of these 

evaluation metrics were visualized using appropriate plots and figures (Figures 7.17 to 7.24) to facilitate 

a comprehensive analysis and comparison of the models' performances. The visualization techniques 
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employed included charts for ROC-AUC for assessing the trade-off between true positive and false 

positive rates. Finally, Table 7.8 presents a comprehensive comparison of the fourteen AI models 

developed. These models, categorized as supervised learning models, will be thoroughly discussed in 

the subsequent chapter. As described earlier in subsection 7.4, the computation of overall accuracy, 
specificity, sensitivity, precision, and recall is based on the analysis of the confusion matrix associated 

with each model. 
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Figure 7.17: Decision making process of the decision tree model for BIM-based project. 
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Figure 7.18: Decision making process of the decision tree model for non-BIM-based project. 
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Figure 7.19: DT ROC AUC Plot 

 

 
Figure 7.20: LR ROC AUC Plot 

 

 
Figure 7.21: KNN ROC AUC Plot 

 

 
Figure 7.22: SVM ROC AUC Plot 

 

 
Figure 7.23: RF ROC AUC Plot 

 

 
Figure 7.24: GBM ROC AUC Plot 
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Figure 7.25: AB ROC AUC Plot 

 

 
Figure 7.26: GNB ROC AUC Plot 

 

 
Figure 7.27: XGB ROC AUC Plot 

 

 
Figure 7.28: ET ROC AUC Plot 

 

 
Figure 7.29: LGBM ROC AUC Plot 

 

 
Figure 7.24: MLP ROC AUC Plot 
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Table 7.8: Summary of the performance metrics for each supervised learning model developed 
AI 

Technologies 
Supervised 

Learning 

BIM 
Status 

Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Specificity 

(%) 

Accuracy 

(%) 

ROC  

AUC 

 

 

 

 

Classical 
Algorithms 

DT 1 74% 93% 82% 93% 81% 0.819 

 0 65% 73% 69% 33% 58% 0.533 

LR 1 71% 72% 72% 67% 70% 0.698 

 0 89% 53% 67% 89% 67% 0.711 

KNN 1 95% 65% 77% 97% 80% 0.806 

 0 75% 60% 67% 67% 63% 0.633 

SVM 1 81% 77% 79% 79% 78% 0.781 

 0 88% 47% 61% 89% 63% 0.678 

         

 

 

 

 

 

 

 

RF 1 91% 82% 86% 91% 86% 0.865 

 0 80% 53% 64% 78% 63% 0.656 

GBM 1 92% 85% 88% 91% 88% 0.880 

 0 77% 67% 71% 67% 67% 0.667 

AB 1 91% 82% 86% 91% 86% 0.865 

 0 71% 67% 69% 56% 63% 0.611 

GNB 1 72% 65% 68% 72% 68% 0.685 

 
Figure 7.29: RBFN ROC AUC Plot 

 

 
Figure 7.24: FCNN ROC AUC Plot 
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AI 
Technologies 

Supervised 
Learning 

BIM 
Status 

Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Specificity 

(%) 

Accuracy 

(%) 

ROC  

AUC 

Ensemble 
Methods 

 0 90% 60% 72% 89% 71% 0.744 

XGB 1 93% 85% 89% 93% 89% 0.889 

 0 73% 73% 73% 56% 67% 0.644 

ET 1 96% 82% 88% 97% 87% 0.891 

 0 91% 67% 77% 89% 75% 0.778 

LGBM 1 88% 82% 85% 88% 85% 0.847 

 0 82% 60% 69% 78% 67% 0.689 

         

 

 

Artificial 
Neural 

Networks 

MLP 1 95% 89% 92% 96% 92% 0.952 

 0 75% 75% 75% 75% 75% 0.701 

RBFN 1 71% 90% 80% 65% 77% 0.806 

 0 88% 58% 70% 92% 75% 0.701 

FCNN 1 96% 90% 93% 97% 93% 0.982 

 0 82% 75% 78% 83% 79% 0.777 

 

 

7.8 Chapter Summary 

In this chapter, the development process of AI predictive models for both BIM-based and non-BIM-
based construction projects was comprehensively outlined. The journey commenced with a detailed 

data pre-processing phase, encompassing data profiling, cleaning, and exploratory data analysis. This 

initial stage unveiled the discrete categorical nature of the dataset, consisting of 52 features and a target 

variable, with ordinal values ranging from one to five. After data pre-processing, the study examined 

feature engineering, a pivotal endeavour involving the systematic selection, alteration, and generation 

of features. Techniques such as one-hot encoding and SMOTE oversampling were employed to 

address class imbalance and facilitate effective model development. The chapter then transitioned to 
an in-depth exploration of feature selection methodologies, rigorously examining various approaches, 

including filter-based, wrapper-based, and embedded techniques. A comprehensive synthesis of these 

diverse methods culminated in the selection of the top twenty most influential features for model 

development. The AI technologies and algorithms employed for developing predictive models were then 

elucidated, encompassing supervised learning algorithms, ensemble methods, and artificial neural 

networks. These included Decision Trees, Logistic Regression, K-Nearest Neighbours, Support Vector 
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Machines, Random Forests, Gradient Boosting Machines, AdaBoost, Naïve Bayes, XGBoost, Extra 

Trees, LightGBM, Multi-Layer Perceptron, Radial Basis Function Networks, and Fully Connected Neural 

Networks. To evaluate the performance of the developed models, a comprehensive array of evaluation 

metrics was introduced, including accuracy, precision, recall, F1 score, specificity, and ROC-AUC. The 
chapter provided a detailed explanation of these metrics and their significance in assessing model 

performance. Finally, the chapter researched into the intricate process of AI model development, 

detailing the utilization of Scikit-learn, a Python programming language module, and the implementation 

of the fourteen algorithms on an Apple MacBook Pro with an M1 chip. The models were developed 

independently for BIM-based and non-BIM-based construction projects, with data pre-processing, 

training, and evaluation steps performed separately for each project type. The chapter culminated with 

a comprehensive comparison of the fourteen developed AI models, categorized as supervised learning 

models, based on the evaluation metrics. Visualizations, including decision-making processes of 
decision tree models for both project types, were provided to facilitate a thorough analysis and 

comparison of the models' performances. 
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CHAPTER 8  

8.0 AI MODEL SELECTION: FINDINGS AND 
DISCUSSION 

 

8.1 Chapter introduction 
This chapter examines the findings of the research and discusses their implications in detail. It presents 

the results obtained from analysing 14 distinct artificial intelligence prediction models, as well as the 

critical factors identified by the most effective model. Section 8.2 elaborates on the methodology used 

to select the optimal model, focusing on three pivotal criteria: accuracy, precision, and recall. Subsection 

8.2.1 provides a detailed account of the model selection process based on accuracy, while subsection 

8.2.2 explore the selection criteria concerning precision and recall. Furthermore, subsection 8.2.3 

introduces the standout model for the respective project type, namely the fully connected neural network 

(FCNN). Moving forward, Section 8.3 sheds light on the critical factors contributing to delays in both 
BIM and Non-BIM construction projects, drawing insights from the variables identified by the superior 

FCNN model via model interpretability/explainability using SHapley Additive exPlanations (SHAP). 

Subsection 8.3.1 to 8.3.5 investigated the top five factors pertinent to both projects. Moreover, Section 

8.4 explores the theoretical implications of the research, particularly in terms of bolstering existing 

theories surrounding construction project delays. By grounding the findings in theoretical frameworks, 

this section shows the broader significance of the research outcomes. Lastly, Section 8.5 encapsulates 

the essence of the chapter by providing a concise summary of the main points discussed throughout. 

 

8.2 Selection of the AI predictive Model 
The process of selecting the optimal model from a range of options heavily relies on the goals of the AI 

engineer, which are intricately intertwined with the needs of the end user. For instance, a contractor's 

primary focus often centres on the accuracy of an AI model, as it directly influences decisions regarding 

project timelines. Within the scope of this research, the primary stakeholders are the construction 
project owners, driven by the overarching aim of mitigating project delays pervasive the construction 

sector. Consequently, attributes such as accuracy, precision, recall and F1 score assume paramount 

importance in the curation of an AI predictive model tailored to these exigencies. The selection of an 

optimal AI predictive model necessitates a rigorous evaluation of the performance metrics across the 

array of developed models. While accuracy serves as an intuitive gauge of model efficacy, a holistic 

assessment mandates a deeper examination of precision, recall, and the elusive balance they embody 

through the F1 score. As a reminder, the outcomes of the developed AI predictive models are succinctly 

summarized in Table 7.8, encapsulating the comprehensive overview of their performance metrics. 
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Moreover, the discriminatory prowess of the AI predictive models, as encapsulated by the Receiver 

Operating Characteristic (ROC) curve and its corresponding Area Under the Curve (AUC), offers pivotal 

insights. Collectively, these metrics illuminate the multifaceted performance profiles of the respective 

models, informing a judicious selection tailored to the specific aim of this study and thereby enriching 
the understanding of their efficacy in real-world applications. 

 

8.2.1 Model Accuracy 

Accuracy, though a conspicuous metric, belies the nuanced complexities inherent in evaluating 

classification models, particularly when grappling with imbalanced datasets. As shown in Table 7.8, the 

accuracy scores span a considerable range, with the highest performers being the Fully Connected 

Neural Network (FCNN) at 93% and 79% for BIM-based and non-BIM-based projects, respectively. 

Notably, the FCNN outperforms all other models, including its neural network counterparts, the Multi-

Layer Perceptron (MLP) and the Radial Basis Function Network (RBFN), across both project domains. 

Among the ensemble methods, the Extra Trees (ET) algorithm emerges as a formidable contender, 

achieving an accuracy of 87% for BIM-based projects, while the Extreme Gradient Boosting (XGB) 
model closely trails at 89%. Conversely, in the non-BIM domain, the XGB model exhibits a relatively 

lower accuracy of 67%, superseded by the Extra Trees (ET) algorithm's 75% and the Gaussian Naive 

Bayes (GNB) model's 71%. The classical algorithms, though outperformed by their contemporaries, still 

exhibit reasonable accuracy levels. The Decision Tree (DT) model attains 81% accuracy for BIM-based 

projects, while its non-BIM counterpart lags at 58%. Similarly, the K-Nearest Neighbour (KNN) algorithm 

achieves 80% and 63% accuracy for BIM and non-BIM projects, respectively, with the Support Vector 

Machine (SVM) closely following at 78% and 63%. While these accuracy scores offer a preliminary 
vantage point, their interpretation necessitates a nuanced understanding of the underlying expert 

survey dataset characteristics. The inherent class imbalance, wherein instances of project delays 

outnumbered those without delays (see section 7.2 ), renders accuracy a potentially misleading metric. 

Models exhibiting high accuracy may still falter in correctly identifying the minority class, a critical 

consideration in the scope of this study, where accurate delay prediction is paramount. 

 

8.2.2 Model Precision, Recall 

To circumvent the pitfalls of over-reliance on accuracy, a comprehensive evaluation must encompass 

precision and recall, two complementary metrics that elucidate a model's adeptness in handling 

imbalanced datasets. Precision quantifies the proportion of true positive predictions among all positive 

predictions made by the model. In other words, it measures the model's ability to avoid false positive 
predictions, a trait of paramount importance when assessing the risk of project delays. A high precision 

score signifies that when the model predicts a delay, that prediction is highly likely to be accurate. On 

the other hand, recall, also known as sensitivity, measures the proportion of true positive predictions 

among all actual positive instances in the dataset. It reflects the model's capability to capture and 

correctly identify instances of project delays, thereby minimizing false negatives, which could prove 
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detrimental in risk assessment endeavours. As illustrated in Table 7.8, the FCNN model exhibits 

remarkable precision scores of 96% and 82% for BIM-based and non-BIM-based projects, respectively. 

This exceptional performance is closely trailed by the ET algorithm, with precision scores of 96% and 

91% across the two project types. The XGB model also demonstrates high precision, achieving 93% 
for BIM-based projects and a respectable 73% for non-BIM-based projects. In terms of recall, the FCNN 

once again emerges as a standout performer, attaining scores of 90% and 75% for BIM-based and non-

BIM-based projects, respectively. The MLP model follows closely, with recall scores of 89% and 75%, 

while the ET algorithm achieves 82% recall for BIM-based projects and a comparatively lower 67% for 

non-BIM-based endeavours. The synergy between precision and recall is encapsulated by the F1 score, 

a harmonious mean that balances their respective contributions. Here, the FCNN model exhibits a 

remarkable F1 score of 93% for BIM-based projects and a commendable 78% for non-BIM-based 

undertakings. The ET algorithm follows suit, with F1 scores of 88% and 77%, respectively, while the 
XGB model achieves 89% for BIM-based projects and a lower 73% for non-BIM-based endeavours. 

The stark contrast in precision and recall scores across the various models underscores the importance 

of a nuanced evaluation strategy. Models that excel in accuracy may falter when it comes to identifying 

the minority class, a scenario that could prove catastrophic in the realm of risk assessment for 

construction projects. The FCNN's exceptional performance in both precision and recall, coupled with 

its impressive F1 scores, positions it as a compelling choice for the development of robust predictive 

models capable of accurately predicting project delays, irrespective of the project's adherence to BIM 

methodologies or traditional non-BIM approaches.  

 

8.2.3 Fully Connected Neural Network (FCNN) as the Chosen AI Predictive 
Model  

The selection of the FCNN as the optimal AI predictive model for this study is buttressed by a multitude 

of factors that transcend its quantitative performance metrics. While the FCNN's exceptional accuracy, 
precision, recall, and F1 scores undeniably contribute to its appeal, the inherent characteristics of this 

neural network architecture further solidify its suitability for the task at hand. Firstly, the FCNN's ability 

to capture and model complex, non-linear relationships within the data are of paramount importance. 

This is because the dynamics that underpin project delays are intrinsically multifaceted, with intricate 

interplays between various factors contributing to their manifestation. Therefore, the FCNN's capacity 

to disentangle these intricate patterns and discern the underlying mechanisms that govern delay 

occurrences is an invaluable asset. Moreover, the FCNN's resilience to overfitting, a pervasive 

challenge in the realm of machine learning, further bolsters its credibility. By virtue of its dense 
interconnectivity and the judicious application of regularization techniques, the FCNN mitigates the risk 

of memorizing idiosyncrasies within the training data, thereby enhancing its generalization capabilities. 

This trait is particularly crucial in construction projects, where unforeseen circumstances and unique 

project dynamics are the norm rather than the exception. Additionally, the FCNN's interpretability/ 

explainability contribute to its appeal as the chosen model. While neural networks have often been 

criticized for their opaque nature, the FCNN's architecture and the ability to visualize its learned weights 
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and biases facilitate a deeper understanding of the model's decision-making process. This 

explainability(as shown in the next section) is invaluable in the realm of risk assessment, where 

stakeholders demand not only accurate predictions but also insights into the underlying rationale driving 

those predictions. Furthermore, the FCNN's scalability and adaptability position it as a future-proof 
solution. As the construction industry continues to evolve, with new methodologies and technologies 

emerging, the FCNN's ability to assimilate and adapt to novel data patterns will prove indispensable. 

Its inherent capacity for continual learning and refinement ensures that the model remains relevant and 

effective, even as the landscape of construction projects undergoes transformative shifts. Finally, the 

FCNN's versatility in handling both BIM-based and non-BIM-based projects is a testament to its 

robustness and applicability across diverse project types. This attribute is particularly significant in the 

context of this study, which aims to develop predictive models that cater to the nuances of both 

traditional and cutting-edge construction methodologies.  

 

8.3 Model Interpretability/Explainability using SHapley Additive 
exPlanations (SHAP) 

Model interpretability, often synonymous with explainability, refers to the ability to understand and 
interpret the decisions made by machine learning models. It plays a pivotal role in fostering trust, 

enabling stakeholders to comprehend the underlying factors driving model predictions and facilitating 

informed decision-making. One powerful technique that has gained significant traction in the realm of 

model interpretability is SHapley Additive exPlanations (SHAP). SHAP provides a framework for 

explaining the output of any machine learning model by attributing the prediction to its individual feature 

contributions. SHAP operates based on the principle of Shapley values, a concept borrowed from 

cooperative game theory. Shapley values assign each feature a proportional contribution to the model 
prediction, considering all possible combinations of features. This comprehensive approach ensures 

fairness and consistency in attributing credit to each feature, thereby providing a reliable measure of 

feature importance. When compared to alternative methods such as Local Interpretable Model-agnostic 

Explanations (LIME) or Partial Dependence Plots (PDP), SHAP offers several distinct advantages. 

Firstly, SHAP provides global interpretability by explaining the entire model's behaviour, rather than 

focusing solely on individual predictions (Molnar, 2022). This holistic view enables stakeholders to gain 

deeper insights into the model's decision-making process and identify patterns across the dataset. 

Furthermore, SHAP's ability to handle complex models, including deep neural networks, makes it well-
suited for this study. The SHAP formula used in explaining the chosen AI predictive model (FCNN) is 

as follows: 

∅, =	b
(𝑁 − |𝑆| − 1)! |𝑆|!

𝑁!0⊆/\{,}
	[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]………………𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	8.1 

Where:  

∅,represents the Shapley value of feature 𝑖 , 
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𝑁 is the total number of features,  

𝑆 is a subset of features excluding feature 𝑖 , 

𝑓(𝑆 ∪ {𝑖})	is the model's prediction with feature 𝑖 included,  

𝑓(𝑆) is the model's prediction without feature 𝑖 . 

To initiate the SHAP analysis, the FCNN model was subjected to examination to display its predictive 

mechanisms text dataset. This involved utilizing the 'Kernel Explainer' function to instantiate an 

explainer object. Subsequently, this explainer object was leveraged to compute SHAP values for each 

observation within the prospective metrics of the test dataset, where the dataset comprises row records 

representative of construction projects. Figure 8.1 offers a detailed breakdown of the factors influencing 
the probability of construction project delays, employing SHAP values to provide insights into feature 

contributions. Commencing with a baseline value of 0.507, indicative of the expected outcome in the 

absence of any specific features, the plot progresses towards a final predicted probability of f(x)=0.908, 

representing the likelihood of experiencing delays. Upon closer examination, certain features are found 

to exert positive influences on the prediction, thereby increasing the likelihood of delays. Notably, F40 

emerges as the most impactful positive factor (solely based on the specified value of f(x) for a given 

feature), contributing +0.1 to the overall prediction. Additionally, F50, F36, F37, F31, F1, and F4 

contribute positively, each enhancing the probability of delay occurrence by +0.08, +0.08, +0.06, +0.06, 
+0.05, and +0.04, respectively. Conversely, some features exhibit negative impacts, indicating a 

decreased likelihood of delays. Particularly, F22 stands out as the most influential negative factor, with 

a contribution of -0.05 to the prediction. The color-coded representation further enhances the 

interpretability of the plot. Positive impacts are depicted in red, highlighting features that exacerbate 

delays, while negative impacts appear in blue, indicating factors that mitigate delays. This visual 

distinction aids in quickly identifying the key drivers behind delay occurrences, enabling stakeholders 

to focus their attention and resources accordingly. In interpreting these results, it is essential to consider 
the underlying principle of SHAP theory, which is rooted in game theory and the concept of Shapley 

values. SHAP values allocate credit for the prediction to each feature, considering all possible 

combinations of features and their contributions. This approach ensures fair attribution of prediction 

outcomes to individual features, providing a comprehensive understanding of their respective impacts 

on the model's output. By leveraging SHAP values within the context of a waterfall plot, stakeholders 

gain valuable insights into the relative importance of different features in determining the likelihood of 

project delays. Armed with this knowledge, decision-makers can formulate targeted strategies to 

address key contributing factors, thereby enhancing project planning, management, and ultimately, 
success. 
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Figure 8.1: SHAP prediction outcome based on all features. 

 

Similarly, we picked an instance of a construction project (a row from the test dataset) to interpret/ 

explain how the chosen model made its prediction decision.  Figure 8.2 offers insights into the factors 

influencing the prediction of potential delays in the construction project of choice. The plot presents a 

visualization of the impact of various features (denoted as F36, F12, F22, F37, F14, F8, F1, F27, and 

F2) on the final prediction outcome, with distinct coloration highlighting different trends in the feature 

space. A base value of 0.5 suggests a neutral starting point for the prediction process. The final 

prediction of 0.01 indicates a propensity for minimal delays in that construction project. In the red-
coloured region, features such as F36, F12, and F22 exert a notable positive influence on the prediction 

outcome. Specifically, F36 is associated with a value of 0.93, indicating its substantial contribution to 

the likelihood of project delays. Similarly, F12 and F22 demonstrate positive effects on the prediction 

outcome, with values of 1.58 and -0.39, respectively. These features, when observed in the red-

coloured region, suggest a higher probability of project delays in scenarios where they exhibit significant 

values. Conversely, the blue-coloured region is characterized by features including F37, F14, F8, F1, 

F27, and F2. These features contribute negatively to the prediction outcome, indicating a lower 

likelihood of project delays. Notably, F8 stands out with a substantial negative effect, denoted by its 
value of 2.26, followed by F14 with a value of 0.89. Features F37, F1, F27, and F2 also exhibit negative 

effects on the prediction outcome, albeit to a lesser extent. 
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Figure 8.2: SHAP prediction outcome based on selected features. 

 

Furthermore,  Figure 8.3 showcases the top five factors (features), namely late payment by the owner 
(F36), inaccurate resource planning (F40), space limitations at site for permanent equipment 
(F22), reworks due to error in construction (F3), and unskilled labourer (F37), arranged in 
descending order of importance on the left-hand side of the y-axis from the array of the individual twenty 

factors(features) used to develop the AI chosen AI predictive model (FCNN) for the different project 

type (see Table 7.6). Each feature's impact on the model output, represented by SHAP values, is 

depicted along the x-axis, ranging from -0.4 to 0.4. A key aspect of the visualization is the vertical divide 

at the centre, marked by a value of 0 on the x-axis. This division shows the influence of features on the 

model output into two distinct regions: negative SHAP values to the left and positive SHAP values to 

the right. The negative region signifies features that contribute to lower model predictions, while the 

positive region indicates features associated with higher predictions. The colour gradient from blue to 
red serves as a legend, symbolizing the magnitude of feature impact. Blue hues represent lower SHAP 

values, indicating features with minimal influence on model output. In contrast, red hues signify higher 

SHAP values, indicating features with significant impacts on model predictions. Therefore, it is evident 

that the top five features possess varying degrees of influence on the model output in comparison to 

the other fifteen features. These top five features were determined through the application of SHapley 

Additive exPlanations (SHAP) values, which quantify the contribution of each feature to the model's 

predictions. These features were chosen based on their overall SHAP values, which indicate the 

magnitude of their influence on the predictive model's output. F36 stand out as the most impactful 
feature, as it exhibits the highest SHAP values, signifying a substantial contribution to model predictions. 

Conversely, from the pool of the other fifteen features such as F10, F28, and F2 demonstrate 

comparatively lower SHAP values, suggesting a lesser impact on the model output. Through these 

interpretability tool, construction stakeholders can gain a deeper understanding of the FCNN model's 
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decision-making process, identify influential features, and assess the model’s performance 

comprehensively. Thus, enhances transparency, foster trust, and enable construction companies make 

informed decisions based on the insights gleaned from their machine learning models. 

 

Figure 8.3: SHAP prediction outcome based on top five features. 

 

8.3.1 Late Payment by the Owner 

The analysis conducted using the SHAP technique has identified late payment by the owner as the 
most critical factor contributing to project delays across both BIM-based and non-BIM-based 

construction projects. This finding aligns with numerous previous studies that have consistently 

highlighted the detrimental impact of delayed payments on project progress and timelines. Delayed 

payments from owners disrupt the financial flow essential for construction projects, causing a ripple 

effect that reverberates throughout the entire supply chain. Contractors and subcontractors heavily rely 

on timely payments to sustain operations, procure materials, retain skilled labour, and meet their 

financial obligations. When payments are delayed, it can lead to a cascading series of consequences, 

including work stoppages, resource shortages, and potentially, legal disputes. Moreover, late payments 
can strain the relationships between stakeholders, eroding trust and fostering an adversarial 

environment that hinders collaboration and effective problem-solving. This strain can further exacerbate 

delays as parties become entrenched in their positions, prioritizing self-preservation over project 

success. It is crucial to acknowledge that late payments by owners are often symptomatic of deeper 

underlying issues, such as inadequate project financing, cash flow mismanagement, or contractual 

disputes. Addressing this critical factor necessitates a multifaceted approach that involves improving 

communication channels, establishing clear payment schedules, and implementing robust contract 
management practices. Owners must recognize the far-reaching implications of delayed payments and 

prioritize prompt and efficient payment processes. This commitment not only fosters a positive working 

environment but also contributes to the overall success and timely completion of construction projects, 

thereby minimizing the risk of costly delays. The detrimental impact of late payments by owners on 

project timelines resonates with findings from various studies in the construction industry. Amoatey et 
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al. (2021) identified delayed payments as a critical factor hindering the delivery of construction projects 

in Ghana, often leading to work stoppages and project abandonment. Similarly, Hing et al. (2023) 

investigated the causes of delays in Malaysian construction projects and ranked late payment by the 

client as the most significant factor, corroborating the results of this study. Prompt payment 
mechanisms, such as project bank accounts or third-party payment certification systems, have been 

proposed as potential solutions to mitigate the risk of late payments (Wang et al., 2024). However, 

these measures require a collaborative effort from all stakeholders, including owners, contractors, and 

regulatory bodies, to establish industry-wide standards and enforce compliance. It is noteworthy that 

the impact of late payments may be more pronounced in non-BIM-based projects, as the lack of 

integrated digital workflows and real-time project visibility can exacerbate communication gaps and 

delays in dispute resolution. This underscores the potential benefits of adopting BIM to enhance 

transparency, streamline payment processes, and facilitate more efficient collaboration among project 
stakeholders. 

 

8.3.2 Inaccurate Resource Planning 

Inaccurate resource planning has emerged as the second most influential factor contributing to project 

delays, according to the SHAP analysis. Effective resource planning is a cornerstone of successful 

project execution, encompassing the strategic allocation and management of materials, equipment, and 

labour resources throughout the project lifecycle. Inadequate resource planning can manifest in various 

forms, such as underestimating material quantities, failing to account for lead times, or miscalculating 

labour requirements. These shortcomings can lead to critical resource shortages, causing work 

stoppages, rework, and ultimately, project delays. Moreover, inaccurate resource planning can create 
a ripple effect that extends beyond the immediate project site. For instance, insufficient planning for 

material procurement can strain supply chains, leading to delays in material delivery and disrupting the 

schedules of other projects relying on the same suppliers. Effective resource planning requires a 

comprehensive understanding of project requirements, accurate forecasting of resource needs, and 

proactive risk management strategies. It necessitates close collaboration between project managers, 

contractors, and suppliers to ensure seamless coordination and timely resource availability. 

Implementing robust resource planning practices, such as detailed scheduling, material tracking 

systems, and contingency planning, can mitigate the impact of inaccurate resource planning on project 
timelines. Additionally, leveraging data-driven analytics and predictive modelling can further enhance 

resource forecasting accuracy, enabling more informed decision-making, and reducing the risk of 

project delays. The criticality of accurate resource planning in mitigating project delays aligns with 

findings from numerous studies in the construction domain. Doloi et al. (2022) identified resource 

shortages and inadequate resource planning as significant contributors to cost overruns and project 

delays in the Indian construction industry. Similarly, Gunduz et al. (2023) highlighted the importance of 

effective resource management in reducing delays and improving project performance in the Turkish 

construction sector. Emerging technologies, such as cloud-based resource planning software and real-
time monitoring solutions, offer promising avenues for enhancing resource forecasting accuracy and 
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optimizing resource allocation (Alaloul et al., 2020). By leveraging these tools, project teams can gain 

greater visibility into resource availability, demand patterns, and potential bottlenecks, enabling 

proactive decision-making and minimizing the risk of delays. Furthermore, the integration of BIM with 

resource planning and scheduling tools can facilitate more seamless collaboration and information 
exchange among project stakeholders (Azhar, 2024). This approach can lead to improved coordination, 

reduced rework, and more efficient utilization of resources, ultimately contributing to timely project 

completion. 

 

8.3.3 Space Limitations at Site for Permanent Equipment 

The SHAP analysis has identified space limitations at the construction site for permanent equipment as 

the third most critical factor contributing to project delays. This finding underscores the importance of 

effective site planning and management in ensuring smooth project execution. Construction sites are 

inherently dynamic environments, with various activities occurring simultaneously, often within confined 

spaces. Inadequate planning for the placement and movement of permanent equipment, such as 

cranes, heavy machinery, and storage facilities, can lead to significant bottlenecks and inefficiencies. 
Space limitations can cause congestion, hampering the flow of materials and personnel, and ultimately 

impeding progress. Furthermore, improper equipment placement can increase the risk of accidents, 

potentially leading to work stoppages and further delays. Addressing space limitations at construction 

sites requires a strategic approach that involves detailed site layout planning, effective communication 

among stakeholders, and proactive conflict resolution. Project managers must collaborate closely with 

contractors, equipment suppliers, and site supervisors to develop comprehensive site utilization plans 

that optimize space allocation while ensuring safety and productivity. Implementing innovative solutions, 
such as modular construction techniques, off-site prefabrication, and just-in-time material delivery, can 

help alleviate space constraints and streamline site operations. Additionally, leveraging technologies 

like BIM and virtual reality simulations can aid in visualizing and analysing site layouts, enabling 

proactive identification and resolution of potential space conflicts. By proactively managing space 

limitations at construction sites, project teams can mitigate disruptions, enhance productivity, and 

ultimately reduce the risk of project delays, ensuring timely completion and adherence to project 

timelines. The significance of space limitations at construction sites as a critical factor contributing to 

project delays aligns with findings from several studies across various regions. Gunduz et al. (2013) 
identified site layout and space constraints as major causes of delays in Turkish construction projects, 

emphasizing the need for effective site planning and management. Notably, the impact of space 

limitations may be more pronounced in urban or densely populated areas, where construction sites are 

often confined and subject to stringent regulations (Onosede, 2019). In such scenarios, innovative 

approaches such as modular construction and off-site fabrication can provide viable solutions to 

mitigate space constraints and reduce on-site activities. Additionally, the use of advanced technologies 

like BIM and virtual reality simulations can significantly aid in optimizing site layouts and identifying 

potential spatial conflicts before construction commences (Zaki et al., 2021). By visualizing and 
analyzing the site environment digitally, project teams can make informed decisions regarding 
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equipment placement, material staging areas, and temporary facilities, ultimately minimizing disruptions 

and delays caused by space limitations. 

 

8.3.4 Reworks Due to Error in Construction 

Reworks, which involve the correction or replacement of defective or non-conforming work, can have 

far-reaching consequences on project timelines and budgets. Reworks can arise from various sources, 

including design errors, poor workmanship, inadequate quality control measures, or miscommunication 
among stakeholders. Regardless of the root cause, reworks often necessitate the allocation of 

additional resources, such as materials, labour, and equipment, thereby disrupting the project schedule 

and potentially delaying critical path activities. The impact of reworks on project delays is well 

documented in the construction literature. Love et al. (2018) investigated the causes of rework in 

Australian construction projects and found that it contributed significantly to cost overruns and schedule 

delays. Similarly, Han et al. (2019) identified rework as a major factor impeding the timely completion 

of construction projects in China, highlighting the need for improved quality management practices. 

Addressing reworks due to errors in construction requires a multifaceted approach that encompasses 
effective quality control measures, enhanced communication channels, and a culture of continuous 

improvement. Implementing robust quality assurance programs, with clearly defined procedures and 

rigorous inspections, can help identify and rectify deficiencies early in the construction process, 

minimizing the need for extensive reworks and subsequent delays. Furthermore, the adoption of BIM 

can play a pivotal role in mitigating reworks by facilitating better coordination among stakeholders, 

enabling clash detection, and ensuring compliance with design specifications (Egwim, 2021). BIM also 

enables the creation of detailed as-built models, which can aid in future maintenance and renovation 
activities, reducing the likelihood of reworks in subsequent project phases. Effective communication 

and collaboration among project stakeholders are crucial in preventing reworks and minimizing their 

impact on project timelines. Regular meetings, clear lines of communication, and a culture of 

accountability can foster a shared understanding of project requirements, reduce miscommunication, 

and facilitate prompt resolution of issues that may lead to reworks. It is also essential to foster a 

continuous improvement mindset within the construction industry, where lessons learned from previous 

projects are systematically captured and incorporated into future practices. By analyzing the root causes 

of reworks and implementing corrective measures, project teams can proactively mitigate the risk of 
delays and enhance overall project performance. 

 

8.3.5 Unskilled Labourer  

The construction industry heavily relies on skilled labour to execute intricate tasks and ensure 

adherence to quality standards, making the availability and competency of the workforce a crucial 

determinant of project success. Unskilled or inadequately trained labourers can introduce various 

challenges to construction projects, including poor workmanship, safety violations, and inefficient use 

of materials and resources. These issues can lead to reworks, schedule disruptions, and ultimately, 
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project delays, as corrective measures need to be implemented to rectify deficiencies. The impact of 

unskilled labour on project delays has been extensively documented in construction literature. Gunduz 

et al. (2013) identified the shortage of skilled labour as a significant factor contributing to delays in 

Turkish construction projects, emphasizing the need for effective workforce planning and training 
programs. Similarly, Alaghbari et al. (2019) highlighted the importance of skilled labour in mitigating 

delays and ensuring timely project completion in the construction industry of Yemen. Addressing the 

issue of unskilled labour requires a multifaceted approach that encompasses workforce development, 

training initiatives, and effective human resource management practices. Construction firms and project 

managers should prioritize the recruitment and retention of skilled workers, offering competitive 

compensation packages and fostering an environment that values continuous learning and skill 

development. Collaboration with vocational training institutions and apprenticeship programs can help 

cultivate a skilled workforce tailored to the specific demands of the construction industry. Additionally, 
leveraging emerging technologies, such as virtual reality simulations and augmented reality tools, can 

enhance training effectiveness and accelerate skill acquisition among workers (Eiris & Gheisari, 2018). 

Furthermore, the adoption of lean construction principles and modular construction techniques can help 

mitigate the impact of unskilled labour by streamlining processes, reducing on-site activities, and 

minimizing the reliance on skilled labour for certain tasks (Sheikhkhoshkar et al., 2019). Effective project 

planning and resource allocation are also crucial in addressing the challenge of unskilled labour. By 

accurately forecasting labour requirements and allocating tasks based on skill levels, project managers 

can optimize resource utilization and minimize the risk of delays caused by unskilled workers performing 
critical tasks beyond their capabilities. It is essential for construction firms and project stakeholders to 

recognize the significance of investing in a skilled and competent workforce. By prioritizing workforce 

development and implementing effective strategies to address the issue of unskilled labour, the 

construction industry can mitigate project delays, enhance quality, and ultimately deliver projects on 

time and within budget. 

 

8.4 Implication to Theory 
The findings of this research, which shed light on the critical factors contributing to project delays in the 

construction industry, have significant implications for the theoretical underpinnings (established in 

section 4) that endeavour to explain and address such challenges. The identification of late payment 

by the owner, inaccurate resource planning, space limitations at the site for permanent equipment, 

reworks due to errors in construction, and the presence of unskilled labourers as the top influential 

factors unveils a multifaceted and complex landscape that demands a holistic theoretical perspective. 
At the outset, the Optimism Bias Theory, proposed by Macdonald (2002) (see section 4), offers a 

compelling explanation for the underestimation of project costs and durations, which can contribute to 

delays. However, while optimism bias may play a role in the initial planning stages, the factors identified 

in this research extend beyond mere underestimation and encompass deeper systemic issues within 

the construction industry. Conversely, the Innovation Diffusion Theory, as articulated by Rodgers 

(2003), provides a more comprehensive theoretical framework for understanding and addressing the 
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root causes of project delays. This theory recognizes that the adoption and diffusion of innovative 

practices, technologies, and processes within a social system, such as the construction industry, are 

crucial for mitigating challenges and enhancing overall performance. The critical factors identified in this 

research, such as late payment by the owner, inaccurate resource planning, space limitations, reworks, 
and the presence of unskilled labourers, are intrinsically linked to the adoption and diffusion of 

innovative solutions. For instance, the adoption of BIM can facilitate better coordination among 

stakeholders, enhance transparency in payment processes, optimize site layouts, and reduce the 

likelihood of reworks. Similarly, addressing issues such as inaccurate resource planning and the 

presence of unskilled labourers may require the adoption of innovative practices, such as cloud-based 

resource planning software, real-time monitoring solutions, virtual reality simulations for training, and 

lean construction principles. The Innovation Diffusion Theory provides a framework for understanding 

how these innovative solutions are adopted and disseminated within the construction industry. Factors 
such as relative advantage, compatibility, complexity, trialability, and observability of an innovation can 

influence its rate of adoption (Rodgers, 2003). By examining these factors and the diffusion process 

within the construction sector, stakeholders can develop strategies to accelerate the adoption of 

innovative practices and technologies that can effectively mitigate project delays. Furthermore, the 

Innovation Diffusion Theory acknowledges the importance of communication channels, social 

structures, and time in the diffusion process. Addressing project delays may require effective 

communication and collaboration among stakeholders, as well as a long-term commitment to fostering 

a culture of continuous improvement and innovation within the construction industry. In light of these 
considerations, the Innovation Diffusion Theory emerges as the more pertinent theoretical framework 

for understanding and addressing the critical factors contributing to project delays in the construction 

industry. By embracing this theory, stakeholders can develop targeted strategies to facilitate the 

adoption and diffusion of innovative solutions, ultimately enhancing project performance and mitigating 

the risk of delays. 

 

8.5 Practical Implications of the findings for construction project 
management 

Given the significant role of the identified delay factors in construction projects, it is imperative for project 

managers and stakeholders to adopt proactive strategies that address these issues. Key practical 

implications include: 

1. Implementation of Financial Management Tools: To mitigate the issue of late payments, 

project managers can employ financial management systems that ensure timely payments from 

owners, such as the use of project bank accounts or third-party certification systems. These 

mechanisms can help maintain cash flow and prevent disruptions in the construction process. 

2. Enhanced Resource Planning: The accuracy of resource planning can be significantly 

improved by integrating advanced technologies like cloud-based planning software and BIM. 
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These tools provide real-time data on resource availability and requirements, enabling more 

precise forecasting and reducing the likelihood of resource shortages that could lead to delays. 

3. Quality Management and Training Programs: To address the frequent occurrence of 

reworks due to construction errors, it is essential to establish robust quality assurance 
programs. These programs should include comprehensive training for workers to enhance their 

skills and adherence to quality standards. Additionally, employing BIM can facilitate better 

communication and coordination among project stakeholders, reducing errors and the need for 

reworks. 

4. Risk Management: Proactive risk management practices, including regular risk assessments 

and the development of contingency plans, are critical. By anticipating potential issues related 

to resource allocation, payment delays, and quality control, project teams can implement 

preventive measures to minimize their impact on project timelines. 

The impact of delay factors can vary significantly depending on contextual factors such as project size 

and geographical location. For instance, larger projects are often more complex and may require more 

sophisticated management systems to coordinate multiple teams and resources effectively. In contrast, 

smaller projects may be more sensitive to issues like resource shortages or delays in material delivery. 

Geographical location also plays a crucial role. For example, projects in remote areas may face 

additional challenges such as longer lead times for material delivery, limited availability of skilled labour, 

and logistical constraints. Furthermore, regulatory and cultural differences can influence project 

execution and stakeholder interactions, potentially exacerbating or mitigating delay factors. 
Furthermore, the identified delay factors are not isolated, they often exhibit interdependencies that can 

compound their effects on project timelines. For example, late payments can lead to resource 

shortages, as contractors may lack the funds to procure necessary materials or retain skilled labour. 

This, in turn, can cause further delays as work is halted or slowed down. Similarly, inaccurate resource 

planning can result in both resource shortages and poor-quality control, leading to reworks. Reworks 

not only consume additional resources but also extend project timelines, which can increase costs and 

strain relationships among stakeholders. To effectively manage these interdependencies, project 
managers should adopt a holistic approach that considers the potential ripple effects of each factor. 

This includes developing integrated project plans that align financial, resource, and quality management 

strategies, thereby minimizing the cumulative impact of delays. 

 

8.6 Chapter Summary 
This chapter explored the findings of the research, presenting a comprehensive analysis of the critical 
factors contributing to project delays in the construction industry. Through the application of the SHAP 

technique, the Fully Connected Neural Network (FCNN) emerged as the optimal AI predictive model, 

exhibiting exceptional accuracy, precision, recall, and F1 scores across both BIM-based and non-BIM-

based projects. The application of SHapley Additive exPlanations (SHAP), a powerful technique for 

model interpretability, unveiled the top five influential factors driving project delays. These factors 
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included late payment by the owner, inaccurate resource planning, space limitations at the site for 

permanent equipment, reworks due to errors in construction, and the presence of unskilled laborers. 

Detailed discussions on each of these critical factors highlighted their far-reaching implications and the 

urgent need to address them. Late payment by the owner was identified as the most significant factor, 
disrupting financial flows and straining stakeholder relationships. Inaccurate resource planning, on the 

other hand, can lead to resource shortages, work stoppages, and supply chain disruptions. Space 

limitations at construction sites can cause congestion, hampering productivity and increasing safety 

risks. Reworks due to errors in construction not only consume additional resources but also delay critical 

path activities. Finally, the presence of unskilled labourers can introduce challenges such as poor 

workmanship, safety violations, and inefficient use of resources, ultimately impacting project timelines. 

To mitigate these factors and address project delays effectively, the research underscored the 

importance of adopting innovative solutions and practices within the construction industry. The 
Integration of BIM, cloud-based resource planning software, real-time monitoring solutions, virtual 

reality simulations for training, and lean construction principles emerged as promising avenues for 

enhancing project performance and reducing delays. Furthermore, the findings of this research have 

significant implications for theoretical underpinnings. While the Optimism Bias Theory offers insights 

into the underestimation of project costs and durations, the Innovation Diffusion Theory provides a more 

comprehensive framework for understanding and addressing the root causes of project delays. This 

theory recognizes the crucial role of adopting and disseminating innovative practices, technologies, and 

processes within the construction industry, and highlights the importance of factors such as relative 
advantage, compatibility, complexity, trialability, and observability in influencing the rate of adoption. 
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CHAPTER 9  

9.0 CONCLUSIONS AND RECOMMENDATION 
 

9.1 Chapter introduction 
This chapter marks the end of the research journey, bringing together the main findings and drawing 

conclusions. Section 9.2 summarizes the findings thoroughly, organized by the study's objectives, along 

with the conclusions  drawn from them. Subsections 9.2.1 through 9.2.4 break down the findings and 

conclusions related to the four main objectives of the research. It also highlights the significant impact 

of the research on both academic and industry fronts. Section 9.3.1 explains how the work contributes 

to academic knowledge, while Section 9.3.2 discusses its practical implications for the construction 

industry. Acknowledging that every study has its limitations, Section 9.4 honestly discusses the 
constraints faced. In addition, Section 9.5 identifies areas for future research, opening doors for further 

exploration in this field. Lastly, Section 9.6 sums up the chapter concisely, reminding us of the key 

points and emphasizing the importance of our findings and conclusions.  

 

9.2 Findings Overview 

9.2.1 First Objective: Conduct a systematic review toward gathering the most common factors 

affecting construction project delays and use it to conduct survey of experts to establish the 

most applicable factors affecting construction project delays in BIM-based construction 

projects. 
This objective was accomplished through a rigorous and systematic approach, adhering to the 

guidelines set forth by the PRISMA (see section 2.1). The systematic review process entailed an 
exhaustive search and analysis of relevant scholarly articles, encompassing a diverse array of 

construction project types spanning various geographical regions worldwide. This process yielded a 

comprehensive conceptual framework showing the critical determinants of project delays, thereby 

serving as an indispensable prerequisite for the subsequent development of AI predictive models aimed 

at quantifying delay risks across both BIM-based and traditional non-BIM construction projects. Through 

this analytical process, nine distinct categories of delay risk drivers were identified and systematically 

examined: owner-related, contractor-related, consultant-related, design-related, labour-related, 

equipment-related, project-related, supplier-related, and external-related drivers. The systematic review 
revealed that contractor-related and external-related drivers were cited with the highest frequency as 

the most critical factors contributing to delays in BIM-based construction projects. These findings 

underscore the paramount significance of these two categories in the formulation of effective delay 

mitigation strategies within BIM implementation in construction projects. Contractor-related drivers, 
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encompassing factors such as inadequate management, poor planning and scheduling, and lack of 

experience or expertise, were repeatedly highlighted as significant contributors to project delays across 

the reviewed literature. Similarly, external-related drivers, including unfavourable weather conditions, 

regulatory changes, and economic factors, were identified as crucial elements that can significantly 
impact project timelines and exacerbate delays. Concurrently, the systematic review process also 

highlighted the potential positive impact of BIM implementation on mitigating delays in construction 

projects. Several studies included in the review emphasized the ability of BIM to enhance coordination, 

communication, and collaboration among project stakeholders, as well as its capacity to facilitate 

improved planning, visualization, and decision-making processes. These findings suggest that the 

effective adoption and utilization of BIM can play a pivotal role in reducing the risk of delays and 

enhancing overall project performance. To further substantiate and contextualize the findings from the 

systematic review, an expert survey was conducted, engaging industry professionals and subject matter 
experts in the construction industry. This step ensured that the research was firmly grounded in real-

world insights and industry expertise, enabling the development of a robust and industry-relevant 

framework for assessing delay risks. The expert survey served to validate and refine the identified delay 

risk drivers, providing valuable insights regarding their applicability and relative importance in 

construction projects. Through this integration of the systematic review's literature-based framework 

with the practical insights and expertise derived from the expert survey, an empirically validated 

framework emerged (see section 7.4). This validated framework not only corroborates the initial 

conceptual framework formulated (see section 2.3) but also fortifies the theoretical foundations 
underpinning this study. The systematic identification and integration of the critical delay risk drivers, 

coupled with the insights gathered from industry experts, provided a robust basis for the subsequent 

stages of this study.  

 

9.2.2 Second Objective: Conduct a systematic review of AI in the construction industry and 

use it to establish the most appropriate AI technologies during construction. 

The findings of this systematic review have made significant contributions to the body of knowledge and 

have informed the subsequent selection and implementation of AI technologies for predicting potential 

delays in both BIM and non-BIM-based construction projects. Through the analysis of 70 selected 

studies, the review revealed a surge in research interest and publications concerning the adoption of 
AI technologies in the construction industry, particularly in recent years. This trend emphasizes the 

industry's recognition of the transformative potential of AI in addressing longstanding challenges and 

driving efficiency and productivity gains. Notably, the review identified seven major AI technology types 

documented in the literature, with supervised learning, and deep learning emerging as the most 

prominent and influential AI technologies in the construction industry. Crucially, the systematic review 

provided, insights into the applicability of these AI technologies across the three major stages of the 

construction project lifecycle: planning/design, construction/execution, and supply/facility management. 

Furthermore, the review highlighted the potential benefits of implementing AI technologies in the 
construction industry, with the potential for design expansion emerging as a key advantage cited by 
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most of the selected literature. By harnessing the power of AI, designers and architects can explore 

previously unimaginable design alternatives, optimizing for various objectives and constraints while 

fostering creativity and innovation. Additionally, the review underscored the opportunities presented by 

AI technologies for data augmentation, model generalizability, real-world applicability, and the 
integration of cutting-edge computer vision and augmented reality techniques, paving the way for 

technological advancements in the industry. Building upon the comprehensive insights gained from the 

systematic review, the subsequent stage of this research focused on employing the two most applicable 

AI technologies identified – supervised learning and deep learning – to develop AI predictive models 

for assessing delay risks in the project types. The selection of these two AI technologies was driven by 

their prominence in the literature, their suitability for research aim, and their ability to leverage the 

available expert survey data to uncover patterns and make informed predictions. Among the various 

supervised learning and deep learning models evaluated, the FCNN emerged as the optimal choice, 
exhibiting exceptional performance metrics in terms of accuracy, precision, recall, and F1 scores. The 

FCNN's superior performance was further bolstered by its inherent architectural characteristics, which 

lend themselves well to the complexities of the delay prediction task. To enhance model interpretability 

and foster trust among construction stakeholders, the research employed SHAP, a powerful technique 

that explains the underlying factors driving model predictions. By illustrating the top contributing 

features, such as late payment by the owner, inaccurate resource planning, space limitations at the site, 

reworks due to construction errors, and unskilled labour, the FCNN model's decision-making process 

becomes more transparent and comprehensible to construction stakeholders, facilitating informed 
decision-making and enabling targeted interventions to mitigate delay risks.  

 

9.2.3 Third Objective: Utilize the applicable drivers in the first objective as independent 

features (variables) to develop hyperparameter optimised AI predictive model(s) established 

in the second objective. 
The third objective of this research was to leverage the applicable delay risk drivers identified in the first 

objective as independent features and employ the AI technologies established as most suitable through 

the systematic review in the second objective, to develop hyperparameter-optimized AI predictive 

models. This objective was successfully accomplished through a comprehensive process that 

encompassed feature selection, model development, hyperparameter optimization, and rigorous 
evaluation. The feature selection process was guided by the validated framework of delay factors 

essential for both BIM and non-BIM construction projects. This framework, derived from the first 

objective, provided a robust set of twenty independent variables, encompassing critical factors such as 

late payment by the owner, inaccurate resource planning, space limitations at the site, reworks due to 

construction errors, and unskilled labour. The inclusion of these factors as input features ensured that 

the AI models were trained on a comprehensive and relevant set of variables, capturing the intricate 

interplay of various delay risk drivers and their impact on project timelines. Drawing upon the insights 

from the second systematic review, which identified supervised learning and deep learning as the most 
applicable AI technologies for the construction value chain lifecycle, a range of models were developed 
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and evaluated. These included classical algorithms, ensemble methods, and various neural network 

architectures, such as the Multi-Layer Perceptron (MLP) and the Radial Basis Function Network 

(RBFN). To achieve optimal performance, a precise hyperparameter optimization process was 

undertaken for each model. This iterative process involved fine-tuning the models' architectural 
parameters, learning rates, regularization techniques, and other hyperparameters, ensuring that they 

were tailored to the specific characteristics of the dataset and the research aim. The evaluation of the 

models' performance was conducted using a set of performance evaluation metrics, including accuracy, 

precision, recall, and F1 score. These metrics were essential in assessing the models' ability to handle 

imbalanced datasets and make accurate predictions, particularly as touching project delay risk 

assessment. Among the evaluated models, the FCNN emerged as the optimal choice, exhibiting 

exceptional performance across all metrics for both project types. The FCNN's superior performance 

can be attributed to its inherent capability to learn complex non-linear relationships, its ability to handle 
imbalanced datasets effectively, and the successful hyperparameter optimization process. The FCNN 

model demonstrated remarkable accuracy scores of 93% and 79% for BIM-based and non-BIM-based 

projects, respectively, outperforming all other models evaluated in this research. Additionally, its 

precision and recall values were consistently high, indicating its proficiency in correctly identifying 

instances of potential delays while minimizing false positive and false negative predictions. To further 

enhance the interpretability and explainability of the FCNN model's predictions, the research employed 

SHAP. This powerful technique provided valuable insights into the underlying factors driving the model's 

predictions by visualizing the top contributing features and their respective impacts. For instance, the 
SHAP analysis revealed that factors such as late payment by the owner, inaccurate resource planning, 

space limitations at the site, reworks due to construction errors, and unskilled labour were among the 

most significant contributors to potential project delays. The successful development and validation of 

the hyperparameter-optimized FCNN model represent a significant achievement in this research. By 

leveraging the power of AI and the identified critical delay factors, this model has the potential to 

revolutionize the way project delays are anticipated and mitigated in the construction industry. 

Furthermore, the integration of SHAP has significantly enhanced the transparency and interpretability 
of the model's predictions, fostering trust amongst construction stakeholders, and enabling targeted 

interventions to address the most influential delay risk drivers.  

 

9.3  Contributions of study 

9.3.1 Contribution of Study to Academic Knowledge 

This research has made significant contributions to academic knowledge in several ways. Firstly, the 

systematic review conducted on identifying the most common drivers affecting construction project 

delays represents a comprehensive and up-to-date synthesis of existing literature on this topic. By 

rigorously adhering to the PRISMA guidelines, the review process ensured a thorough and unbiased 

exploration of delay factors across diverse construction project types and geographical regions. The 

resulting conceptual framework, encompassing nine distinct categories of delay risk drivers, serves as 
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a valuable foundation for future research in this domain, providing a robust starting point for further 

investigation and validation. Moreover, the integration of industry expertise through the expert survey 

adds a crucial practical dimension to the study, bridging the gap between academic research and real-

world industry practices. This approach not only validates the findings from the systematic review but 
also ensures that the resulting framework is grounded in the realities and nuances of the construction 

industry. By incorporating the perspectives of subject matter experts, the study enhances the relevance 

and applicability of its findings, fostering a stronger connection between academic research and 

practical implementation. The systematic review on the application of AI technologies in the construction 

industry represents another significant contribution to academic knowledge. By rigorously analyzing 

vast body of academic literature, the review provides a comprehensive and up-to-date understanding 

of the current state of AI adoption in the construction value chain lifecycle. The identification of seven 

major AI technology types, with supervised learning and deep learning emerging as the most prominent, 
offers valuable insights for researchers and practitioners alike. Furthermore, the review's exploration of 

the applicability of these AI technologies across the three major stages of the construction project 

lifecycle (planning/design, construction/execution, and supply/facility management) provides a 

roadmap for future research and technological advancements in the industry. The development of 

hyperparameter-optimized AI predictive models for assessing delay risks in both BIM-based and non-

BIM-based construction projects represents a ground-breaking contribution to academic knowledge 

such that has never been done before in one study. By leveraging the identified critical delay factors as 

input features and employing the most suitable AI technologies (supervised learning and deep learning), 
this study has successfully created a robust and accurate predictive model. The FCNN model, which 

emerged as the optimal choice, exhibits exceptional performance metrics. This model not only 

demonstrates the potential of AI in addressing complex challenges in the construction industry but also 

serves as a blueprint for future research in developing AI-driven solutions for risk assessment and 

project management. The integration of SHAP into the predictive model further enhances the study's 

contribution to academic knowledge. By providing a transparent and interpretable explanation of the 

model's predictions, SHAP addresses the long-standing issue of "black box" models in AI, fostering 
trust and understanding among researchers and construction stakeholders Consequently, this study 

has made significant strides in advancing academic knowledge in the fields of construction project 

management, delay risk assessment, and AI applications in the construction industry.  

 

9.3.2 Contribution of Study to Practice 

This research makes substantial contributions to the practice of construction project management, 

particularly in the realm of delay risk assessment and mitigation. By identifying and validating the critical 

drivers of construction project delays through a systematic review and expert survey, the study provides 

construction professionals with a comprehensive and industry-relevant framework for understanding 

and addressing these challenges. The developed hyperparameter-optimized AI predictive model, 

specifically the FCNN, represents a significant practical contribution to the construction industry. This 
model offers construction stakeholders a powerful tool for assessing the risk of potential delays in both 
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BIM-based and non-BIM-based construction projects. The model's exceptional performance metrics, 

including accuracy scores for BIM-based and non-BIM-based projects, respectively, demonstrate its 

reliability and effectiveness in predicting potential delays. The integration of SHAP  into the predictive 

model further enhances its practical value by providing transparency and interpretability to the model's 
predictions. Construction professionals can gain valuable insights into the specific factors contributing 

to potential delays, such as late payment by the owner, inaccurate resource planning, space limitations 

at the site, reworks due to construction errors, and unskilled labour. This information empowers 

construction stakeholders to develop targeted strategies and interventions to mitigate these critical 

delay risk drivers proactively. Also, the predictive model's ability to assess delay risks early in the project 

lifecycle offers construction professionals a significant advantage in project planning and resource 

allocation. By identifying potential bottlenecks and high-risk areas before they manifest, construction 

teams can implement preventive measures, optimize resource allocation, and develop contingency 
plans to minimize the impact of delays on project timelines and budgets. Furthermore, the study's 

contribution extends beyond individual construction projects. The validated framework of delay risk 

drivers and the predictive model's capabilities can be leveraged by construction firms and organizations 

to enhance their overall project management practices. By integrating these tools into their project 

management processes, companies can improve their risk management strategies, enhance decision-

making processes, and foster a culture of proactive delay mitigation. The practical implications of this 

research also extend to the broader construction industry ecosystem. Government agencies, regulatory 

bodies, and policymakers can utilize the findings to develop guidelines, best practices, and industry 
standards for delay risk assessment and mitigation. By incorporating these insights into industry 

regulations and certification processes, the construction industry can collectively promote transparency, 

accountability, and a proactive approach to addressing project delays. Moreover, the study's findings 

can inform the development of training programs and educational curricula for construction 

professionals. By incorporating the identified delay risk drivers and the predictive model's capabilities 

into professional development programs, construction companies can better equip their workforce with 

the knowledge and tools necessary to tackle project delays effectively.  

 

9.4 Limitations of study 
While this study has made significant contributions to both academic knowledge and industry practice, 

it is essential to acknowledge and address its inherent limitations. One of the primary limitations lies in 

the scope and representativeness of the data used for model development and validation. The expert 

survey data, although valuable, may not fully capture the diverse range of construction projects, 
geographic regions, and industry practices. Consequently, the generalizability of the findings and the 

predictive model's performance might be limited when applied to contexts outside the scope of the data. 

Another potential limitation is the dynamic nature of the construction industry itself. The factors 

influencing project delays are subject to continuous evolution, as new technologies, regulations, and 

industry practices emerge. This study's findings, while comprehensive at the time of research, may 

require periodic updates and refinements to remain relevant and accurately reflect the changing 
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landscape of the construction industry. Furthermore, the study's reliance on expert judgements and 

systematic reviews, although rigorous and systematic, may inadvertently introduce biases or overlook 

emerging trends or factors that have not yet been widely documented or recognized within the industry. 

This limitation highlights the need for continuous monitoring and incorporation of new insights as they 
become available. It is important to note that the FCNN predictive model, despite its impressive 

performance, is not infallible. Like any machine learning model, it is subject to the limitations of the 

training data and the assumptions inherent in its architecture and optimization process. Unforeseen 

edge cases or outliers in real-world scenarios may challenge the model's predictive capabilities, 

necessitating ongoing refinement and adaptation.  

 

9.5 Future research opportunities 
This study's contributions and limitations also pave the way for numerous future research opportunities 

that can further advance the field of construction project delay prediction and mitigation. One promising 

avenue for future research is the exploration of more diverse and extensive datasets, encompassing a 

wider range of construction projects, geographical regions, and industry practices. By leveraging larger 

and more representative datasets, researchers can develop more generalizable predictive models and 

uncover patterns and insights that may have been overlooked in the current study. Additionally, as new 

technologies and industry practices emerge, there is a need for continuous monitoring and incorporation 
of these developments into the predictive models. Future research could focus on developing adaptive 

and self-learning models that can dynamically update their parameters and decision-making processes 

based on new data and industry trends, ensuring that the models remain relevant and accurate over 

time. The integration of alternative or complementary AI techniques, such as unsupervised learning, 

reinforcement learning, or hybrid approaches, may yield further insights and improve the predictive 

capabilities of the models. Exploring these techniques could unlock new avenues for understanding and 

mitigating project delays, potentially leading to more robust and accurate predictions. Another promising 
research direction involves the integration of predictive models with decision support systems and risk 

management frameworks. By combining the predictive power of AI with expert knowledge and industry 

best practices, researchers can develop comprehensive solutions that not only identify potential delays 

but also provide actionable recommendations and mitigation strategies tailored to specific project 

contexts. Finally, future research could explore the synergies between AI-based predictive models and 

other emerging technologies in the construction industry, such as IoT, and blockchain. By integrating 

these technologies, researchers may uncover novel approaches to data collection, real-time monitoring, 

and collaborative decision-making, further enhancing the accuracy and applicability of predictive 
models in the construction domain. 

 



 207 

9.6 Reflection on the Research Process, Challenges Faced and 
Lessons Learned. 

The research process for this project was extensive and multifaceted, encompassing a variety of 

methodologies and sources to ensure a comprehensive understanding of the subject matter. It began 

with a thorough literature review to establish a theoretical foundation, followed by the collection and 

analysis of primary data through surveys with industry professionals. The systematic approach 
facilitated the identification of key trends and patterns in the construction market, ensuring that the 

findings were both robust and relevant. Several challenges were encountered during the research 

process. Firstly, obtaining reliable and recent data was difficult due to the rapidly changing nature of the 

construction industry. Moreover, gathering primary data through surveys presented logistical difficulties. 

Coordinating with industry professionals across various geographical locations required diligent 

planning and scheduling. Furthermore, the interdisciplinary nature of the research required synthesizing 

information from various fields such as social science and engineering, which was both time-consuming 
and complex. A significant lesson learned from this research is the importance of flexibility and 

adaptability in research design. Given the dynamic environment of the construction industry, it was 

crucial to remain open to adjusting methodologies and frameworks to accommodate new information 

and insights. Another key lesson is the value of cross-disciplinary collaboration. Engaging experts from 

various fields enriched the research, providing a more holistic understanding of the issues at hand. 

Finally, the necessity of robust data management practices was highlighted, ensuring that data 

collection, storage, and analysis were conducted efficiently and accurately. 

 

9.7 Application or Variation of Findings in Different Global 
Perspectives 

The findings of this research have broad implications that can vary significantly across different global 

contexts and construction markets. One of the primary factors influencing the applicability of these 
findings is the economic environment of the region in question. For instance, in developed markets such 

as North America and Europe, advanced construction technologies and sustainable practices are more 

likely to be adopted due to higher levels of investment and regulatory support. These regions often have 

robust frameworks for green building standards and incentives for innovation, making the 

implementation of the research findings more feasible and impactful. Conversely, in emerging markets, 

such as those in parts of Asia and Africa, the focus might be more on cost-effective construction 

solutions that address basic infrastructure needs. Here, the findings related to low-cost building 
materials and efficient construction techniques would be particularly relevant. However, challenges 

such as limited access to advanced technology, financial constraints, and less stringent regulatory 

environments could hinder the direct application of some of the more sophisticated aspects of the 

research. Cultural factors also play a significant role in how the findings might be adopted. In regions 

where there is a strong emphasis on traditional construction methods and materials, there might be 
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resistance to change or a slower uptake of new practices. Educational initiatives and pilot projects could 

be effective strategies in these contexts to demonstrate the benefits of modern construction techniques 

and gradually build acceptance. Furthermore, the regulatory landscape is a crucial determinant of how 

the findings can be implemented globally. In countries with stringent building codes and environmental 
regulations, the adoption of sustainable practices and innovative construction methods is likely to be 

more straightforward. In contrast, in regions with less developed regulatory frameworks, advocacy and 

policy development efforts would be necessary to create an enabling environment for the adoption of 

these findings. 

 

9.8 Impact of Research Findings on Project Delay Reduction 
The potential impact of the research findings on project delay reduction is significant, with the 

implementation of identified best practices and innovative technologies promising measurable 

improvements in project timelines. Quantitative data from various studies and industry reports highlight 

the substantial benefits of these strategies. For instance, the adoption of Building Information Modelling 

has been shown to reduce project delays by up to 15% due to enhanced coordination and real-time 

problem-solving capabilities (Alnaser, Alsanabani and Al-Gahtani, 2023). In a study conducted by the 

McKinsey Global Institute, it was found that digitization of the construction sector, including the use of 

advanced analytics and automation, could lead to a reduction in project delays by approximately 20-
30%(McKinsey, 2022). Furthermore, Lean Construction principles, which emphasize waste reduction 

and process efficiency, have demonstrated a reduction in project delays ranging from 10-15% in various 

case studies across North America and Europe (Aziz and Hafez, 2013; Bajjou and Chafi, 2020). These 

principles focus on improving workflow reliability and optimizing resource utilization, which are critical 

factors in minimizing delays. Another key finding from the research is the impact of improved project 

management practices. The integration of advanced project management software and tools can lead 

to a reduction in delays by up to 25%, as these tools facilitate better scheduling, resource allocation, 
and risk management (Conforto et al., 2014; Demirkesen and Ozorhon, 2017). Additionally, the 

emphasis on early contractor involvement and collaborative planning has been associated with a 15-

20% reduction in delays due to improved stakeholder alignment and decision-making efficiency (Mosey, 

2014). In emerging markets, where the construction sector faces unique challenges, the implementation 

of cost-effective construction techniques and local material utilization has shown potential delay 

reductions of around 10-12% (Vasista and Jakhanwal, 2023). These strategies address common issues 

such as supply chain disruptions and financial constraints, thereby enhancing project timelines. 
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9.9 Specific Implications for Stakeholders in the Construction 
Industry 

The implications of the findings in this study extend across various stakeholders within the construction 

industry, each playing a distinct yet interconnected role. Project managers, for instance, are positioned 

at the forefront of implementing changes to mitigate delay factors. They must prioritize the adoption of 

financial management systems that ensure timely payments, thus preventing the cash flow disruptions 
that often lead to project delays. Moreover, the integration of advanced project management software, 

such as cloud-based planning tools and BIM, can enhance resource planning and coordination. This 

technological adoption not only streamlines workflows but also improves communication among 

stakeholders, thereby reducing the incidence of errors and the subsequent need for reworks. 

Policymakers also bear significant responsibility in shaping an environment conducive to innovation and 

efficiency in construction. They can encourage the use of AI technologies by providing regulatory 

support and incentives. Such measures may include tax breaks for companies that adopt AI-driven 
solutions for safety monitoring and project management, or subsidies for projects demonstrating 

sustainable practices. Policymakers should also address the systemic issue of late payments by 

establishing frameworks that protect contractors' financial stability, thereby ensuring smoother project 

execution. For technology developers, the construction industry's increasing reliance on advanced 

technologies presents an opportunity to develop specialized solutions. There is a growing demand for 

AI tools that can predict maintenance needs, optimize resource use, and enhance safety on-site. 

Developers should focus on creating user-friendly applications that integrate seamlessly with existing 

systems, such as BIM, to maximize their adoption and effectiveness. Furthermore, the protection of 
data privacy and security is paramount, as AI applications often handle sensitive information. 

Compliance with data protection regulations is essential to maintaining stakeholder trust and protecting 

the integrity of construction data. Construction firms, meanwhile, must recognize the value of investing 

in new technologies and fostering innovation. Allocating resources towards AI-powered tools and 

advanced analytics can lead to significant efficiency gains and cost reductions. Firms should also 

consider forming partnerships with academic institutions and other industry players to stay abreast of 

the latest research and developments. Such collaborations can facilitate the exchange of knowledge 
and best practices, driving continuous improvement in project delivery. Clients and project owners, as 

the ultimate beneficiaries of construction projects, also have a pivotal role. Their engagement 

throughout the project lifecycle is crucial. Active involvement in planning and monitoring ensures that 

projects align with their expectations and that any potential issues are addressed proactively. Clients 

should demand transparency and accountability from contractors and project managers, fostering a 

culture of open communication that can mitigate risks and prevent delays. 
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9.10 Chapter Summary  
This chapter represents the apex of the research journey, drawing together the key findings, 

conclusions, contributions, and future perspectives. It summarises the study's approach to addressing 

the challenges of construction project delays and the innovative AI techniques to mitigate this pervasive 

issue. The chapter begins by providing an overview of the findings, organized according to the study's 

objectives. It highlights the systematic review process that identified the most common drivers affecting 

construction project delays, reaching a peak in the development of a validated framework through 
expert surveys. Furthermore, the chapter highlights the study's systematic exploration of AI 

technologies in the construction industry, pinpointing supervised learning and deep learning as the most 

prominent and influential techniques. This insight paved the way for the development of a 

hyperparameter-optimized AI predictive model. The chapter then explores into the study's significant 

contributions to academic knowledge and industry practice. Acknowledging the limitations of the study, 

the chapter openly discussed the constraints faced, such as the scope and representativeness of the 

data, the dynamic nature of the construction industry, potential biases, and the inherent limitations of 

machine learning models. However, these limitations also pave the way for future research 
opportunities, including exploring more diverse datasets, incorporating new AI techniques, enhancing 

interpretability, integrating with decision support systems, and leveraging synergies with emerging 

technologies like IoT, and blockchain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 211 

Appendix A: 

 

Construction Delay Questionnaire 
Dear sir/ma,  

 

My name is Christian Nnaemeka Egwim a doctoral researcher of the University of Hertfordshire, 
Hatfield, Hertfordshire, United Kingdom.  

This questionnaire is intended to elicit responses for research on the causes of construction project 
delays. Because of your construction industry background, you have been listed as a possible 
respondent. It would be extremely helpful if you could help me complete this questionnaire. 

Thank you. 

Please provide answers to the questions in this questionnaire based on ANY single construction project 
you have worked on in the past. Questions on the frequency of an event should be answered based on 
how frequent during the life of the project. 

Note: All your answers should be related to this specific project you have in mind. 

Responder’s Detail: 

Your highest qualification:    

 

     

Position you have held in construction industry:     

 

Approximate size of project you have in mind:  

 

                                                                                                            

 

Years of experience in construction industry:      

 

                                                                                                                                                                                                                                              

Type of construction project you have in mind: 

 

                                                                                                                

 

 

Location (e.g., country/region/continent) of the project you have in mind: 

 

 HND B.Sc./B.Tech M.Sc./M.Tech    PhD  Others 
________________________
_________ 

 Architect  Quantity Surveyor  Contractor  Consultant 

 £50k-999K  £1-50mil  £51-100mil  £101-150mil  Above £150mil. 

 0–5 years 
 6–10 years  11–15 years  16–20 years  Above 20 years. 

United Kingdom European Union Africa  North America South America Asia  

   

 

Residential  Commercial (e.g., hospitals, stadium, etc.) Infrastructure (e.g., roads, railways, etc.) 

Others ______________________ 
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Was Building Information Model (BIM) used on the project?   

 

 

To what level was BIM implemented in the design stage? 

 

       No implementation                    2D                      3D                   4D                     5D            

 

To what level was BIM implemented in the construction stage? 

 

       No implementation            consultant checks only                   for full collaboration between consultant and contractors 

 

       for full collaboration between all involved parties              

 

 

 

Section A: 

For each of the questions below, tick the response that best describes the frequency for the following 
statement, where 1 = Zero,  2 = Scarcely,     3 = Medium level  4 = Frequently and  5 = 
Very frequently. 

Zero (None),    Scarcely (1 -10% of project duration e.g. 10% if it happened on 10 different days on 
a 100 days duration project),  Medium level (30% of project duration),  Frequently or        
Very frequently. 

 What frequency would you give for the following statement? 1 2 3 4 5 
1 How frequently did staff use Building information Model (BIM)?      

2 How frequently did quality control issues occur in the project?      
3 How frequently did conflict(s) occur between contractor and sub-

contractor(s)? 
     

4 How frequently did rework(s) due to error in construction occur on 
site? 

     

5 How frequently did conflict(s) occur between consultant & contractor      

6 How frequently did equipment break down on site?      
7 How frequently did Inflation or sudden increase in commodities occur?      

8 How frequently did labour dispute or strikes occur?      
9 How frequently did unfavourable weather conditions occur?      

10 How frequently did natural disasters like floods, earthquakes etc. 
occur? 

     

     
     
     

     

     

     

     

     

     

     

      

 
Oceania 

 
Antarctica 

 
Others _________________________________ 

 Yes  No 

     

  

 

 

 
for full collaboration between all involved parties with drawings 
and updates accessed directly on cloud 
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11 How frequently did contractor experience financial difficulties?      

12 How frequently did variation in structural design variation occur?      
13 How frequently did late delivery of construction materials to the site 

occur? 
     

14 How frequently did change orders occur?      

15 How frequently did the project experience issues with discrepancies in 
contract documents? 

     

16 How frequently did significant fluctuation in material prices occur in the 
project life? 

     

17 How frequently did the contractor experience cash flow issues during 
the project life? 

     

18 How frequently did the client experience cash flow issues during the 
project life?  

     

19 How frequently did the consultant experience cash flow issues during 
the project life? 

     

20 How frequently did unforeseen site conditions (e.g., unanticipated 
groundwater, quicksand, mud, rock formations etc) occur? 

     

21 How frequently did the project experience political Influence?      
22 How frequently did you experience shortage of resources (human 

resources, machinery, equipment)? 
     

23 How frequently did the project experience space limitations at site for 
temporary equipment? 

     

24 How frequently did the project experience space limitations at site for 
permanent equipment? 

     

25 How frequently did the project experience changes in site topography 
after design? 

     

26 How frequently did the project experience poor site investigation or 
management? 

     

27 How frequently did you experience shortage of materials on market?      
28 How frequently did client requirements change?      

29 How frequently did corruption issues occur?      
30 How frequently did staff use outdated construction methods (e.g., 

precast twin wall technology, 2D drawing etc.)? 
     

31 How frequently did staff use new technologies?      

32 How frequently did accident occur on the site?      
33 How frequently did specifications change during construction change?      

34 How frequently did worker worked below average productivity level?      
35 How frequently was poor decision made on the project?      

36 How frequently did change in economic conditions affect the project?      
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Section B: 

For each of the questions below, circle the response that best characterises the percentage you will 
give each statement, where 1 = 0 - 20%, 2 = 21 - 40%, 3 = 41 - 60%, 4 = 61 - 80% and 5 = 81 - 
100%.  

 What percentage would you give for the following 
statement? 

1 2 3 4 5 

1 What proportion of the payment made by the owner was late?      

2 What proportion of workers were unskilled labourers?      

3 What percentage of ordered materials was delivered late by 
suppliers? 

     

4 What percentage of budgeting was inaccurate?      

5 What percentage of resource planning was inaccurate?      

6 What proportion of communication among stakeholders was 
poor? 

     

7 What proportion of project planning was ineffective?       

8 What percentage of contract management was poor?      

9 What percentage of the project was affected by ineffective 
government regulations? 

     

10 What proportion of materials in storage was damaged?      

11 What proportion of equipment used was brand new or near 
new? 

     

12 What percentage of the project was affected by ineffective 
project management?  

     

13 What percentage of the project was affected by ineffective 
project supervision? 

     

14 What percentage of project activity was affected by pandemic?      

15 What proportion of project activity was affected by traffic 
restrictions and planning issues outside of the project? 

     

16 What proportion of project activity was affected before 
obtaining building permit from authorities? 

     

 

Section C: 

For each of the questions below, tick the response that best describes how detailed the schedule of 
the project was in the following statement, where 1 = No Schedule,     2 = Basic Schedule,   3 = 
Good Schedule     4 = Detailed Schedule     and     5 = Detailed and Frequently Updated 
Schedule. 

  1 2 3 4 5 
1 To what level of detail was the schedule/program of work of this 

project? 
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Section D: 

For the question below, tick the response that best characterises how the following statement affected 
the project 

Where: 

1 = 0 – 20% extra of initial schedule duration,  2 = 21 – 40% extra of initial schedule 
duration,  
3 = 41 – 60% extra of initial schedule duration,  4 = 61- 80% extra of initial schedule duration 
and  
5 = Above 80% extra of initial schedule duration (i.e., twice initial schedule duration and more).  

  1 2 3 4 5 

1 How long was the entire project delayed for?      
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