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A B S T R A C T

The proliferation of cyber attacks has led to the use of data-driven detection countermeasures, in an effort to
mitigate this threat. Machine learning techniques, such as the use of neural networks, have become mainstream
and proven effective in attack detection. However, these data-driven solutions are limited by: a) high compu-
tational overhead associated with data pre-processing and inference cost, b) inability to scale beyond a cen-
tralised deployment to cope with environmental variances, and c) requirement to use multiple bespoke detection
models for effective attack detection coverage across the cyber kill chain. In this context, this paper introduces
MIDAS, a cost-effective framework for attack detection, which introduces a dynamic decision boundary that is
used in a multi-layered detection architecture. This is achieved by modelling the decision confidence of the
participating detection models and judging its benefits using a novel reward policy. Specifically, a reward is
assigned to a set of available actions, corresponding to a decision boundary, based on its cost-to-performance,
where an overall cost-saving is prioritised. We evaluate our approach on two widely used datasets represent-
ing two of the most common threats today, i.e., phishing and malware. MIDAS shows that it effectively reduces
the expenditure on detection inference and processing costs by controlling the frequency of expensive detection
operations. This is achieved without significant sacrifice of attack detection performance.

1. Introduction

In the current threat landscape, phishing, a significant online threat,
replaced malware as the biggest web-based threat (Zhang et al., 2022).
Threat actors have been active with credential phishing methodologies
to gain access to target email accounts, in particular since the Ukraine
conflict (CrowdStrike, 2023). At the same time malware (binaries or
scripts) still remain a significant threat in the current threat landscape.
Malware is often detected when it resides on the disk with the use of
static or dynamic analysis. As such, to evade detection a significant surge
in popularity of fileless malware has been used by threat actors in recent
years (Liu et al., 2024). This leads to more expensive detection tech-
niques being used, such as sandbox dynamic analysis.

Defending against such threats has always been an ongoing area of
research, but more importantly, machine learning techniques are now
using richer, larger, and more complex datasets and models (Rookard
and Khojandi, 2024; Zhong et al., 2024). Machine learning differs from
traditional static techniques to identify such threats, such as the use of
denylists. It does not entirely rely on up-to-date indicators of

compromise (IoC) to be effective and, instead, generalises to handle
unseen data. Notably, machine learning-based systems are computa-
tionally expensive by design, so that sophisticated attack techniques can
be discovered from sets of complex patterns.

At the same time, defenders endure a number of challenges that stem
from a multipart information space in their infrastructure. Some of these
parts can be more heterogeneous than others, e.g., email attachments
compared to custom application logs. As a result, detection responsible
for an attack surface needs to cope with its respective complexity. Even
though the practicalities of capturing several dozens of attack tech-
niques to form effective attack datasets has been explored in the liter-
ature (Nisioti et al., 2018; Yang et al., 2022), dealing with the
deployment cost of such complex detection system is limited. Equally,
large numbers of devices will contribute to an increase in data transfer,
processing, and storage, prior to any inference, which can hinder the
detection speed and increase investment costs.

While work has considered the use of a “multi-layered” approach to
account for these challenges, the decision threshold to progress to sub-
sequent layers is not particularly optimised (Doshi et al., 2023; Gupta
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and Singh, 2024; Rendall et al., 2020). For instance, a recent work by
(Gupta and Singh, 2024) separates detection from attribution in order to
reduce processing time and enhance detection accuracy. However, one
could argue that the default decision boundary for a classifier (i.e., 0.5),
as in previous literature (Rendall et al., 2020), is not adequate. In cases
where model training is not regular, one could consider the use of a
dynamic decision boundary to help maintain the detection performance.

In this context, this paper introduces MIDAS (MultI-layered attack
Detection Architecture with decision optimiSation), that provides a
dynamic decision boundary in multi-layered attack detection architec-
tures. MIDAS as a decision optimisation framework, proposes a value
estimate model to reduce the cost spent on attack detection. To this end it
dynamically adjusts decision boundaries using the models’ probability
distribution and historical environmental conditions.

MIDAS is a generic framework that can be integrated with existing
data pipelines and data-driven detection engines that utilise additional,
often more expensive, capabilities. Specifically, MIDAS ingests the
outputs from detection models (either batch or real-time) and can work
as a coordinator to optimise overall detection and thus offer cost saving.
A use case of MIDAS could be a cloud-based detection service, similar to
Microsoft Defender. In such a multi-layered detection architecture, each
detection capability offered via the cloud environment would act as a
more expensive layer in MIDAS, which complements detection that
happens locally on the device. The benefits here would be to minimise
costs across an estate, where costs are based on the usage of the
expensive cloud based detection engine.

This paper makes the following contributions:

• It proposes MIDAS, a cost-effective framework for attack detection
that is based on supervised machine learning to detect threats.
MIDAS dynamically finds the most optimal set of decision bound-
aries in a multi-layered detection architecture. It can steer the
boundary based on the environment to handle conditions like
evolving model confidence across datasets.

• We utilise Multi-armed bandits and propose novel reward policies to
model the decision confidence of the participating detection models.
They were designed to implicitly balance the exploration and
exploitation dilemma, while minimising cost and maximising
detection performance. Our reward policies were compared to those
in the state-of-the-art and were found to outperform them both in
terms of cost saving and detection performance.

• We evaluated MIDAS with two datasets consisting of phishing and
malware attacks, which are prevalent in the current threat land-
scape. We analyse the decision boundaries response to changes in
parameters, reward policies and selection algorithms to identify the
best performance of MIDAS in terms of cost saving and detection
performance.

The rest of this paper is organised as follows: Section II provides
background and related work. Section III presents the methodology and
Section IV presents the evaluation of our approach. Section V provides
the discussion. Finally, Section VI concludes the paper with suggestions
for future work.

2. Background

This section introduces multi-armed bandits, followed by the com-
ponents that form a model. It then describes the search algorithms that
are commonly used and key to implementing our approach.

2.1. Multi-armed bandits

Multi-armed bandits, also known asMAB, is a classical reinforcement
learning framework that enables algorithms to make decisions under
uncertainty (Slivkins, 2019). The objective in MAB is to make decisions
but find a balance between exploiting existing knowledge or exploring

new decisions, also known as the exploitation versus exploration
dilemma. The key components in MAB include the: 1) selection algo-
rithm, 2) reward function, and 3) set of actions.

As an example of use of MAB, consider a router device that needs to
route traffic, but the Internet has seasonal or fluctuations in communi-
cations latency across different routes. One could use MAB, where the
decision (i.e., action) is to select a specific route from a collection of
routes (i.e., available actions), and the outcome (i.e., reward) is the total
latency. Here, the goal is to select actions using an appropriate algorithm
that alternates between selecting the known routes with low latency, or
to select infrequent routes, in order to find the most optimal under the
current conditions, in this case high latency.

In this work, we explore the following selection algorithms:

1) Boltzmann Exploration (Softmax): The Boltzmann exploration, a
Softmax method (Kuleshov and Precup, 2000), aims to select actions
with the greatest expected value, and uses a parameter to control the
degree of exploration. First, Softmax creates a probability distribu-
tion of all the available actions based on their expected value as,

P(ai) = eV(ai)/τ
∑n

j=1
ev(aj)/τ

, where P(ai) is the probability of selecting action

ai, and τ is the exploration term (i.e., the degree of exploration). Note
∑n

i=1 P(ai) = 1. Then, a number between 0 and 1 is chosen at random
which is used to select an action. The actions with the highest
probabilities are more likely to be chosen, although a higher τ will
distribute the probabilities of each action more evenly, thus lead to
greater chances of exploring actions with lower value estimates.

2) Upper Confidence Bound (UCB): UCB is a deterministic algorithm that
uses an uncertainty factor to prioritise action exploration. First, at
each step, the uncertainty of each action is calculated based on the
number of times each action has been selected and the total number

of steps, where rt(a) =
̅̅̅̅̅̅̅̅̅̅̅
2 log t
nt(a)

√

(Auer et al., 2002). Next, the average

reward of each action is combined with its uncertainty value to give
the final expected value. Under these conditions the greater n(a)
relative to t, the greater its certainty. Thus, those actions with a low
selection rate are more likely to be selected, as their uncertainty
factor will be higher. Here, each action will certainly be used and
evaluated, meaning that an optimal set of actions will be discovered
as soon as knowledge develops over time.

3) Thomson Sampling: This algorithm, defined as Algorithm 1, uses the
Bayesian framework by modelling the reward distribution, then
sample from the distribution formed over each step, to use the action
that will return the greatest expected value. In our case, we chose to
model an action distribution as a beta distribution where the pa-
rameters α and β are the cumulative summations of positive and
negative rewards, respectively. Once an action is chosen based on the
maximum sampled expected value, either parameter (α/β) is upda-
ted based on the actions effect in the environment.

2.2. Related work

This sub-section discusses the relevant literature with a focus on i)
threat detection, and ii) the constraints posed by production systems.

Threat detection. Threat detection has become increasingly more
complex and resource intensive. For instance, the authors in (B. Wang
et al., 2023) proposed a framework to detect collusion-based attacks, e.
g., those using inter-app communication. They were able to combine a
novel taint and static analysis in a three-stage process, namely: i) met-
adata extraction, ii) static analysis, and iii) taint analysis. Whilst this
deep analysis is a more costly approach, it did improve detection per-
formance by five percent over the state of the art.

The work in (Fang et al., 2023) proposed an Android malware
detection method to increase the detection rates on highly evolving
samples. They used features, such as API calls and permissions, to train a
Convolutional Neural Network (CNN) and employ genetic evolution on
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existing malware samples, outperforming traditional classifiers, (e.g.,
SVM, RF). Work proposed by (Yang et al., 2024) used API semantics that
involved clustering to identify malware similarity. Similarly, the work in
(Chen et al., 2024) proposed an approach that factors in API calls, but
instead as a sequence with their respective parameters, outperforming
existing sequence methods. The use of byte sequences in order to create
signatures has effectively identified malware (Saha et al., 2024). Other
work has explored Android malware API/system calls and employed
classification as an ensemble architecture (Bhat et al., 2023). They
suggest a conventional static analysis approach fails to identify behav-
iour that would otherwise be present during runtime, such as dynamic
code loading.

The authors of (Bertrand Van Ouytsel et al., 2024) formulated a se-
ries of malware packing detection experiments using 119 features over
nine detection algorithms to find the most economical approach. They
found that static features, such as API calls, had significant impact on the
decision-making process and were more cost-effective.

The work in (Dodia et al., 2022) proposed novel features to identify
malware that leverages anonymisation services for its communications.
Each binary is characterised based on its network behaviour, which is
derived from network-level features. The cost to compute the aggrega-
tion of the connection-based statistical features was not mentioned,
which has been recognised by (Xin et al., 2021) as a process with major
associated cost. Nonetheless, this approach did achieve high detection
performance.

Threat detection architectures, which are known to be predomi-
nately centralised, have posed significant constraints on data storage,
computation, and data transmission (Dong et al., 2023). The authors
address these challenges by proposing a lightweight client-side distrib-
uted APT detection system. Authors in (Fang et al., 2023) employed a
federated approach where each client used a local model and regularly
updated a centralised global model, an efficient use of computational
resources.

The authors in (Birman et al., 2022) recognise the expensive cost of
multiple classifiers, so they propose a reinforcement learning method
that activates classifiers based on a trained model. In this case, a neural
network is trained on the confidence distribution of the classifiers and
computational costings. A shortcoming with this approach, is that there
is no defined sequence of detectors and so the model is prone to detector
repetition. The authors attempted to discourage the model from this
behaviour using an immense negative reward. However, this will only
discourage the current sequence of detectors, when there is arguably an
infinite number of sequence due to an undefined sequence length. Our
approach considers this challenge, by using amulti-layered architecture,
thus removing complexity of the model learning a sequence of effec-
tiveness under conditions.

The authors in (Rendall et al., 2020) presented a two-layered
detection architecture, where each layer represented a classifier. They
introduced a decision boundary that only permits classifications from
subsequent classifiers if the first probability estimate is within a
boundary value. Nonetheless, this work is limited as the architecture
used a static value for the decision boundary. A similar approach by

(Doshi et al., 2023) used a two-layered system where the classification
category ‘hybrid’ from layer-1 would trigger layer-2 classification, spe-
cifically to solve the class imbalance problem. Work by (van Geest et al.,
2024) proposed a hybrid framework that combines the predictions from
multiple models using a stacking function. Here a range of functions
were assessed and identified logistic regression as the most effective.

Other focus areas of threat detection are the optimisation of features,
notably the selection of features that will provide most prediction value.
That is, reducing the feature dimension as much as possible without
compromising on detection performance. Existing studies have pro-
posed a range of techniques for this (Fatima et al., 2019; S. Wang et al.,
2020), including the use of reinforcement learning (Wu et al., 2023).

Multi-armed bandits (MAB) have been used in past literature for
threat detection. MAB is recognised to automatically handle optimisa-
tion during times of uncertainty. The authors in (Heartfield et al., 2021)
usedMAB to select the most optimal decision boundary for unsupervised
anomaly detection model. Each trial on a given snapshot of data was
used to recursively explore and reward a classifier’s hyperparameter (a
contamination value) to find the optimum threshold value. The benefits
of using MAB in this context is its ability to optimise detection in
changing environments.

The authors in (Dekel et al., 2023) propose the use of MAB to
enhance the level of automation during threat hunting. They model the
investigation process so that each selected action collects some artifacts
associated with an attack, at a collection cost. To achieve this a
knowledge base of attacks and their respective artifacts were used as
search space. The iterations are bounded by a budget, so each step of the
investigation is optimal, which is usually a difficult and costly process
for analysts.

The authors in (Paya et al., 2024) developed a defense framework to
protect against adversarial models from learning the strategy of the
detection model. Here, they use MAB to select the most optimal set of
classifiers to make a prediction on a network traffic flow, based on the
classifiers’ ability to provide the highest level of accuracy. Although the
reward signal was unclear, a distribution for each classifier was formed
over significant time, using the Thomson Sampling algorithm to select
actions. The work in (Sagi and Rokach, 2018) argues that increasing the
number of classifiers can alleviate machine learning challenges as al-
gorithm diversity with varying features can reduce dataset imbalance,
concept drift and dimensionality.

The authors in (Shen et al., 2023) proposed aMABmethod to defend
against multistage APT attacks that utilise running processes on a host as
paths of attack. The authors use a provenance graph to model process
dependencies for selective monitoring under limited resources. They
replaced the exploration term, i.e., mean reward value, in the UCB al-
gorithm with a malevolence value. To obtain the value, an LSTM
network was used on historical temporal information of paths. There-
fore, the greater the term, the greater the chances of selection and in this
case the monitoring of the process path.

Constraints from production environments. Recent literature
seeks to understand the complexity and challenges with production ML
(Xin et al., 2021). The authors in (Xin et al., 2021) present a large-scale
analysis of ML pipelines at Google. They found that ~22 % of compute
costs arise from data ingest processes, a significant percentage relative to
a ~23 % cost for model training, which is usually recognised as the most
expensive pipeline phase. The work in (Paleyes et al., 2023) presents
challenges with resource-constrained environments, suggesting that one
should consider the practicalities of deploying deep learning to net-
worked systems that have very limited energy, memory, and data
transmission. The authors in (Xin et al., 2021) and (Paleyes et al., 2023)
also emphasise the challenges with ML deployments. Little work in the
literature takes into consideration all of the aforementioned points.

Despite model deployment constraints on enterprise network estates,
mobile devices are no exception. The pervasiveness of machine learning-
based models, such as Deep Neural Networks (DNN), on mobile devices
likely contributed to vendors focusing on hardware improvements, such

Algorithm 1
Thompson Sampling.

1: Input: Actions A, time horizon T
2: Initialization: Positive Si and Negative Fa reward to 0 for each action a
3: for t = 1 … T do
4: For each arm a, Sample θa(t) from Beta(Sa + α, Fa + β)
5: at ← arg maxa θa(t)
6: Select action at and observe the reward Rat
7: if reward Rat > 0 then
8: Sat ← Sat + Rat
9: else
10: Fat ← Fat + Rat
11: end if
12: end for
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as GPU accelerated components and battery efficiency. The authors in
(Deng et al., 2022) analysed 62,583 applications on the app store and
found 960 on-device DNN models between 568 apps. These models
concern the authors as they represent new targets for attackers due to
the cost-saving for those intending to steal the pre-trained parameters. A
federated-based framework was proposed by (Chen et al., 2024), in
order to accelerate model training/updates while protecting the privacy
of the model and datasets. While our work focuses on cost-saving, one
could consider reducing the load and security concerns on the end-user’s
device by leveraging the edge for more complex and expensive models,
using our proposed approach.

Concept drift is recognised as a significant concern that causes
adverse effects on deployed model performance (Paleyes et al., 2023).
As such, any decision function that is used to optimise on cost should be
mindful of becoming dependent on model output, e.g., a probability
distribution. Increasing the number of detections can alleviate machine
learning challenges as algorithm diversity with varying feature sets can
reduce the impact of dataset imbalance, concept drift and dimension-
ality (Sagi and Rokach, 2018). This can introduce computational over-
head as training time and memory extend by the number of detections.
However, use of multiple models has been shown to increase overall
detection performance (Gupta et al., 2022). For instance, the work by
(Tseng and Chang, 2023) demonstrated that multiple binary classifiers
yielded better performance than a multi-classifier. These challenges and
advantages underpin our decision optimisation described in Section III.

A concern by (Jacobs et al., 2022) is the ‘black-box’ nature of
decision-making models which limits the explainability to analysts.
They propose a decision framework to increase the interpretability of
models used to detect complex patterns in networks. The model
complexity in this instance is driven by the size of the decision tree, and
so our approach to divide features into subsets will benefit from such
explainability.

With regards to threat detection, computational cost (e.g., energy,
time, and memory) is usually overlooked. However, while a robust
detection system can have high performance, it can introduce compu-
tational overhead as training time and memory extend by the number of
classifiers.

Work by (Rao et al., 2019) dealt with processing costs associated
with mobile phishing detection by only using URL-based features,
achieving an average time of 621 ms to complete the detection process.
In this case, the real-time feature extraction timings of lexical and con-
tent demonstrated that legitimate processing took on average 5.85 times
longer than phishing. Although, this work is limited by excluding page
load times, which add seconds to the overall processing time. The work
proposed by (Rendall et al., 2020) and (Das et al., 2020) both recognised
that DNS-based feature collection is more costly than static features due
to dependence on network capture. Similarly, other costly features are
available that can contribute to phishing detection, such as using fea-
tures derived from PKI infrastructure (Gritzalis, 2004; Iliadis et al.,
2000).

The authors (Bahnsen et al., 2017) took a different approach by
determining the throughput rate of phishing detection and identified
that LSTM network took longer to evaluate URLs (280 p/s), when
compared with RF (942 p/s). Also, while the LSTM took 80 times longer
to train, the memory consumption was comparably lower (581 KB) than
Random Forests (288 MB).

The work in (Xu et al., 2021) highlighted the importance of feature
processing and extraction times when scaling for billions of users, and so
leveraged transfer learning to reduce cost and improve generalisation.

3. MIDAS framework

This section introduces MIDAS (MultI-layered attack Detection Ar-
chitecture with decision optimiSation), which provides novel decision
optimisation for a multi-layered detection architecture, similar to
(Rendall et al., 2020). This work formally defines the problem as the

real-time selection of a decision boundary’s position to (a) reduce un-
necessary computational resources, stemming from unnecessary acti-
vation of a subsequent classifier cj, and (b) maintain high classification
performance levels. MIDAS comprises of three main components,
namely a set of dynamic decision boundaries, a reward function, and an
action selection function. As summarised in Fig. 1 and described in the
rest of the section, MIDAS ingests the outputs from multiple detection
models and can work as a coordinator to optimise overall detection and
thus offer cost saving.

3.1. Model formulation

This section models the process of finding the most optimal decision
boundary for attack detection as a MAB problem. The symbols used in
the paper are summarised in Table 1.

The goal of an attack detection system is to: i) correctly identify at-
tacks based on their characteristics and behaviour and ii) be practical for
real-world adoption in a production environment by minimising its cost,
e.g., reducing network latency, for its users. To achieve this a set of
detection models must be sufficiently trained on qualitative and repre-
sentative data, collected from recent and realistic attacks.

A standalone attack detection model can prove ineffective against
multi-variate attack stages, due to the challenges with generalising
across the attack space. We assume that an ensemble detection archi-
tecture is used due to its ability to leverage multiple detection models, a
popular method that increases the probability of high detection per-
formance (Al-Sarem et al., 2021; Chohra et al., 2022; Gao et al., 2019;
Maniriho et al., 2024; Otoum et al., 2020). While multi-classification
detectors can provide more fine-grained predictions, such as the attack
type, we consider them out of scope for this work. Here, we define the
detection system as a sequence of binary classification models (ci)ni=2
where n is the number of classifiers bespoke in detection, i.e., feature-set
and algorithm. Therefore, detection is divided into attack types using a
subset of features of all available features F.

Let Fi⊂F denote the feature set used by a classification model ci, and
yi,t be the prediction class at time t. We assume that the cost to extract
features varies across the feature space, as some need capturing in real-
time, e.g., network traffic, whereas some are less resource intensive, e.g.,
standardised logs. Thus, the problem can be formulated using subsets of
features based on their scope and ordered by their computational cost.

The proposed system receives an incoming observation Xt at time
step t and through the activation of some its classifiers predicts the class
of the observation. For this purpose, the system produces a probability
vector Ot, which represents the classification probabilities of each
classifier. Let Ot = P1,P2, …, Pn denote the classification probability Pi of
each model ci at each time step t. The aim is to reduce unnecessary
computational expenditure, so subsequent models ci+1, …, cn are only
activated to perform inference when Pi falls within Li or Ui. We refer to
this subsequent activation process as triaging. In this case Li < Pi < Ui,
and Li and Ui are the upper and lower uncertainty values, respectively
that are defined in the sequel. For instance, if Li = 0.32 and Ui = 0.68, a
prediction within the range, i.e., Li < Pi < Ui, will be sent to ci+1 for
subsequent classification, otherwise the prediction is the final output.
Assuming the classifiers follow a hierarchy or linearity based on cost, the
implications of reducing the number of subsequent classifications is a
reduction in the overall detection performance.

To give the decision process flexibility, the traditional single and
symmetrical decision boundary is forked to serve dual movement across
the decision environment. Since the uncertainty between each class is
independent per classifier, the discrete class distributions of ci given Pi is
modelled to derive boundary values Li and Ui, where i < n − 1.

3.2. Action selection

As mentioned previously, the classification boundary consists of a
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lower and an upper boundary Li and Ui, as each class (i.e., benign, and
malicious) have discrete prediction confidence, and thus have inde-
pendent probability distributions. We also define the initial decision
boundary Z=0.5, which is naturally the symmetry point between the
high confidence density points of each class. For instance, strong nega-
tive confidence is closer to 0 and strong positive is closer to 1.

As part of the continuous learning of the system, after each predic-
tion for each observation Xt the boundary may need to be adjusted based
on the accuracy of the prediction. Let yt ∈ {0, 1} denote the label of the
observation Xt at time t, where yt = 0 is benign, and yt = 1 is malicious.
Based on the predicted class yi,t of classifier ci for the same observation at
time t, an action a takes place either for Li if yt = 0, or for Ui, if yt = 1.
Thus, let A represent a set of actions A = {a1,a2,…,a ν}, where a ε [0, 1],
ν is the total number of available actions and each action represents the
movement of the boundary. In our proposed system, each decision
boundary moves either, i) up, ii) down, or, iii) remains the same based
on the chosen action α. Thus, if Pi ≥ Z, then U = Z+ ak, otherwise if Pi ≤
Z then L = Z − ak.

In this work, three commonly used MAB algorithms have been

evaluated for the action selection function, namely: Softmax, Upper
Confidence Bound (UCB), and Thomson, which were defined in Section II.
A. In this work we also extended UCB, as UCBe, by using the update rule
that is defined by Eq. (1), instead of using a running average for storing
the value estimate of each action.

Each algorithm has its own technique to select actions, which all rely
on knowledge that is captured over time from interacting with the
environment. A preliminary experiment is used to find best parameters
on a small scale (50 iterations), before a comprehensive evaluation with
10,000 iterations was to be conducted across the several proposed
reward policies. All three algorithms require a reward policy to operate
and thus a reward value and value estimate for each action.

For this reason, we define Rt(a) as the reward for action a, which is
derived from the reward function (further explained in Section IV.C).
The reward function is designed to observe the effects in the decision
environment to guide the future of each decision boundary to an optimal
position and maximise the cost benefits. The selection function de-
termines the decision boundary using an expected value derived from
historical rewards.

The value estimate Va,ci is used to reflect the expected value of
selecting action a for classifier ci, based on previous recorded perfor-
mances of the decision boundary (Li or Ui). The reward is initially
assigned to V by collecting the evaluation result of how well the
boundary performed at time t. The value estimates are updated to reflect
the effect of the action in the environment, so over time the expected
value becomes more accurate. Accurate estimates translate to better
action selection and thus, observations are triaged more effectively.

The value estimates for actions across the classifiers are treated
independently since the actions can vary by performance under different
conditions, so Va,ci extends to V(L)

a,ci and V(U)
a,ci , respectively, such that

V(L)
a,ci ∕= V(U)

a,ci . The sum of rewards for a given action R1(a, ci) + R2(a, ci) +
… RNt (a, ci) where Nt is the number of times the action has been
selected up to step t, needs to be efficiently reflected as a value estimate.
This is because the model is designed to run continuously over time,
which will eventually lead to large amounts of memory being used to
store the rewards. So, in order to reduce the resources needed to store
the rewards, and thus value of an action, the following function used to
calculate the expected value for each action is:

Va,ci ,t+1 = Va,ci ,t + γ
[
Rt(a, ci) − Va,ci ,t

]
, (1)

where γ is the decay constant. Note γ ε (0, 1]. When γ is closer to 1, the
immediate rewards are of greater significance, whereas closer to 0 leads
to a lower significance. An empirical evaluation is used to decide the
parameter.

To assess the selection algorithms with different parameters, two
metrics were used to measure the performance, namely cumulative
regret and total number of observations triaged. The regret is the

Fig. 1. Overview of MIDAS.

Table 1
List of symbols and description.

Symbol Description

Ot vector of classification probabilities for observation O at time t
C list of available classifiers
ci classifier i
A set of all possible actions
a selected action value
k contextual parameter
ak action at k index
Vai value estimate vector of action a for classifier ci
Ui upper decision boundary of classifier ci
Li lower decision boundary of classifier ci
V(U or L)
ai

value estimate vector of action a for boundary Ui or Li
Rt(a) reward for action a at time step t
F feature vector
Fi subset of feature vector F used by ci
Pi probability estimate of classifier ci
m size of reward in bytes
Nt(a) the number of rewards for action a up to time t
Xt observation at time t
yt ground truth class label for observation Xt

yi,t prediction class for classifier ci at time step t
dpa distance between P and a
DP minority dataset class
DN majority dataset class
ρ imbalanced ratio
μ action increment value
ν total number of actions in set A
T vector of distances between action a and prediction P
Z Initial boundary value
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cumulative difference between the chosen action and the action with the
highest expected gain. An observation is considered triaged when it
undergoes subsequent inference. Here, the goal is to minimise actions
that move the decision boundary in areas where a high-density of true-
positive and true-negative detection predictions reside. This is because
they have been correctly classified, and resources would otherwise be
spent on subsequent classifications that do not alter the overall predic-
tion score. The three main selection algorithms used are described in
Section II.В.

3.3. Reward policy

We evaluated MIDAS with different reward policies to find the most
performant under the conditions of the selection functions and decision
environment described above. A reward is either positive or negative
feedback value that can be derived from the environment. It should be
designed to guide the selection algorithm to select the best action at the
current step. In this work, a two-step process is used decide the reward at
step t, a) the reward value R, and b) the reward sign (+ or -). The reward
policies explored in this work are: i) static cost, ii) imbalanced cost, iii)
contextual index, and iv) distance. Section IV.B describes the metrics used
to evaluate the reward policies.

Static cost reward function. This is a simplistic reward policy
where the reward value is either 1 or − 1. However, this approach treats
all eventualities equally, either positive or negative. For instance, an
action that has a negative outcome, but close to a positive outcome will
be negatively affected to the same extent as strongly negative outcome.
The use of a static value would depend on identifying and manually
setting an optimal cost value. In this work we considered a range of
reward signals with a constant static value (i.e., 0.9, 0.8, 0.7, and 0.6).

Contextual Index. As previously mentioned, in our environment,
the use of a simplistic reward (1/ − 1)will treat all eventualities equally,
which is sub-optimal. Therefore, this work proposes a contextual index.
As previously defined ak denotes the action at k index, where 1 ≤ k ≤ ν,
from all the available actions in A. This reward function uses index k as
the contextual parameter to adjust the reward value. Actions A are
ascending in order by value, so ak is highest when k its closest to ν, and as
such symmetrically closest to high confidence prediction density. The
boundary’s goal is to learn a policy that minimises the number of
selected actions located near high confidence density, since its more
costly to perform inference when the overall predictive class yi,t is un-
likely to change. To handle the value scale, the logarithmic trans-
formation is used so Rt(ak, ci) = log(k).

Imbalanced Cost. A common challenge for attack detection is
training on an imbalanced dataset, which is representative of the
detection environment, i.e., less malicious observations than benign.
This results to a “biased” reward function that does not treat equally TPs
and TNs. To overcome this, our work uses a component of the reward
function proposed in (Lin et al., 2020), which considers the ratio of each
class in the dataset. Specifically, the minority class DP that weighted
higher than that of the majority DN, were used to define an imbalanced
ratio ρ =

|DP |
|DN |
, which was shown to improve the detection performance.

Distance. An alternative contextual reward is defined as Rt(a, ci) =

dP,a,t, where dP,a,t is the distance | Pi − at | between the current prediction
Pi and selected action a at step t for either Li or Ui. It is assumed the
distance is like an error, so we treat the error range 0.5 ≤ dP,a,t ≤ 1 since
the initial decision boundary Z is 0.5 and the best prediction achievable
is 1 for the positive (benign) class and 0 for the negative (malicious)
class. The distance parameter is designed to ignore the wider environ-
ment by only considering Pi and a, so it should localise the reward for the
given contextual position a.

Reward Sign. The reward for moving the decision boundary is two-
fold. First, the predicted value from the classifier is checked against the
label. Second, the predicted value is checked against the decision
boundary itself. Thus, as shown in Eq. (2), the reward will be positive if

the prediction is correct and the boundary was in a position to prevent
triaging, otherwise the reward will be negative.

Rt(a,ci)=

⎧
⎪⎨

⎪⎩

r,
(
Pi ∈ (Li,Ui) and yi,t ∕= yt

)
or

(
Pi ∕∈ (Li,Ui) and yi,t = yt

)

− r,
(
Pi ∈ (Li,Ui) and yi,t = yt

)
or

(
Pi ∕∈ (Li,Ui) and yi,t ∕= yt

)

(2)

3.4. MIDAS

Algorithm 2 describes the flow of execution. Specifically, the main
steps are as follow:

1) Each classifier ci initialises Li and Ui, and available actions are set as
increments of μ.

2) For each observation from the dataset, the classifier ci makes a pre-
diction, Pi.

3) Then, the decision boundary for the current prediction is selected by
the chosen selection function using the predicted probability as a
parameter.

4) The parameters of the selection function will determine the selection
of an action either by a) exploitation, or b) exploration.

5) The prediction is evaluated against the new decision boundary po-
sition derived from a, and thus the decision of the classifier will
either, a) remains as predicted, or, b) the observation is sent the next
classifier ci+1 for further inference.

6) Finally, the action is evaluated against a set of criteria to determine
the reward, which is then integrated into the value estimate to
inform future selection.

7) The classification process continues while i < n − 1.

4. Evaluation

For the evaluation of MIDAS, a set of baseline detection models are
established using commonly used supervised ML algorithms. Then, a
series parameters are explored in terms of cost efficiency and attack
detection performance and MIDAS is evaluated to assess the perfor-
mance across different exploration algorithms and reward policies.

4.1. Datasets

The performance offered by MIDAS is evaluated using the following
two datasets, namely CCCS-CIC-AndMal-2020 (Rahali et al., 2020) and
(Keyes et al., 2021) and CIC-Bell-DNS-2021 (Mahdavifar et al., 2021).
CCCS-CIC-AndMal-2020 includes malware samples ranging from
adware, backdoor, ransomware, and trojans. CIC-Bell-DNS-2021 consists
of lexical and open-source features derived from Domain Name System
(DNS). These datasets were selected because of their realistic availability
and importance across attack-based detection. In this paper, we refer to
the datasets as AndMal, and Bell, respectively.

Since the classifiers in MIDAS follow a hierarchy or linearity based
on cost, each dataset was split to form two feature sets to train the
classifiers (i.e., two classifiers per dataset). Importantly, the features
were categorised as separate feature sets to represent the cost associated
with collection and pre-processing. In particular, in CCCS-CIC-AndMal-
2020, the API calls were used as the inexpensive set, (i.e., layer 1). Then,
the network, process, memory, battery, and logcat activity, were used as
the costly feature set, (i.e., layer 2). Similarly, in CIC-Bell-DNS-2021, the
inexpensive set (i.e., layer 1) uses the lexical features, as they are
computationally inexpensive compared to features from third-party
services, which were used as the costly set (i.e., layer 2).

4.2. Experimental setup

Environment. The experiments were conducted with Python 3.11
running on a HPE ProLiant DL380 Gen10 serving 64 cores (on Intel(R)
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Xeon(R) Silver 4216 CPUs @ 2.10 GHz), 512GB memory and 12 TB of
storage. In order to run experiments in parallel for the two different
datasets we provisioned two virtual machines running each Ubuntu
Desktop (version 22.0), which equally shared these resources, on a ESXi
(Version 8) infrastructure. Moreover, the neural network models were
trained on the Apple M2 2022 architecture with 16GB memory, using
TensorFlow2.0, and Scikit-learn for random forest. Initially, the bestMAB
parameters were discovered using 50 trials (see Table 7 - Table 10), and
then those selected based on performance were ran at 10,000 trials,
where each trial processed a newly shuffled version of the dataset.

We opted for two detection algorithms across the experiments,
namely a decision tree approach (Random Forest) and a neural network
approach. Random forests are made up of a collection of decision trees
and are known to be accurate (Tidjon et al., 2019). However, in cases of
complex data, they will generalise poorly. Therefore, a feedforward
neural network was implemented using a sequential model architecture
to demonstrate a more generalisable approach. The model consists of an
input layer that takes the n-dimensional shape of each given dataset. The
first dense layer has 128 neurons with a ReLU activation function. This
was followed by a dropout with a rate of 0.3 to prevent overfitting. The
second dense layer has 64 neurons with a ReLU activation function.
Finally, the output layer uses a sigmoid function to output a
probability-based decision. The selected neural network parameter
values for our experiments were determined using the grid-search
technique (see Table 2). A callback function was used for early stop-
ping. While the parameter values will differ depending on factors, such
as dataset size, these worked well for our experiments.

To compare our proposed method to existing detection approaches,
different baselines were used, namely: i) the full capacity to maximise
detection of a model by training using all the available features in the
dataset as a single model, and ii) a stacked approach is trained, where
two separate classifiers using two different feature sets is trained (see
Section IV.A). In each dataset we compare the performance with these
baselines using both the neural network and random forest algorithms.

DetectionMetrics. To evaluate detection performance the following
metrics are used:

1) Accuracy: The accuracy of a detection model is the measure of overall
performance differentiating benign frommalicious observations. It is
measured as follows: ACC = TP+TN

TP+TN+FP+FN, where TP = correctly
identified as malicious, FP = incorrectly identified as malicious, TN =

correctly identified as benign, and FN = incorrectly identified as
benign.

2) Precision: The precision measures the proportion of correct, but
positive predictions, as TP

TP+FP.
3) Recall: measures the proportion of actual positives that were iden-
tified correctly. Thus, the greater the measures the greater the per-
formance, as TP

TP+FN.
4) F1-Score: The F1-score represents the recall and precision as a single
metric as 2 × Precision ×Recall

Precision+Recall .

MABMetrics. To evaluate the effectiveness of the decision boundary
optimisation in an attack detection system we define and use the
following metrics:

1) Total Triaged: We count the number of observations that undergo
subsequent inference due to their initial prediction value and the
decision boundary at time step t. In this work, our effort is to increase
cost savings and thus, a suitable measure of cost reduction is to count
how frequently the expensive model is used.

2) Remaining false predictions: An indicator of how well the decision
boundary performs is to measure the number of remaining false
predictions, i.e., false positive and false negatives. Whilst a small
number of remaining false predictions could indicate a greater per-
formance, there is a strong correlation with the total number of tri-
aged observations, as shown in Fig. 2 and Fig. 3. Thus, one should
consider prioritising either variable. In this work, we want to mini-
mise the number of triaged observations, and so we demonstrate the
number of remaining false predictions can be a useful metric to
decide system parameters.

4.3. Parameter selection

Since a decision boundary could be any number between 0 and 1, it is
sensible to limit the number of available actions as increments (μ) of
0.03, so 0 < a < 0.5 and 0.5 < a < 1, respectively for Li and Ui. This
means there is enough available actions, but not too many.

MIDAS’ effectiveness on low-cost attack detection is evaluated with
9 different reward policies, see Table 3. The reward policies have
different reward scales due to their individual designs, and thus this
limits the use of evaluation metrics like average reward and cumulative
regret for directly comparing between policies. Initially, to test the
resilience of the approaches and to discover the most optimal parame-
ters for each policy, a series of parameter combinations across 50 iter-
ations were tested, using the following metrics, a) total number of
triaged observations, and b) remaining false predictions.

In this work we combine reward policies to test the hypothesis that
the unique strength of each policy can be harnessed to achieve greater
levels of performance. First, the contextual index is integrated with dis-
tance to comprehend the action environment, in particular the signifi-
cance of the action relative to the cumulative probability density of
model predictions (i.e., reward policy f8, Table 3). Our work also con-
siders integrating imbalanced cost with distance (as in reward policies f1,
f6, f7, refer to Table 3.).

For parameter selection, the decay constant γ and exploration term τ
is evaluated to determine the best performing value. Softmax and UCB is
implemented using the update rule described in Section III. The decay
constant γ ∈ {0.1, 0.2, 0.4, 0.8, 1} and the exploration term τ ∈ {0.1,
0.2, 0.4, 0.8, 1}. To decide the most optimal value, one can select
based on: a) higher overall detection rate, b) higher overall cost-saving,
or c) a balanced approach. In this work, we prioritise policies with a
higher-overall cost-saving. These preliminary results are summarised in
the Appendix (i.e., in Table 7, Table 8, Table 9, and Table 10).

Despite the UCB variants showing the most cost-efficient in terms of
overall performance in Table 9 and Table 10, two of our proposed
reward policies provide remarkable flexibility using Softmax. The

Algorithm 2
Decision Optimisation.

1: Input: C = (c1, c2…, cn), X, V of dimensions k × n
2: Initialization: nextLayer ← true
3: while nextLayer AND ci ∈ C do
4: P ← predict(ci, Xi)
5: a, Lia, Uia ← SelectAction(P, V)
6: if Pi > Uia OR Pi < Lia then
7: nextLayer ←, false
8: end if
9: R ← Reward(P, Lia, Uia, nextLayer)
10: Vt+1 (a) Vt + α[Rt − Vt]
11: end while

Table 2
Experimental parameters.

Neural Network Parameters

Optimizer Adam
Batch size 40
Epochs 100
Neurons 128, 64
Random Forest 
n_estimators 100
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correlation results are presented in Fig. 2 and Fig. 3. As shown, we can
observe a strong correlation between remaining false predictions and
triage rate across the range of parameters and reward policies. Specif-
ically, f0 and f8 parameters can be selected across the correlation points,
meaning that the system owner can adjust based on situational re-
quirements, instead of solely relying on maximising cost-savings.

4.4. Cost-saving results

In this subsection, the cost-savings for each reward policy are
explored. Here, the results of the top five performing reward policies are
presented on the two datasets and two detection model types set out in
Section IV.B. These results are summarised in Table 4.

The best performing reward policies show a significantly low triage
rate. Across both datasets, the f0 policy has the lowest triage rate, and
consistently outperforms the other policies using different exploration
functions. This indicates the reward policy is consistent and leads to
cost-saving behaviour despite the type of dataset and model we used.

In this work the cost refers to the frequency of activation of the more
expensive layer and thus cost-saving is calculated as
total observations− total triaged

total observations . In Bell using random forest, the total cost with the
use of MIDAS is 5.69 % (734.78/12,904), a cost-saving of 94.31 %. To
compare, the neural network costs 13.16 % (1697.62/12,904) saving a
total of 86.84 %, rivalled to an approach that utilises all resources.
Similarly, MIDAS in the AndMal dataset with the neural network spends
23.91 % (3834.04/16,032), a cost-saving of 76.08 %, and random forest
spends 11.99 % (1922.68/16,032), a cost-saving of 88 %.

Among the four selection functions under evaluation, the policies
that use UCB, UCBe and Thomson outperform Softmax in terms of cost
saving. The UCB variants competitively triage the most, where the
dataset influenced UCB over UCBe. Softmax performs well in balancing
cost saving with performance, suggesting Softmax is a good candidate
for systems with different requirements (e.g., increased detection per-
formance), as seen in Fig. 2 and Fig. 3.

4.5. Classification risk

To demonstrate the risk associated with triaging, we measure the
number of observations that undergo subsequent classification. The
intuition here is that predictions from an initial classification (i.e., layer
1) can be changed by subsequent predictions (i.e., layer 2) enough to
change the overall class, i.e., a true negative could become a false
positive.

Comparison results between reward policies and selection algo-
rithms across the model type and datasets are presented in Fig. 4 and
Fig. 5. It can be seen that f0 consistently has the lowest risk across each
dataset, model type and selection function. Here, we want to minimise
intruding on the true prediction space, although the dataset can heavily
influence this if there is overlapping probability distributions between
true and false model predictions. Evidently, the triage rate correlates
with the type of prediction going for subsequent classification. However,

Fig. 2. Evaluating all combinations of the Softmax parameters, γ ∈ {0.1, 0.2,
0.4, 0.8, 1}, and τ ∈ {0.1, 0.2, 0.4, 0.8, 1} (Bell).

Fig. 3. Evaluating all combinations of the Softmax parameters, γ ∈ {0.1, 0.2,
0.4, 0.8, 1}, and τ ∈ {0.1, 0.2, 0.4, 0.8, 1} (AndMal).

Table 3
Reward policies used in our experiments.

Reward Policy Description

f0 log(k)
f1 ρdP,a,t
f2 0.9
f3 0.8
f4 0.7
f5 ρ
f6 dρ

P,a,t

f7 log
(
ρdP,a,t

)

f8 log
(
dP,a,t × k

)

Table 4
Top 5 reward policies for each dataset and model with regards to triage rate.

Dataset Model Reward policy Selection func. Triage rate

Bell Neural Network f0 UCB 1697.62
  f0 Thomson 2313.1
  f0 UCBE 2335.92
  f1 Thomson 3368.2
  f2 Thomson 3534.04
 Random Forest f0 UCBe 734.78
  f0 UCB 833.49
  f0 Thomson 1361.10
  f1 Thomson 1669.62
  f2 Thomson 1716.40
AndMal Neural Network f0 UCB 3834.12
  f0 UCBE 4056.16
  f0 Thomson 5142.38
  f6 Thomson 5181.86
  f1 Thomson 6082.1
 Random Forest f0 UCBe 1922.68
  f0 UCB 2001.16
  f0 Thomson 3069.08
  f6 Thomson 3412.7
  f1 Thomson 3473.54
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a reward policy, such as f0 that minimises the true prediction space is
preferred, meaning the problem becomes predominantly down to
detection performance by the initial model (i.e., layer 1).

Usually, a model will have overlapping probability distributions, i.e.,
coinciding false and true predictions. To maximise detection perfor-
mance andmarginally save on cost, one could consider f8, since it makes
best attempts to capture as many negative observations as possible. A
consequence of this design means an overlap of true and false prediction
confidences can cause unnecessary classifications, thus incurring cost
for those true predictions that do not need it (see Table 5).

4.6. Attack detection results

In this subsection, the detection performance of MIDAS is evaluated
with the use of accuracy, precision, recall and F1-score. Our results,
which are and ranked by F1-score, are summarised in Table 5.

In particular, the results suggest that the accuracy across the top 5
policies used by MIDAS in the Bell dataset does not fall below 86 %, and
95 % for AndMal. On the Bell dataset, f2 using Thomson performed
highly to the rest of the reward policies on detection performance.
However, as shown in

Table 4, this policy was the least cost effective in the top 5 policies,
an average of 52 % decline compared to f0. The f0 policy consistently
appears within the top 5 performant policies across all 4 experiments (i.
e., both datasets and both models), with the use of different selection
algorithms (i.e., Thomson, UCB and UCBE). The f1 using Thomson is in
second place in terms of accuracy, across 3/4 experiments. Overall, the
experiments show that the detection performance does not have sig-
nificant difference in the two datasets used for all policies (e.g., ~1 %
variation in accuracy). Finally, while Softmax selection did not perform
as well as the top 5, it does provide some flexibility, as shown in Fig. 2
and Fig. 3.

Comparison with baseline architectures. We have compared the

detection performance of MIDAS with the baseline architectures shown
in Table 6. Our work is comparable with modern cloud-based phishing
and/or malware detection engines, such as Microsoft Defender. Such a
cloud-based detection engine, similar to our approach, includes a host-
based, thus inexpensive, detection engine that undertakes processing
and classification of the majority of files and/or URLs. It also uses a
computational expensive, cloud-based, detection engine, which is acti-
vated only when the cheaper, host-based detection engine is not able to
make a decision. As such, their different combinations, have been used
as baseline architecture for the evaluation of MIDAS.

In particular, the Large model is trained on all the available features
within the datasets, i.e., Bell and AndMal. The Light models, denoted L1
and L2, are models trained on a subset of the datasets’ features, as
described in Section IV.B. The Stacked model uses both L1 and L2, where
the output is formed by averaging the predictive probabilities of both
models in the stack. The cost of the stacked approach is comparable to
the Large model. Finally, we compare the approaches with two MIDAS
approaches based on a) the highest performance, and b) lowest triage
rate, based on the aforementioned results (see Table 4 and Table 5).

As the results suggest in Table 6, the Large and Stacked model is the
highest overall performing, as expected. Similarly, L2 is expected to
perform better than L1 due to the use of more expensive features. There
is also a minor degradation to detection performance for the MIDAS
approaches where significant cost-savings are present. Both UCB vari-
ants and Thomson have either performed with the greatest performance,
or the greatest cost-saving, and thus have made it into Table 5.

During the evaluation with Bell dataset, f0with the use of UCB and f1
with the use of Thomson, using NN, we noticed that there is only a ~1 %
degradation in performance to compensate for the 50.4 % cost savings
by f0 over f1. Compared to Largemodel, both f0 and f1 have a 1 % loss in
accuracy, and a precision loss of 4 % and 3%, respectively. Interestingly,
the L2 model outperforms the Large model on accuracy at 95 %, a 7 %
gain over Large. In the Bell dataset where random forest was used in the

Fig. 4. The total number of true positives going to layer 2, where each plot represents the selection function.
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models, there is a 42.8 % greater cost saving by f0 using UCBe. In
comparison, f2 with Thomson there is only a 1 % accuracy difference
between the two at 88 % and 89 %. However, here Large outperforms all
approaches with 96 % accuracy. As a result, the evaluation showed that
using MIDAS in this instance, leads to a loss of ~8 % in detection per-
formance to compensate for the cost-savings.

The evaluation with AndMal dataset show high detection perfor-
mance for both models (i.e., RF and NN), which is likely due to the
nature of the training on the dataset. When using NN, both MIDAS ap-
proaches, namely f0 with Thomson and f0 with UCB, had almost the
same detection performance, where f0 with UCB has a 74.5 % greater

cost saving over f0 with Thomson. Similarly, when random forest was
used in AndMal, f0 with UCBe was found to have both, the highest
detection performance and cost savings, outperforming Stacked and
comparable to Large.

5. Discussion

The results from the evaluation of our framework suggest that the
parameters of the exploration algorithm greatly influenced the cost-to-
performance dilemma. That is, a cost saving at the expense of a
possible decrease in detection performance. In specific cases, Softmax

Fig. 5. The total number of true negatives going to layer 2, where each plot represents the selection function.

Table 5
Detection performance of each reward policy in order of F1-score (top 5).

Dataset Model Reward Policy Selection func. Accuracy Precision Recall F1-score

Bell Neural Network f1 Thomson 0.873 0.864 0.883 0.873
  f2 Thomson 0.873 0.863 0.884 0.873
  f0 Thomson 0.871 0.86 0.88 0.87
  f0 UCBe 0.87 0.858 0.879 0.868
  f0 UCB 0.867 0.854 0.874 0.864
 Random Forest f2 Thomson 0.885 0.872 0.901 0.886
  f1 Thomson 0.884 0.871 0.9 0.885
  f0 Thomson 0.883 0.87 0.899 0.884
  f0 UCBe 0.88 0.87 0.895 0.882
  f0 UCB 0.879 0.868 0.895 0.881
AndMal Neural Network f0 Thomson 0.961 0.951 0.971 0.961
  f6 Thomson 0.961 0.952 0.971 0.961
  f1 Thomson 0.961 0.951 0.97 0.961
  f0 UCB 0.959 0.948 0.971 0.96
  f0 UCBe 0.96 0.949 0.972 0.96
 Random Forest f0 UCBe 0.993 0.99 0.996 0.993
  f0 UCB 0.993 0.99 0.996 0.993
  f0 Thomson 0.992 0.987 0.996 0.992
  f6 Thomson 0.992 0.987 0.996 0.991
  f1 Thomson 0.991 0.987 0.996 0.991
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was found to provide greatest flexibility across the parameter ranges,
which would benefit those that have a varied risk appetite.

As expected during our experiments high detection performance was
achieved by those approaches that triage the most, i.e., have high cost.
This is because the performance of multiple models combined is highest
compared to a single model that is trained on a subset of features.
However, as discussed in Section IV, our novel contextual index reward
policy (f0, seeTable 3) allows MIDAS to provide cost-effective detection,
where the detection performance is not far from the top detection ar-
chitecture, described in Table 6. A system owner can opt to select reward
functions that sacrifice computation cost for more detection and vice
versa. Nonetheless, in a realistic scenario where the cost to operate
multiple models is too high, in particular when humans are involved,
one has to consider the cost implications. The analysis of our reward
functions found that the contextual index policy (f0) outperformed the
rest of the reward functions with regards to cost-saving across 3 out of 4
selection algorithms, across both classifier models and both datasets,
thus showing consistency.

Our results indicate that the model’s detection performance on its
respective dataset contributes to the nature of the overall cost-saving.
Not all detection models will classify with a clear separation between
confident and non-confident predictions by its ground-truth. Therefore,
there should be an expectation that overlap will exist. Also, not all
datasets are rich enough to train a model so that all false predictions are
low confidence and thus caught by our decision optimisation. For this
reason, improving the detection performance should continue to be
prioritised, so that our model can prioritise cost-saving in the ‘right
place’, i.e., within high-confidence prediction space.

Furthermore, as our experiments suggest, the strength of a detection
model will influence the true prediction probabilities in terms of con-
fidence scores. In our experiments, the two datasets and two classifier
models provided sufficient variation in performance, and thus confi-
dence ranges from the predictions. Ideally, a model should be trained so
that incorrect predictions are more likely to be low in confidence
compared to correct predictions.

MIDAS was evaluated using a detection architecture for malware/
phishing having two layers, i.e., an architecture that resembles that of
commercial cloud-based detection products, such Microsoft Defender. In
particular, Microsoft Defender uses, similar to MIDAS, an inexpensive
detection engine that is on the customers premise, which is compli-
mented by a more expensive cloud-service which is hosted by Microsoft.

In Microsoft Defender architecture the expensive model is only activated
when the local detection engine cannot make a decision. Nonetheless,
MIDAS could be extended to use additional models, or model equiva-
lents, such as a human analyst. However, one must consider an increase
in detection models could introduce a challenge with ordering the
models in sequence of cost and performance trade-offs, as set out in the
design. We consider this outside the scope of this paper and leave it for
future work.

Finaly, the sign of the reward signal (i.e., positive or negative reward)
depends on supervision, i.e., a label, which could be ineffective if there
are no new labels co-occurring with observations evolving. This can be
seen as a concept drift problem and affects most model-based tech-
niques. A deployed detection model may not have a constant set of
labelled data and thus, the value estimation of an action will rely on a)
intermittent labels, or b) probabilistic labels. It is assumed that a
detection model will be regularly updated, either bymodel retraining, or
using online models as new labelled data become available, e.g., via
human feedback.

6. CONCLUSION

In this paper, we propose a novel decision optimisation framework,
MIDAS, for a multi-layered detection architecture, using a novel value
estimate model, with aim to: a) correctly identify attacks, and b) mini-
mise the expenditure on processing and inference. MIDAS provides the
ability to adapt decision-making in multi-layered attack detection by
using multi-armed bandits to adjust a dynamic decision boundary.
MIDAS cost-effectiveness and detection performance was evaluated in a
multi-layered detection architecture against two prevalent threats,
phishing and malware. The first layer was inexpensive and undertook
the classification of the majority of observations, whereas the second is
more costly with regards to computation. This use case resembles the
architecture of commercial detection solutions, such as Microsoft De-
fender, which use a computational expensive, cloud-based, detection
engine only when the cheaper, local detection engine is not able to make
a decision.

For the evaluation of MIDAS, we used CCCS-CIC-AndMal-2020 and
CIC-Bell-DNS-2021 datasets, with models trained in an architecture
using two layers. The evaluation showed that MIDAS is a cost-effective
data-driven countermeasure against phishing and malware, without
sacrificing detection performance. To further address the adaptability of

Table 6
Comparison of MIDAS with other detection architectures. Large model is trained on all the available features within the dataset. L1 and L2 are models trained on a
subset of the datasets’ features, as described in Section IV.B. The Stacked model uses both L1 and L2, with output being the average of their predictive probabilities.

Dataset Model Architecture Accuracy Precision Recall F1-score Triage Rate

Bell-DNS Neural Network Large 0.88 0.89 0.85 0.87 N/A
  Stacked 0.88 0.90 0.83 0.86 
  Light (L1) 0.69 0.73 0.53 0.62 
  Light (L2) 0.95 0.88 0.86 0.87 
  MIDAS (f0, UCB) 0.87 0.85 0.87 0.86 1697.62
  MIDAS (f1, Thomson) 0.87 0.86 0.88 0.87 3368.2
 Random Forest Large 0.96 0.95 0.96 0.95 N/A
  Stacked 0.94 0.95 0.92 0.94 
  Light (L1) 0.86 0.88 0.82 0.85 
  Light (L2) 0.96 0.95 0.96 0.95 
  MIDAS (f2, Thomson) 0.89 0.87 0.90 0.89 1716.40
  MIDAS (f0, UCBe) 0.88 0.87 0.90 0.88 734.78
AndMal Neural Network Large 0.97 0.97 0.97 0.97 N/A
  Stacked 0.99 0.99 0.99 0.99 
  Light (L1) 0.75 0.71 0.78 0.74 
  Light (L2) 0.99 0.99 0.99 0.99 
  MIDAS (f0, Thomson) 0.96 0.95 0.97 0.96 5142.38
  MIDAS (f0, UCB) 0.96 0.95 0.97 0.96 3834.12
 Random Forest Large 0.99 0.98 0.99 0.99 N/A
  Stacked 0.98 0.98 0.98 0.98 
  Light (L1) 0.81 0.81 0.79 0.80 
  Light (L2) 0.99 0.99 0.99 0.99 
  MIDAS (f0, UCBe) 0.99 0.99 0.99 0.99 1922.68
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MIDAS, future work should explore the available actions with deeper
analysis, in particular for multi-classification approach. Furthermore,
the frequency of action selection should be investigated to avoid value
estimate updates incurring unnecessary computational cost.
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Appendix

To demonstrate MIDAS across many different available parameters, specifically for Softmax and UCBe, we ran each policy across the parameter
combinations to identify its cost saving performance. Tables 7–10 present the results for the best performing parameter/s.

Table 7
Parameter Selection (Softmax, Neural Network) - 50 Trials.

Softmax, Neural Network

Bell Mal

Reward Policy γ τ Triaged F. Remaining γ τ Triaged F. Remaining

f0 1 1 6499.82 2023.02 1 1 6499.82 2023.02
f1 1 1 8009.28 1633.06 1 1 8009.28 1633.06
f2 1 1 8076.68 1619.44 1 1 8076.68 1619.44
f3 1 1 8127.92 1604.56 1 1 8127.92 1604.56
f4 1 1 8205.30 1582.82 1 1 8205.30 1582.82
f5 1 1 8253.24 1571.06 1 1 8253.24 1571.06
f6 1 1 8457.90 1522.00 1 1 8457.90 1522.00
f7 0.1 0.2 8694.24 1469.26 0.1 0.2 8694.24 1469.26
f8 0.1 0.1 8700.64 1469.10 0.1 0.1 8700.64 1469.10

Table 8
Parameter Selection (Softmax, Random Forest) - 50 Trials.

Softmax, Random Forest

Bell Mal

Reward Policy γ τ Triaged F. Remaining γ τ Triaged F. Remaining

f0 1 1 2471.78 994.88 1 1 4462.76 1259.14
f2 1 1 3517.80 812.44 1 1 5556.86 973
f1 1 1 3518.34 812.44 1 1 5558.92 973.88
f3 1 1 3565.60 812.76 1 1 5598.08 963.46
f4 1 1 3613.02 801.44 1 1 5640.58 958.86
f5 1 1 3617.46 796.64 1 1 5632.62 957.58
f6 1 1 3705.58 797.00 1 1 5663.48 962.6
f7 0.1 0.2 3971.42 750.90 0.1 0.1 5923.32 897.4
f8 0.1 0.1 4008.30 742.88 0.1 0.1 5966.32 884.92

Table 9
Parameter Selection (UCBe, Neural Network) - 50 Trials.

UCBe, Neural Network

Bell Mal

Reward Policy γ Triaged F. Remaining γ Triaged F. Remaining

f0 1 1710.04 3363.68 0.2 3748.52 2361.28
f1 1 4256.46 2609.70 1 7000.26 1151.98
f2 1 4483.22 2550.38 1 6932.22 1173.04
f3 0.8 4849.22 2457.20 1 7052.08 1136.26
f4 1 5187.36 2358.32 1 7224.08 1081.16
F5 1 5306.38 2331.42 1 7192.84 1106.3
f6 1 6780.70 1937.70 0.8 7210.6 1099.1
f7 0.1 8888.50 1423.24 0.1 8592.04 734.48
f8 0.1 10,338.44 1121.68 0.1 12,346.96 258.04
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Table 10
Parameter Selection (UCBe, Random Forest) - 50 Trials.

UCBe, RF

Bell Mal

Reward Policy γ Triaged F. Remaining γ Triaged F. Remaining

f0 0.2 770.94 1429.88 0.2 1921.74 2164
f1 1 2222.86 1033.16 1 4219.24 1303.56
f2 1 2305.84 1005.20 0.1 4110.92 1344.78
f3 1 2316.48 1015.14 1 4217.44 1322.04
f4 0.8 2383.62 1034.58 1 4358.88 1275.56
F5 1 2423.68 994.92 1 4381.02 1273.76
f6 1 2449.32 985.80 0.8 4171.94 1378.14
f7 0.1 4215.98 719.82 0.1 6178.2 833.62
f8 0.1 8961.10 328.60 0.1 11,618.7 129.02
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