
Odour Localization in Neuromorphic Systems

Abstract—Odour source localization is crucial in life-saving
scenarios like pinpointing gas leaks, detecting explosives, search-
ing for earthquake survivors, or locating fires at their origin. The
turbulent character of natural environments makes this task very
challenging. The absolute concentration of odour plumes carries
little meaning and these plumes are only encountered in an
intermittent, transient fashion. However, navigation algorithms
that are driven by odour encounter events, can succefully find
odour sources by extracting spatiotemporal information. The
event driven nature of odour plumes motivates a fully event-
driven sensing and processing pipeline for robot navigation.
Hence, we developed a spiking neural network, implemented
on neuromorphic hardware, that can successfully decode odour-
puff direction from a pair of enose-systems. This is to our
knowledge the first fully event driven neuromorphic system for
odour localization.

I. INTRODUCTION

Odour source localization is crucial in life-saving scenarios
like pinpointing gas leaks, detecting explosives, searching for
earthquake survivors, or locating fires at their origin. However,
finding an odour source in a natural environment is challenging
due to the fact that all natural environments are turbulent.
Therefore, odours do not form smooth concentration gradients,
but are dispersed by turbulent processes [1]. A searcher will
encounter odour plumes only ever in an intermittent, transient
fashion. The absolute concentration encountered carries little
meaning as it is highly variable. The absence of smooth odour
gradients has led to the development of navigation algorithms
that are driven by odour encounter events, e.g. Infotaxis [2].
Likewise, event-driven navigation algorithms have long been
suggested to be the basis of animal behaviour, e.g. odour-gated
anemotaxis [3].

In addition, it has been shown that the temporal statistics of
odour encounters carry information on source location. In a
turbulent environment, a relationship exists between the rate of
concentration fluctuations and the distance to the gas source,
as shown in wind-tunnel experiments [4], [5], and in the open
field [6], [7]. These fluctuations can be captured with off-the-
shelf Metal Oxide (MOX) gas sensors, and, when translated
into odour-encounter event statistics, allow a prediction of
down-wind and cross-wind source distance, independent of
absolute odour concentration [8]. It has been shown that MOX
sensors could resolve odour encounter events with sub-second
precision, which is sufficient to detect the direction of an odour
puff in a stereo e-nose setup [9]. This kind of ”stereo-smelling”
is crucial to successful source localization [10].

The relevance of event-based statistics inherent to olfactory
navigation in turbulent environments motivates a fully event-
driven sensing and processing pipeline for robot navigation
control. Here, we developed a spiking-network circuit, imple-
mented on SpiNNaker, that can decode odour-puff direction

Fig. 1. Sensor setup to detect the direction of the odour puff. a) cartoon of
the complete setup. b) real setup. c) MOX sensor array.

from a pair of enose-systems. This is to our knowledge the
first fully event driven neuromorphic system for odour local-
ization. We make three main contributions: 1) A spiking neural
network for odour source localization, 2) its implementation on
a neuromorphic platform, 3) real-world evaluation with MOX
sensors.

II. HARDWARE AND SOFTWARE

A. Electronic Nose System (enose)

We previously developed an electronic nose system (hence-
forth called e-nose) with four MOX sensors1 and a high-
resolution Analog to Digital Converter (ADC) [9]. Two e-nose
boards were used in parallel, controlled by a microcontroller
(see Figure 1). One challenge when using MOX sensors to
decode rapid odour fluctuations is their slow recovery. Their
initial response to an odour pulse is fast, but the slow return
of the signal to baseline complicates the detection of fast
successive pulses, as new pulses may be masked by remnants
of previous odour encounters. The system we used solved this
problem by estimating the second derivative of the signal and
applying a constant-acceleration Kalman filter to emphasise
the onset of odour-encounter events, and de-emphasise trailing
recovery [9]. Finally we convert the signal into events by
deadband-sampling, where an event is emitted whenever the
signal’s change since the last event overcomes a threshold
τ . Positive changes are encoded in ON-events while negative
changes lead to OFF-events.

B. Spiking Neural Network Architecture (SpiNNaker)

SpiNNaker [11] is a specialized computer architecture fea-
turing massively-parallel multicore computing, ideal for large
neural networks. The odour localization network developed

1TGS2600, TGS2602, TGS2610 and TGS2620 manufactured by Figaro Inc.



in this paper was implemented on a 4-node SpiNNaker ma-
chine, which consists of 72 ARM processor cores. It has
a 100MB s−1 Ethernet connection for the communication
between the computer and the board and two SpiNNaker
links. SpiNNaker excels in real-time simulations and maintains
power efficiency, closely emulating brain-inspired computation
through its neuromorphic hardware.

III. NEURAL NETWORK

A. Time Difference Encoder (TDE)

The TDE model [12] encodes the time difference between
two input events occuring at different input channels in a
short burst of output spikes. The time difference is conveyed
in the number of spikes as well as the instantaneous firing
rate. The model consists of two inputs, the facilitatory gain
(fac) and the trigger synapse (trig), as well as one spiking
output shown in Figure 2a. Upon the arrival of an event at
the facilitatory input, an exponentially decaying facilitatory
variable, the gain, is set to its maximum amplitude. The arrival
of an event at the trigger synapse shortly after an event at the
facilitatory synapse (i.e., small time difference ∆t) leads to
the generation of an Excitatory Postsynaptic Current (EPSC)
(see Fig. 2b).The EPSC amplitude is proportional to the value
of the facilitatory variable at the arrival of the trigger event.
Hence, the amplitude of the EPSC is inversely proportional
to the time difference. A Leaky Integrate and Fire (LIF)
neuron integrates the postsynaptic current from the trigger
synapse in its Membrane Potential (Vmem). A digital output
pulse (also called spike) is generated when Vmem reaches
the spiking threshold θspike. As it can be seen in Figure 2e,
the number of output pulses is inversely proportional to the
time difference between the two input events. When the time
difference is much longer than the facilitatory time constant,
no EPSC is generated and therefore there are no output spikes.
For negative time differences (an event occurs at the trigger
synapse shortly before an event at the facilitatory input, as in
Figure 2d) no output spikes occur. The TDE is a direction-
selective module.

B. Odour localization network

The odour localization network is depicted in Fig. 3. It
consists of three layers, namely the sensor events input, an
onset filter layer and a TDE layer. While the TDE model
is described in detail in the previous section all other layers
consist of exponential Leaky Integrate and Fire (LIF) neurons.
The left and right neuron of the sensor events layer receive
events from the left and right gas sensors, respectively. The
conversion from analog sensory signal to events is explained
in subsection II-A in detail. The sensor events layer is used
to read out the events received by the SpiNNaker board. It
projects one-to-one onto the neurons of the onset filter layer.
The appearance of an odour puff at the sensor generates a
large number of successive output events with a high firing
rate. However, we aim to detect the time difference between
the arrival of the odour plume at the two sensors. One reliable
way to extract the time difference from these event trains is to

Fig. 2. TDE working principle. a) The TDE consists of a facilitatory
and trigger input, a nonlinear gating mechanism and a spiking output. b-d)
response to different input event combinations. e) Tuning curve.

Fig. 3. Odour localization network. The sensor events layer passes on the
events, the onset filter only outputs the first spike of a spike train, TDEs
estimate the time difference.

extract the onset of the signal. We achieve this by a recurrent
inhibitory connection in the onset filter layer. The occurrence
of the first spike in the onset filter neuron leads to strong
self inhibition of the neuron. The excitation by the successive
sensor event spikes is not strong enough to overcome the
inhibition so that the onset layer only passes on the first spike
caused by the arrival of an odour plume. The output spikes
of the onset filter are passed on to two TDEs, one right-left
connected and the other left-right connected. The first responds
to a movement of an odour plume from right to left while the
latter responds to a plume moving in the opposite direction.
Thus, the network was developed to detect the location of the
odour source by determining the spatio-temporal occurrence
of the odour plume.



IV. EXPERIMENTS AND RESULTS

The sensory setup shown in Fig. 1 was placed approximately
30 centimeters away from a small fan. Short puffs of a lime
mixture were manually provided to the fan. The experiment
was repeated 8 times with the fan being placed on the right side
of the sensors and on the left side, respectively. On a computer
the recorded continuous analog signals were converted to spike
trains with the method explained in subsection II-A. The spike
trains were passed to a SpiNN-3 board which contained the
Spiking Neural Network (SNN) explained in subsection III-B.
An example conversion from continuous sensory signal to
events is shown in Fig. 4. Every sensor board had four different
MOX sensors which reacted to different gas molecules. Sensor
S1L and sensor S1R were sensitive to the lime molecules
provided (See Fig. 4a). From second 7.5 until second 10
the two orange sensory signals were rising to their resting
potential. The sensors were still recovering from a previous
odour puff. Around second 11 a new odour puff moved over
the two sensors from the right to the left. This lead to a slow
decrease in voltage in sensor S1R and S1L. After second 12
the sensors began to recover again. The Kalman filter’s second
derivative of the sensory signals is shown in Figure 4b. The
transients during the occurrence of an odour puff were much
steeper and faster than the original sensory signals. The on
and off events of the channels are shown in red and blue
respectively.
We project the extracted off events onto the odour detection
network implemented on a SpiNN-3 board. The results are
provided in Figure 5. The two bottom rows of each trial
show the sensor events, the two rows above show the onset
filters and the two top rows show the TDEs. In all 16 trials
the network correctly determined the direction of the odour
bout. The network performs robustly in a large range of time-
differences ranging from below 0.05 to 0.24 seconds (Fig. 5
right to left trial 7 and left to right trial 2)

V. CONCLUSIONS

We have shown a fully event-driven neuromorphic process-
ing pipeline that can decode the direction of an odour puff
with a stereo e-nose setup.
The core component of this network is the TDE model. The
applicability of the TDE for temporal encoding in vision, touch
and sound has already been demonstrated in [12]–[16] and
[17]. In this article we utilize the TDE in the odour domain.
The versatily applicability of the TDE concept suggests the
presence of a similar mechanism in different animal species
and accross different sensory domains. Furthermore, due to its
versatile applicability we suggest to use the TDE as a basic
sensory filtering mechanism in the neuromorphic domain.
The TDE works especially well in combination with event
based sensors because these sensors provide precise temporal
information in their time-continuous output. In this article the
slow dynamics of the MOX sensors had first to be overcome
by estimating the second derivative of the sensory signal and
applying a constant-acceleration Kalman filter. This acceler-
ated gas sensing approach can also support olfactory scene

Fig. 4. Conversion from sensory signals to events.a) raw signals of the four
different MOX sensors. b) Kalman filtered second derivative of sensory signals
as well as event signals (red and blue).

recognition in natural environments such as urban cityscapes
[18]. Spiking networks are compatible with this approach
[19]. In a future implementation of our approach on a robotic
platform we will investigate its performance regarding odour-
gated anemotaxis for robots.
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