
Vol.:(0123456789)

Data Science and Engineering (2024) 9:431–448
https://doi.org/10.1007/s41019-024-00263-w

RESEARCH PAPER

ESPRESSO: A Framework to Empower Search on the Decentralized Web

Mohamed Ragab1  · Yury Savateev3 · Helen Oliver2 · Thanassis Tiropanis1 · Alexandra Poulovassilis2 ·
Adriane Chapman1 · George Roussos2

Received: 7 March 2024 / Revised: 19 August 2024 / Accepted: 9 September 2024 / Published online: 26 November 2024
© The Author(s) 2024

Abstract
The increasing centralization of the Web raises serious concerns regarding privacy, security, and user autonomy. In response,
there has been a renewed interest in the development of secure personal information management systems and a movement
towards decentralization. Decentralized personal online data stores (pods) represent a revolutionary example within this
movement, built on the W3C’s existing guidelines – an approach exemplified by initiatives such as Solid (https://​solid​proje​
ct.​org). In the Solid paradigm, individuals store their personal data in pods and have absolute discretion when choosing to
grant access to different users and applications. A barrier to the adoption of the pod approach is the predominant reliance on
centralized indexes for search functionality in current Web and Web-based systems. This paper introduces the ESPRESSO
framework, which is designed to facilitate this new paradigm of large-scale searches within personal data stores while
respecting the individual pod owners’ data access governance. The current ESPRESSO prototype integrates access control
within pod indexes to enhance distributed keyword-based search. ESPRESSO’s unique contribution not only enhances search
capabilities on the decentralized Web but also paves the way for future explorations in decentralized search technologies.

Keywords  Web search · Decentralized web · Distributed querying · Access control · Linked data · Personal online data
stores · Solid framework · SPARQL · RDF

1  Introduction

The usage of data-driven decision-making and the deploy-
ment of artificial intelligence (AI) applications present
transformative opportunities with broad-ranging advantages,
particularly in the rapid advancement of user-centric tech-
nologies within the realm of the World Wide Web (WWW​
). Nonetheless, these advancements are accompanied by
significant concerns about data privacy [1, 2]. The original
conception of the Web as an open and universally acces-
sible platform for information exchange has given rise to
substantial privacy challenges faced by its users. In the con-
temporary landscape, users contend with a loss of author-
ity and control over their personal data, which is amassed
and exploited by centralized online platforms [3]. Indeed,
the current manifestation of the Web skews heavily towards
centralization, dominated by a handful of major corporations
(such as Google, Facebook, and Amazon), who wield sub-
stantial influence over online interactions and the manage-
ment of user data [1]. This corporate domination not only
engenders conspicuous disparities in information access
and power dynamics but also frequently culminates in the

 *	 Mohamed Ragab
	 ragab.mohamed@soton.ac.uk

	 Yury Savateev
	 y.savateev@herts.ac.uk

	 Helen Oliver
	 h.oliver@bbk.ac.uk

	 Thanassis Tiropanis
	 t.tiropanis@soton.ac.uk

	 Alexandra Poulovassilis
	 a.poulovassilis@bbk.ac.uk

	 Adriane Chapman
	 adriane.chapman@soton.ac.uk

	 George Roussos
	 g.roussos@bbk.ac.uk

1	 School of Electronics and Computer Science, University
of Southampton, Southampton, UK

2	 School of Computing and Mathematical Sciences, Birkbeck,
University of London, London, UK

3	 Department of Engineering and Computer Science,
University of Hertfordshire, Hatfield, UK

http://orcid.org/0000-0002-9048-7873
https://solidproject.org
https://solidproject.org
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-024-00263-w&domain=pdf

432	 M. Ragab et al.

violation of fundamental rights, thereby raising legitimate
apprehensions about privacy breaches and the improper use
of personal information [4]. This centralization of power
raises profound concerns regarding privacy, security, and
the autonomy of users [4, 5]. Additionally, the aggregation
of data within these centralized repositories hinders its avail-
ability for other service providers, limiting the potential for
enhanced value-added services [6].

In light of these concerns, various initiatives have been
proposed to decentralize the Web [5–7]. Decentralization is
characterized by distributing the control and ownership of
data and infrastructure, granting individuals the power to
govern their online activities and data. The goal of decen-
tralized technologies is to establish a more balanced and
transparent digital landscape, where users have direct control
over their data, rather than depending on centralized entities
for data storage and access management [8]. Such a shift
is pivotal for enabling data-driven progress, including the
sharing and synchronization of data across diverse applica-
tions [5, 6]. Decentralization necessitates a transformation in
application design, moving from isolated data silos to shared
views of data accessible by decentralized applications (see
Fig. 1). Importantly, the move towards Web decentraliza-
tion also promotes robust competition and fosters a variety
of developments among application providers [9]. It also
supports the increasing demand for using collective informa-
tion to improve societal health and well-being [10], includ-
ing initiatives such as improving our response to worldwide

pandemics by compiling health and mobility records of
individuals [11]. Last but not least, Web decentralization
reduces risks of security and user autonomy by distribut-
ing data access and control across multiple nodes, reduc-
ing security risks like single points of failure and targeted
attacks associated with centralized systems.

A prominent example of decentralized technology that
has gained considerable attention is the Solid technology
suite1 [7], which proposes an approach for Web re-decen-
tralization. Solid empowers users to manage their data in
personal online data stores, or pods [8]. Pods are decentral-
ized data stores that serve as secure personal web servers for
user data. Solid leverages the World Wide Web Consortium’s
(W3C’s) Linked Data Platform (LDP) standards to facilitate
read/write operations on data resources (text documents,
Resource Definition Framework aka RDF files, etc.) stored
in pods in a secure environment (organized in nested con-
tainers, similar to files in a Unix directory structure), with
a special focus on managing Linked Data. Solid primarily
specifies authenticated Hypertext Transfer Protocol (HTTP)
access to those containers. Solid’s framework ensures that
users, identified through WebID specifications,2 retain

Fig. 1   Centralized versus decentralized applications paradigms

1  Solid is a set of specifications that can have several implementa-
tions, e.g., Digita’s use.idhttps://​get.​use.​id/.
2  WebID specification:https://​www.​w3.​org/​2005/​Incub​ator/​webid/​
spec/​ident​ity/.

https://get.use.id/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://www.w3.org/2005/Incubator/webid/spec/identity/

433ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

complete control over their data. This approach contrasts
with the traditional model of data being housed in sepa-
rate, third-party controlled silos such as Web platforms and
applications. Application providers, under this framework,
must obtain explicit consent from pod owners to access and
use their data [7]. Specifically, a third-party application is
granted access to data within a user’s pod only if its WebID
has been granted specific access rights by the user, which are
documented in the Access Control Lists (ACLs3) associated
with each data resource. Thus, the Solid protocol and its
specifications ensure robust privacy and security by allow-
ing users to manage their data with an unprecedented level
of control, from the creation of a Pod to detailed access and
data interaction management, using standard, open data for-
mats and protocols.

The vision of a decentralized Web is promising but faces
considerable obstacles, especially in the realm of search
and query operations [12]. The continuous production and
publication of vast amounts of data necessitate some form
of search functionality for effective navigation. Search
functions have been a cornerstone in the Web’s evolution,
driving user engagement and growth [13]. While search
engines have been integral to the Web, enabling rapid and
efficient information retrieval, they predominantly operate
on centralized models. Current decentralized search engines
fall short in searching across resources with varied access
rights for different users and applications. Thus, developing
effective decentralized search capabilities for data stored
in pods emerges as a critical challenge in the decentralized
Web landscape [12]. Applications that access personal data,
respecting user-defined access controls, must be equipped
with robust search functionalities to thrive in a decentralized
Web environment. However, existing search utilities in Solid
applications [14], as well as in existing distributed, feder-
ated, or Linked Data query systems [15, 16], do not yet pro-
vide adequate solutions for distributed search over resources
where different users, applications and search entities can
have different access rights (see Sect. 7 for further discus-
sion). An efficient system that facilitates search capabilities
within decentralized Web ecosystems, while safeguarding
the privacy and security of both search queries and results,
is still missing.

In response to this research gap, our previous works [12,
17] have proposed a vision and architecture of Efficient
Search over Personal Repositories - Secure and Sovereign
(ESPRESSO). ESPRESSO is a framework that aims to
enable large-scale search across Solid pods while respect-
ing the data sovereignty of individuals, taking into account
the varying access rights and caching requirements of users.

The ESPRESSO framework is designed to meet the needs of
different stakeholders in the Solid ecosystem, including pod
users, pod providers, search issuers, and regulatory bodies
[12]. Its primary objective is to facilitate privacy-conscious
data exploration, particularly in sectors like healthcare, well-
being, social networking, and education, with an initial focus
on health and wellness applications. ESPRESSO provides a
platform for researching, developing, and testing innovative
indexing algorithms and query optimization methods tai-
lored for decentralized environments. Furthermore, it aims
to foster experimental analysis and benchmarking of diverse
search scenarios within extensive, decentralized Solid pod
networks.

Our earlier research [17, 18] presented the ESPRESSO
prototype’s initial version and carried out preliminary proof-
of-concept load testing experiments of the initial prototype
implementation of the ESPRESSO framework. In this paper,
we delve deeper into the ESPRESSO framework, highlight-
ing the progress made in its architectural components. We
also provide an extensive experimental analysis of the per-
formance of ESPRESSO, conducting a large-scale decentral-
ized search on a large number of pods hosted on multiple
servers, simulating real-world settings. Specifically, we will
showcase and examine the outcomes from testing and vali-
dating the ESPRESSO system’s second prototype, using an
illustrative scenario from the healthcare sector.

The contributions of this paper are as follows:

1.	 Introducing the ESPRESSO system architecture, and
discussing its components’ extensions, including opti-
mizations in the keyword indexing structures and the
search algorithm proposed in [17]. We show how this
architecture can mitigate the challenges of decentralized
keyword search, i.e., (C1-C4) in Sect. 3.1.

2.	 Demonstrating the effects of optimizations on keyword
indexing and search algorithms by comparing the search
performance of the initial ESPRESSO prototype [17]
with that of the current prototype.

3.	 Validating the viability of the ESPRESSO architecture
for undertaking scalable decentralized keyword-based
search operations over personal online datastores distrib-
uted across several Solid servers. This entails providing
a working implementation of ESPRESSO and exploring
it in the context of a motivating healthcare scenario (see
Sect. 2.2) to illustrate the advantages and the challenges
posed by the practical implementation of such a system.

The structure of this paper is as follows: Sect. 2 presents
details on the limitations of centralized Web Search and
how the re-decentralization of the Web search mitigates
those limitations. It also presents a motivating scenario of
the decentralized Search in Sect. 2.2. Section 3.1 presents
the design principles and implementation of the ESPRESSO

3  Web Access Control specifications: https://​www.​w3.​org/​wiki/​
WebAc​cessC​ontrol.

https://www.w3.org/wiki/WebAccessControl
https://www.w3.org/wiki/WebAccessControl

434	 M. Ragab et al.

framework along with the challenges it tackles. Sec-
tion 4 provides an experimental evaluation of the current
ESPRESSO prototype with a description of the experimental
setup. Section 5 presents and discusses the results of the
experiments. Section 6 discusses the prospective challenges
ahead for the ESPRESSO project. Finally, Sect. 8 concludes
the paper and discusses future research directions.

2 � Search Dynamics & Motivating Scenario

2.1 � Centralized Versus Decentralized Search

Centralized search engines, such as Google and Yahoo, func-
tion by crawling the web and creating an index of its con-
tent. This index, held by these corporations, is then searched
when necessary (see Fig. 2). Centralized search engines have
traditionally emphasized three core aspects: swift retrieval
speeds, ensuring completeness of search results, and person-
alized ranking. This focus has encouraged the centralization
of data storage and control, leading to a lack of transparency
and potential compromises in user privacy [5]. Centralized
search engines are not ideally equipped to handle data that
necessitates stringent privacy measures [19]. For instance,
medical data repositories, containing sensitive information,
must often remain inaccessible to general search engines to
maintain confidentiality. This necessitates the development
of specialized search systems for such private data, which
can lead to inefficiency and a lack of standardization. This
fragmentation impedes comprehensive data analysis and
could potentially restrict valuable research advancements
in these fields. For instance, in the healthcare sector, the
majority of citizens are willing to share their health data for
scientific research aimed at benefiting society [20]. How-
ever, they also expect to have control over how their data
is used. The non-transparent nature of data collection by
centralized search engines is a growing concern for both data
proprietors and users. The lack of clarity in these processes
can erode trust and expose data to potential vulnerabilities.
For certain types of data, the risks associated with central-
ized search engines’ data management practices are deemed
unacceptable.

While not all data should be universally accessible, indi-
viduals often require the capability to search within their

accessible data domains without consolidating this data
centrally. Current centralized search models offer limited,
if any, support for integrating access control measures into
their search functionalities. This limitation underscores the
need for a more nuanced approach to search systems, one
that respects privacy and access restrictions without com-
promising on efficiency and effectiveness.

Conversely, in a decentralized system, search results are
tailored to each user’s access permissions. This means two
users might see different results for the same query, based
on file access controls. Our aim is for the search to honor the
access specifications set by the pod owner, ensuring that a
user/application represented by a WebID only retrieves files
it is authorized to access. The proposed decentralized search
system for Solid pods (see Fig. 3) consists of: a general
search app that verifies the user’s WebID, processes search
queries, and ranks results; and an overlay network dissemi-
nating queries across various Solid servers, where searches
are conducted locally on server-specific pod indexes, with
results sent back through the network. Local indexing soft-
ware creates and maintains these pod indexes, ensuring
sensitive pod data only leaves the server when accessed by
authorized users.

2.2 � Motivating Scenario

In this section, we present a hypothetical healthcare sce-
nario that is inspired by the structure of the healthcare
system in UK. The scenario demonstrates the use of our
proposed decentralized search system over pods, involving
confidential personal medical data stored in the pods, hosted
by the National Health Service (NHS)4 infrastructure. Such
a scenario could be generalized to other domains besides
healthcare. The decentralized approach aims to overcome
the limitations inherent in centralized search systems, in
which meaningful consent is problematic to obtain from the
user [21], who faces a loss of control over what happens to
the data they disclose [22], and for whom data rights are dif-
ficult to exercise in practice [23]. Under these conditions, it
is difficult for users to share their data even when they want
to [24].

Fig. 2   Centralized search
outline

4  https://​www.​nhs.​uk.

https://www.nhs.uk

435ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

For this scenario, we assume that the search takes place in
a Solid environment, where individuals store their medical
data in pods hosted by the NHS. Individuals can import their
medical records to those pods. These records may include
General Practitioner (GP) notes, hospital visit reports, etc.

Alice is a medical researcher who is seeking potential
participants for an approved initial-stage clinical trial of
a novel treatment. She wishes to choose participants by
reviewing their patient records. Alice has to request access
from individuals to their pods in order to use their medical
health records in the trial. Alice aims to search across these
individuals’ pods using keyword queries describing rare
medical conditions or particular medications.

We therefore require solutions to the following problems:

•	 How can Alice search to find individuals with match-
ing health records for her study, among those individu-
als who have given consent for their health data to be
searched? And:

•	 How long would such a keyword search operation take to
find such individuals in a metropolitan area comprising
hundreds of thousands of patients?

To address these issues, individuals should first give consent
to Alice’s access request to their medical records, i.e., by
adding Alice’s WebID to the Access Control Lists of the
health records they wish to share. This allows Alice to uti-
lize her WebID to search within pods to which that WebID
has been granted access, thereby allowing her to compile a
list of individuals with a medical history of the condition/
medication she is searching for. These individuals may also
have consented to be contacted, i.e., may have made their

contact information accessible to Alice’s WebID. Conse-
quently, Alice can directly reach out to these potential trial
participants, inviting them to join the trial.

3 � ESPRESSO Framework

This section discusses the design principles of the
ESPRESSO framework, including specific implementation
aspects for each essential part of the framework. We hold
the view that the development of an effective search system
within the Solid ecosystem necessitates an investigation into
the following challenges:

C.1	� How to index users’ data in a way that respects the
access control requirements and does not jeopardize
privacy.

C.2	� How to effectively search a large amount of distributed
indexes across Solid servers’ pods.

C.3	� How to ensure that the search results only contain the
data the search party is allowed to access.

C.4	� How to efficiently route and propagate search queries
across Solid servers.

ESPRESSO is focused on the above challenges to
enable decentralized searching over Solid pods which
encompass diverse access permissions to pod data and
constraints related to access control. Additionally, it aims

Fig. 3   Decentralized search
outline

436	 M. Ragab et al.

to deliver an efficient distributed system supporting both
keyword-based searches and more sophisticated declara-
tive queries, for instance, SPARQL (SPARQL Protocol And
RDF Query Language) queries, across Solid pods. This
encompasses both exhaustive and top-k search situations,
at all times preserving the privacy and security of search
queries and their results. The ESPRESSO framework is
designed to function in various deployment environments,
from cloud-based Solid servers hosting thousands of pods
to individual Solid servers with a single pod, while man-
aging extensive data sets. This necessitates the creation
of distributed indexing methods and query optimization
strategies to enhance search efficiency. Additionally,
ESPRESSO focuses on constructing a decentralized search
prototype that facilitates experimental analysis and bench-
marking of different search scenarios within Solid pods.
Part of this process involves the development of tools and
frameworks dedicated to the testing and validation of the
proposed distributed search system, ensuring its scalability
and effectiveness.

To this end, the ESPRESSO framework is built on
several design principles that are summarized below as
follows:

1.	 Ensuring data sovereignty. ESPRESSO should build and
maintain distributed indexes inside Solid pods rather
than centralized ones, and maintain Metadata indexes
to describe information on index access that can be used
by search optimization algorithms.

2.	 Respecting access control. Enabling distributed key-
word-based search and also supporting decentralized
SPARQL querying while ensuring access control rights.

3.	 Scalability. Empowering search scenarios based on
Solid servers that range from a few machines to hun-
dreds/thousands of machines for implementing a diver-
sity of applications.

4.	 Decentralization. We use a federated overlay network to
propagate the queries and retrieve the search results. The
search can be initiated from any node of the network.

5.	 Privacy over efficiency. Use of metadata for guiding
query routing, and other search optimization techniques,
should not compromise data privacy.

Table 1 presents a summary of the mentioned design prin-
ciples behind ESPRESSO. It links each principle to the
specific challenges it is intended to address and details the
set of solutions provided by each principle to tackle these
challenges.

For instance, the principle of ensuring data sovereignty
addresses challenges C.1 and C.3 by securely storing data
in user-controlled pods, building and maintaining distrib-
uted (Meta)indexes, and minimizing data disclosure during
searches. Respecting access control, also addressing chal-
lenges C.1 and C.3, involves integrating data with access
control rights into the indexes and ensuring that distributed
queries access indexes rather than the data directly. Scal-
ability, targeting challenge C.2, is achieved through diverse
large-scale search scenarios suitable for various applications.
Decentralization, which addresses challenge C.4, is facili-
tated by a federated overlay network for query routing and
propagation. Finally, the principle of privacy over efficiency,
covering challenges C.1 and C.4, mandates that search opti-
mizations must preserve data privacy [25].

3.1 � ESPRESSO Architecture Overview

Figure 4 illustrates the conceptual design of the ESPRESSO
framework, highlighting its fundamental components that
contribute to a comprehensive understanding of search
enhancement across pods. We outline the functionality of
the key components within the ESPRESSO framework,
which are structured to facilitate efficient search across a
large number of Solid-compliant servers. This is followed by
a detailed description of our current prototype implementa-
tion for each component.

(1)	 Pod indexing app – Brewmaster ESPRESSO includes
a Solid pod indexing application known as Brewmaster
which creates and maintains local indexing files for the
data inside pods. The created indexes reflect not only
the pods’ data but also access control assertions about
it. Also, the Brewmaster app maintains relevant infor-
mation about the created local indexes in a MetaIn-
dex file for the Solid server (in a special pod called
ESPRESSO Pod). The MetaIndex stores information

Table 1   Summary of
ESPRESSO design principles
mapping challenges along with
their solutions

Design principle Challenges ESPRESSO solutions

Ensuring data sovereignty C.1, C.3 Data is securely stored in pods controlled by users.
Building and maintaining distributed (Meta)indexes.
Indexes minimize data disclosure during searches

Respecting access control C.1, C.3 Indexes integrate data with access control rights.
Distributed queries access indexes, not data directly

Scalability C.2 Diverse large-scale search scenarios for various applications
Decentralization C.4 Federated overlay network for query routing & propagation
Privacy over efficiency C.1, C.4 Search optimizations must preserve data privacy

437ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

such as indexing files’ addresses and other metadata
that is used for search optimization and filtering pur-
poses. To ensure privacy, the ESPRESSO system
ensures a pod’s index does not leave the pod when a
search party performs search operations.

(2)	 User interface – Barista Barista acts as the User Inter-
face (UI) application for the ESPRESSO framework,
streamlining the search process for end users. Upon
receiving a search query along with valid login cre-
dentials, Barista employs a QueryBuilder interface
to formulate and prepare the query for execution. It
facilitates searches not only by human users but also
by applications and services, which can either use
their own WebIDs or utilize a user’s WebID through
delegation, as described in [9]. Once the query is con-
structed, Barista forwards it to a federated database
(DB) node. This node then disseminates the query to
other federated DB nodes within the overlay network.
The gathered results are aggregated across these nodes
and relayed back to the Barista interface via the fed-
erated DB node that initiated the query. Barista then
displays the results in a user-friendly and comprehen-
sible format. In the initial prototype of ESPRESSO,
the search query is converted into a GaianDB query,
specifically an SQL query. This conversion occurs in
step (1) “Query Preparation”, as depicted in Fig. 5.

(3)	 Overlay network: The ESPRESSO framework employs
an overlay network to disseminate end-user queries

to pertinent data resources located on various Solid
servers. In this setup, every Solid server within the
ESPRESSO system is linked to a federated DB node
within the overlay network. The primary goal of this
query propagation strategy is to conduct user queries
efficiently while reducing the amount of data exchanged
between different data sources.

	  The initial prototype of ESPRESSO incorporates a
data federation platform named GaianDB5 to facili-
tate the propagation of user queries and the collection
of search results from Solid servers, as referenced in
[26] and depicted in step (2) in Fig. 5. GaianDB is a
dynamic and distributed federated database system
that integrates concepts from extensive distributed
databases, database federation, and network topology.
It functions as a peer-to-peer (P2P) overlay network
compatible with a broad array of devices, focusing on
optimizing query propagation and managing endpoint
access limitations.

	  GaianDB offers the capability for data to be stored
and retrieved from multiple locations, embodying
the principle of Store Locally and Query Anywhere.
This approach enhances the system’s resilience and
mitigates the risk of data loss. Furthermore, GaianDB
facilitates the propagation of queries across its nodes,

Fig. 4   ESPRESSO framework architecture

5  IBM GaianDB https://​github.​com/​gaian​db/​gaian​db.

https://github.com/gaiandb/gaiandb

438	 M. Ragab et al.

ensuring that result sets are obtained via the shortest
paths from nodes capable of fulfilling the query. As a
result, a query can be initiated at any GaianDB node
and will be seamlessly distributed to other nodes in the
network. GaianDB then undertakes the task of com-
piling these results, sending the consolidated outcome
back to the node where the query originated. For the
purpose of optimizing search efficiency, GaianDB also
incorporates caching mechanisms for storing preproc-
essed results.

	  In the ESPRESSO prototype, we have developed a
Solid-to-GaianDB connector component. This com-
ponent creates a link between a GaianDB node and
a Solid server. The connector is responsible for stor-
ing data retrieved from the Solid server in a CSV file
format. Following this, it creates a logical table, and
maps the data from the CSV file onto this logical table.
The Solid-to-GaianDB connector leverages the concept
of logical tables, as detailed in [26], to construct an
abstract federation layer within the GaianDB network.
This layer encompasses all data sources from pods
across various Solid servers. Consequently, users can
access all relevant data spread across different pods
in various Solid servers through GaianDB nodes, in
accordance with their access permissions.

(4)	 Pod searching app – CoffeeFilter conducts local search
operations on the pods of every Solid server on which it
is installed. When it receives a query from a federated
DB node, CoffeeFilter consults the MetaIndex, which
has been generated by the Brewmaster application. This
provides the locations of the pod indexes along with
pertinent metadata. Subsequently, CoffeeFilter executes
a search within the relevant pod indexes and forwards
the search results back to the federated DB node. The
details of the search operation process are described in
Sect. 3.2.

The ESPRESSO Bundle, comprising the components
illustrated in Fig. 4, is distributed as an open-source software
suite6. For its functionality, the Pod Indexer Application
(Brewmaster) requires access to the content of each indi-
vidual pod, provided by the pod owners, in order to index
the text files. Subsequently, the Pod Searching Application
(CoffeeFilter) utilizes the generated indexes for searching
purposes.

Fig. 5   Search, index look-ups, and query propagation pipeline in ESPRESSO

Fig. 6   RDF pod index format

6  ESPRESSO Search System: https://​github.​com/​espre​ssogr​oup/​
ESPRE​SSO.

https://github.com/espressogroup/ESPRESSO
https://github.com/espressogroup/ESPRESSO

439ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

3.2 � Indexing & Search Over Pods

In our preliminary investigation of implementing an
inverted index for pod data, a single inverted index is cre-
ated for the pods’ data [17] on a Solid server. The cre-
ated index is materialized as an RDF graph and follows
an indexing template. Figure 6 shows an example of an
Index Template for keyword-based search and Fig. 7
shows a sample index built from this template. This RDF
graph includes a node for each keyword and each of its
appearances, that are connected to the relevant files (as
IRIs, or Internationalized Resource Identifiers), infor-
mation about how many times it appears in the file, and
who can access it (WebIDs). In this example, the word
“likes" has the lemma “like". It appearsIn with a frequency
of 15 times in a file with the address http://solid-
server/pod1/file1.txt and can be accessed by
one WebID: https://bob.example/profile#me.
It also appears with a frequency of 3 times in a file with
the address http://solidserver/pod1/file2.
txt and can be accessed by two WebIDs: https://
alice.example/profile#me and https://bob.
example/profile#me.

That indexing technique has several drawbacks: (1) The
Pod Searching App has to access it every time a query is
received. This leads to increased search times, especially
if the size of the pod index is large. Also, (2) the Pod
Searching App requires GETting/downloading the index
file to undertake search operations against it. This violates
privacy because it exposes more data than is necessary to
answer a query.

Thus, we developed an enhanced alternative indexing
scheme that takes into account the limitations of the pre-
vious indexing scheme regarding index size; moreover, it
places a strong emphasis on privacy and considers different
users’ and applications’ access rights [27]. This new index-
ing scheme considers the Solid server-side search processing
limitations [8] and builds the indexing files to be accessed
according to Solid LDP principles via simple HTTP GET
requests [15]. Also, it dedicates high attention to optimiz-
ing the size and the number of indexing files required for
efficient search operations while respecting users’ data sov-
ereignty. Below, we describe how the proposed indexing
scheme allows Solid applications to search for data across
pods to which they have access, without having to extract
and aggregate such data into a central repository for search
purposes. Additionally, the current ESPRESSO indexing
method limits data exposure to only what is necessary for
the query and within access permissions, thus enhancing the
system’s data privacy and reduce security risks.

Figure 8 shows how the Brewmaster Pod Index-
ing Application constructs local indexes using the new
indexing schema. Consider a scenario with a Solid server
at https://server/ and a corresponding pod at
https://server/pod/. In this setup, the Brewmaster
Pod Indexing Application assigns a unique fileID to each
pod file, following a simple naming pattern such as F1, F2,
F3,.... It then establishes a directory for indexing purposes,
say https://server/pod/espressoindex/. This
URL is recorded in the MetaIndex within the ESPRESSO
Pod on the same server. The indexing application arranges
the index files in the pod’s indexing directory using a

Fig. 7   An example of an RDF pod index

440	 M. Ragab et al.

trie-like structure to optimize index file retrieval, a method
expounded upon in [28].

For every keyword in the indexed text files, such as
‘fly’, the indexing application creates a distinct index file at
https://server/pod/espressoindex/f/l/y.
ndx, containing the fileIDs of all occurrences of ‘fly’ and
their respective frequency. Moreover, for each WebID with
read permissions, e.g. WebID1, a WebID1str.webid
file is generated in the index. This file lists the fileIDs and
actual names (e.g., file1.txt) of accessible files for that
WebID. A file named openaccess.webid is also created
for files accessible to all, containing their fileIDs and names.
Lastly, an index.sum file is produced for administrative
purposes, detailing information such as the list of deleted
fileIDs and the subsequent available fileID.

This enhanced indexing scheme improves efficiency by
generating concise, inverted micro-indexes for each key-
word in text files. It also compiles a list of WebIDs that have
authorization to access files containing these keywords. This
method accelerates the retrieval of specific keyword queries
while ensuring controlled access to pertinent information
only.

Search with old indexing scheme: In the initial version
of the ESPRESSO prototype, CoffeeFilter is structured into
two distinct components: a RESTful (representational
state transfer) API7 (application programming interface)
and a query processing segment. The API component is
responsible for receiving queries from a federated DB node
(a GaianDB node), verifying them, and then directing them

to the query processing segment. This component also
takes charge of reshaping the search results and sending
them back to the federated DB node. The query processing
segment accesses the MetaIndex, converts the user query
into a SPARQL query, and runs this query on the relevant
pod indexes, as illustrated in step (3) in Fig. 5. To execute
queries against the indexes, CoffeeFilter utilizes the Comu-
nica8 search engine library, a flexible JavaScript library
for SPARQL and GraphQL, adept at querying decentral-
ized knowledge graphs on the Web. Ultimately, the Pod
Searching application returns a JavaScript Object Notation
(JSON)-formatted ranked list of search results to the feder-
ated DB node.

Search with new indexing scheme: Fig. 9 illustrates the
keyword search mechanism employed by the Pod Searching
(CoffeeFilter) App in the current ESPRESSO system. Con-
sider a scenario where the CoffeeFilter Pod Searching App
receives a query for the keyword ‘fly’, originating from a
certain WebID. The initial step involves fetching the MetaIn-
dex from the ESPRESSO Pod to gather all pod index URLs.
For each pod index URL, denoted as podindex, the Cof-
feeFilter executes a series of operations:

1.	 GET the file podindex/f/l/y.ndx and obtain the
list of fileIDs with the corresponding frequencies.

2.	 GET the files podindex/openaccess.webid and
podindex/WebIDstr.webid and combine them to
get the list of all accessible files.

Fig. 8   Pod index structure. On the left, Pod files with corresponding ACLs. On the right, generated Pod indexing files

7  https://​aws.​amazon.​com/​what-​is/​restf​ul-​api/. 8  https://​comun​ica.​github.​io/​comun​ica/.

https://aws.amazon.com/what-is/restful-api/
https://comunica.github.io/comunica/

441ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

3.	 Intersect the two lists of fileIDs and obtain the files’
URLs by concatenating the file names with the base
URL for the pod.

4.	 Return the list of URLs with the corresponding frequen-
cies.

Upon completing these steps for all pods on the server, the
CoffeeFilter Pod Searching App aggregates the results.
These are then relayed back to the overlay network.

4 � Evaluation & Experimental Setup

This section outlines our experimental methodology for
load testing of the current prototype implementation of the
ESPRESSO framework. The goal is to assess the viability
of the decentralized search in our ESPRESSO prototype
by exploring its performance in real-word settings like the
aforementioned motivating scenario in Sect. 2.2.

4.1 � Experimental Environment & Setup

Our experiments extend previous recent decentralized
search systems studies that utilized a single Solid server
for experimentation [16, 29]. We established an initial
cluster comprising 50 Solid servers designed to exem-
plify a network of general health practitioners in a met-
ropolitan area, where each practitioner utilizes a Solid
server. On these servers, patients’ medical records can be
securely maintained in individual pods. Each Solid server
is installed on a Virtual Machine (VM); each VM is outfit-
ted with the Red Hat Enterprise Linux operating system,
version 8.7, and is powered by 2.4GHz processors with
8GB of RAM. Moreover, each VM is equipped with a
high-speed 125GB storage drive and operates a single

Fig. 9   Search process in the CoffeeFilter pods search application

Table 2   Summary of the
experimental parameters of the
motivating scenario

Parameter Description

Number of solid servers 50 Servers
Number of pods/server ∼9500 Pods
Number of files/pod 1 to ∼350 files (Pareto distribution, � = 1)
Data size per pod ∼5KB to ∼750KB (based on number of files)
Access control 10% of pods grant access to their files ( ∼850 pods)

442	 M. Ragab et al.

instance of Community Solid Server (version 6.0) with
a file-based storage backend, operating in multithreaded
mode utilizing multiple workers (scaling to the number of
processor cores) .9 Due to current computational resource
constraints, one of the VMs is equipped with an 8-core
processor, whereas the remaining 49 VMs utilize only
dual-core processors. For search operations across Solid
Servers, the Pod Searching App, CoffeeFilter, employs a
Node-js Axios library for performing HTTP requests to
index files in the pods. Additionally, our experiments uti-
lized a customized version of GaianDB (version 2.1.8),
i.e., plugged in with our developed Solid-to-GaianDB con-
nector (details of the connector in Sect. 3.1).

For our experiment, we used the following procedure and
set of experimental parameters (see summary of parameters
in Table 2):

	 1.	 Number of servers and pods: With each server repre-
senting a GP practice, our 50 servers represent an area
of considerable size (e.g. Cornwall has 57 GP prac-
tices10). The average number of patients in a GP prac-
tice in the UK is ∼9500 people11, so on each server, we
store ∼9500 pods.

	 2.	 Dataset: The pods are populated with sample medical
history files with texts taken from the Medical Tran-
scriptions Samples 12 text-based dataset. This dataset
includes medical transcription samples from different
medical specialties.

	 3.	 Data preparation: The original dataset is in CSV. So,
we developed a simple script that extracts the transcrip-
tion text from each medical visit record into a separate
text file. The size of each file is approximately 5KB.

	 4.	 Selection of search keywords: We selected four key-
words for search: a commonly used keyword appear-
ing in approximately 10% of the files, a moderately
frequent word occurring in about 2% of the files, and
two seldom-used keywords found in roughly 0.2% and
0.1% of the files, respectively.

	 5.	 Data distribution logic: The literature indicates that the
rate of patients’ participation in medical trials stands
at 10%, c.f. the global study by Anderson et. al. [30].
Thus, we aimed to ensure that around 10% of the pods
grant access to their files through the selected WebID
for this experiment. To this end, on each Solid server,

we created a first group of pods – normally distributed
with a mean of 8500 and standard deviation of 85, rep-
resenting the pods of people not consenting to the use
of their data, and a second group of pods – normally
distributed with a mean of 850 and standard deviation
of 162.5, representing the people who do.

		  In each pod is placed a random sample of files
selected from the dataset, which comprises medical
visit records. Research from [31] and [32] indicates
that, on average, individuals visit their GP about once
per year. However, this frequency is primarily due to a
subset of frequent visitors. To accurately represent this
distribution in our study, we have chosen to employ a
Pareto distribution with a parameter of � = 1 for allo-
cating the number of files in each pod.

	 6.	 Access control: We made each file accessible to one
WebID from a list of 250 to simulate the doctors hav-
ing access to the patients’ files. We also made all the
files in the second group of pods open to a special
WebID, that represents Alice’s WebID, from the sce-
nario described in Sect. 2.2, which we will use for the
search.

	 7.	 Index construction: We created the pod indexes
based on the newly established indexing scheme (see
Sect. 3.2). Each pod’s files and indexes were com-
pressed and stored in a specific directory assigned to
their corresponding Solid server.

	 8.	 Creation of solid pods and metaIndexes: For each
experiment, we set up the designated pods on the
selected servers and implemented MetaIndexes in
the ESPRESSO Pod located on each server (refer to
Fig. 4).

	 9.	 Deployment of data and indexes: The compressed
files were transferred to the respective VMs hosting
the servers. These files were then decompressed into
the pods following the previously described logical
structure.

	10.	 Search execution: In each experiment, we performed
search queries for the four pre-selected keywords
across the 50 Solid servers. To reduce any warm-up
effects, each query was executed five times, disregard-
ing the first run. The average time was then calculated
from the subsequent four runs.

Experiments & evaluation: To evaluate the system’s
performance, we focused on the following parameters: the
search time — how long the pod searching app takes to
perform a query on its server, and the routing time — the
time taken by the overlay network to distribute the query
and collect the results from all the servers. To measure the
search time we use the time taken by the pod searching app
on the 8-core processor VM (the fast machine). To meas-
ure the routing time we take the difference between the

9  Community Solid Server: https://​github.​com/​Commu​nityS​olidS​
erver/​Commu​nityS​olidS​erver.
10  Data taken fromhttps://​cios.​icb.​nhs.​uk/​health/​prima​ry-​care/.
11  Data taken from https://​www.​gponl​ine.​com/​fifth-​gp-​pract​ices-​
closed-​merged-​nhs-​engla​nd-​formed/​artic​le/​17904​29.
12  https://​www.​johns​nowla​bs.​com/​marke​tplace/​medic​al-​trans​cript​
ion-​sampl​es/.

https://github.com/CommunitySolidServer/CommunitySolidServer
https://github.com/CommunitySolidServer/CommunitySolidServer
https://cios.icb.nhs.uk/health/primary-care/
https://www.gponline.com/fifth-gp-practices-closed-merged-nhs-england-formed/article/1790429
https://www.gponline.com/fifth-gp-practices-closed-merged-nhs-england-formed/article/1790429
https://www.johnsnowlabs.com/marketplace/medical-transcription-samples/
https://www.johnsnowlabs.com/marketplace/medical-transcription-samples/

443ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

total execution time of the whole search operation and the
time taken by the pod searching app of the slowest VM.

5 � Experimental Results and Discussion

In this section, we present and discuss the results of our
experiments. We report the results of performing keyword
search operations on a large number of decentralized per-
sonal datastores located in multiple different Solid servers,
in order to check ESPRESSO’s viability in a real-world
setting.

The preliminary experimental results in [17], stress test-
ing the initial ESPRESSO prototype, showed that most of
the total search time is taken by the local pod searching app
that fetches results at each Solid server. The extensive exper-
iment conducted in this paper on our motivating scenario’s
dataset still confirms that initial finding (see Search Time

Table 3   Experiment results for search on scenario’s dataset with the
chosen four keywords. Search & Routing runtimes are in ms. Number
of rows represent search results rows number

Keyword Search time Routing time Number of rows

Keyword 1 9053 1560 32,691
Keyword 2 8203 393 6640
Keyword 3 8114 151 625
Keyword 4 8186 138 319

Fig. 10   The impact of the new indexing scheme (Part 1— multiple-
servers experiments), comparing the performance of ESPRESSO pro-
totypes (Version 1 (V1) in [17] and the current prototype Version 2
(V2)) across various settings (number of servers and pods), and dif-

ferent data distribution (Uniform and Zipf), with three various fre-
quency keywords (Kwds). The Search and Routing Times are in ms.
A logarithmic scale is set for the y-axis

444	 M. Ragab et al.

results in Table 3). The Routing Time results in Table 3 also
confirm the initial finding that the time taken by GaianDB
to propagate and route the query and aggregate the search
results is negligible by comparison. This also unveils the
consistent stable performance of the GaianDB overlay net-
work for routing the queries and aggregating the results even
with scaling the number of Solid servers (from 6 Solid serv-
ers in [17] to 50 servers in our current evaluation). Also in
this regard, the keyword’s frequency is shown to have a nota-
ble impact on the search run times in all the experiments,
especially on the Routing Times. Indeed, GaianDB has to
aggregate and return back all the search results from all the
Solid server nodes to the node that issued the query – the
more frequent the keyword, the longer it takes to retrieve and
aggregate all the search results.

To show the impact of the new enhanced indexing
scheme, we replicated the same setup as in [17] (i.e., 6
Solid servers, and up to 24 pods) and tested the new index-
ing scheme using the same dataset as in that paper. Fig-
ure 10a–d, with multiple-server experiments, and Fig. 11a–c,
with single-server experiments, show how the new indexing
significantly enhances the performance of the decentralized
search in ESPRESSO. It shows how the search and routing
time dramatically improved with the new indexing schema.
The enhanced indexing scheme we developed and imple-
mented, as detailed in Sect. 3.2, has also a notable impact on
the evaluation of the current experiment. Scaling up to our
real-world motivating scenario, the performance of the cur-
rent prototype, with the enhanced indexing scheme, with 50
servers and approximately ∼475,000 pods in total, notably

Fig. 11   The impact of the new indexing scheme (Part 2— single-
server experiments), comparing the performance of ESPRESSO pro-
totypes (Version 1 (V1) in [17] and the current prototype Version 2
(V2)) across various settings (number of servers and pods), and dif-

ferent data distribution (Uniform and Zipf), with three various fre-
quency keywords (Kwds). The Search and Routing Times are in ms.
A logarithmic scale is set for the y-axis

445ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

outperforms the performance of the initial search prototype
experimenting with only 6 Solid servers and 24 pods in total.
Besides the reasons mentioned in Sect. 3.2 of how the cur-
rent indexing scheme has enhanced performance, an addi-
tional factor in the initial pod search application being too
slow was that it employed the Communica engine, which
requires loading the RDF index files into memory in order
to execute SPARQL queries on them. Thus, the performance
of the initial stress testing in [17] mainly rested on the size
of the single RDF-based index file in each pod whereas the
current Pod Searching app (CoffeeFilter) requires a few
HTTP GET requests against the indexing files relating to
the queried keyword.

It is worth mentioning that in our work [33], we perform
other extensive experiments to investigate the individual
impact of several controllable parameters on the decen-
tralized search performance. In particular, we investigate a
range of factors characterizing data distribution across Solid
servers, such as the number of servers, the number of pods,
the number and size of the files, and how many of those files
the search party has access to. We report the details and
results of the experiments in that paper.

6 � Limitations & Challenges Ahead

Index structure refinement Currently, the index structure is
composed of smaller files due to a high frequency of uncom-
mon terms, resulting in considerable disk space usage. To
mitigate this, we suggest exploring alternative file system
partitioning strategies or refining the index structure. An
optimized index structure would ideally maintain the pri-
vacy-preserving aspects of the current scheme while being
more space-efficient. Enhancing the indexing to include
more nuanced relevance measures beyond mere word fre-
quency could also improve the quality of search results.

Advancing search capabilities Expanding ESPRESSO’s
search functionalities beyond simple keyword queries is a
significant undertaking. This entails incorporating Natural
Language Processing (NLP) operations, multi-word queries,
and structured queries (e.g., SPARQL) specifically tailored
for RDF data in Solid pods. Investigating novel indexing
structures suitable for RDF data, as well as mechanisms that
consider RDF data access control within the ESPRESSO
framework, is crucial. Such advancements will enable
ESPRESSO to be compared more directly with other decen-
tralized search systems, potentially leading to a more robust
and versatile search framework.

Optimized query handling and propagation The existing
query propagation mechanism within the GaianDB net-
work relies on the default “query flooding” technique. We
anticipate that the adoption of advanced routing algorithms
and more sophisticated query propagation methods can

significantly enhance search efficacy across the GaianDB
federated network. The development of additional metadata
could further optimize this process by directly routing que-
ries to pertinent federated nodes, thereby alleviating the load
on the overlay network.

7 � Related Work

The decentralized search problem has been tackled from
various perspectives and research areas, including distrib-
uted databases [34], P2P search and query routing [35], and
SPARQL distributed querying and link-following [36–38].

A substantial body of research has delved into developing
mechanisms of empowering privacy ind distributed data-
base systems [25, 34, 39]. Distributed search methodologies
within federated database systems across various autono-
mous entities [5]. These studies have introduced distributed
indexing approaches to facilitate searches across disparate
databases [40]. However, these methods often rely on the
availability of query endpoints and results caching, assump-
tions that may not hold in decentralized environments.

The realm of P2P data management systems has provided
insights into decentralized search processes [41]. Notably,
protocols such as the InterPlanetary File System (IPFS)
utilize Distributed Hash Tables (DHTs) for keyword-based
search [42]. However, these approaches often overlook the
nuances of varying access controls and the complexities of
managing distributed indexes and query endpoints.

In the Semantic Web and Linked Data contexts, decen-
tralized SPARQL querying presents its own set of chal-
lenges [43, 44]. It necessitates the establishment of endpoint
metadata for each search entity and the implementation of
stringent access controls and caching constraints during
SPARQL link-following [15, 37]. Adhering to these require-
ments significantly escalates storage, network, and compu-
tational demands.

Thus the task of performing decentralized searches across
Solid pods introduces complexities not fully addressed in
the existing literature. The variability in access privileges
among search entities and the constraints imposed by cach-
ing limitations on search result dissemination are crucial
considerations [12, 17]. While recent studies have begun
to explore querying RDF data within Solid pods from a
decentralized Knowledge Graphs [45, 46] perspective, using
approaches like Link Traversal Query Processing (LTQP),
they often fall short in addressing access control [16] or
decentralized indexing [15].

Therefore, the ESPRESSO project represents an initial
effort in enabling large-scale decentralized keyword search
over Solid pods. It emphasizes data sovereignty and compli-
ance with user access controls through decentralized indexes
on pod contents. Our focus is initially on keyword-based

446	 M. Ragab et al.

search as a foundational step towards understanding the
requirements and performance factors needed for advanced
structured distributed queries, such as SPARQL, or decen-
tralized keyword search in structured/semi-structured per-
sonal datastores [47].

8 � Conclusion

ESPRESSO provides search functionalities for personal
online data repositories while adhering to users’ access
control requirements and maintaining data sovereignty.
The architecture of the system minimizes the revelation of
irrelevant data during searches. Our testing confirms that
ESPRESSO is an effective and scalable option for keyword
searches, making it suitable for diverse practical situations.
The system demonstrates significant potential, especially in
handling large volumes of sensitive information that require
strict access controls, such as health data [48]. This is in
stark contrast to traditional search methods that often rely on
data centralization or centralized indexing, which heightens
the risk of data breaches and unauthorized access by third
parties.

In future work, we aim to tackle the challenges articulated
in Sect. 6 and investigate further ESPRESSO’s practicality in
fields that benefit from decentralized, privacy-centric search
solutions. This includes performing extensive benchmarking
experiments (using frameworks like [49–51]), testing vari-
ous search scenarios and styles (e.g., exhaustive and top-k
for both keyword-based and SPARQL queries), and com-
paring different query propagation techniques, and explor-
ing the feasibility of performing federated learning on Solid
servers empowered with search [52]. ESPRESSO shows
potential in various applications, including contact tracing
where user location data is securely stored in personal data
storage spaces. This method ensures privacy while allowing
for alerts to be sent to individuals who have been in locations
shared with those diagnosed with diseases like COVID-19.
We also aim to enable ESPRESSO in other scenarios such
as users recommendations, Linked Data streams [53], and
neighbor-aware review predictions [54, 55].

Electronic supplementary material  The online version of this article
(https://​doi.​org/​10.​1007/​s41019-​024-​00263-w) contains supplementary
material, which is available to authorized users.

Acknowledgements  The authors of this work like to thank Lance
Draper and Dr. Ruben Taelman for their support in this work.

Author Contributions  Mohamed Ragab, the corresponding author,
wrote the main manuscript text, conducted all sets of experiments,
and analyzed the results. Yury Savateev prepared figures, designed the
motivating scenario’s initial design, and helped with the experiments.
The rest of the authors reviewed the manuscript and gave valuable
feedback, also helped with all discussions that led to the manuscript.

Funding  This work was supported by the EPSRC Espresso Project
(EP/W025868/1 and EP/W024659/1) and the NIHR Southampton Bio-
medical Research Centre (NIHR203319).

Availability of Data and Materials  In this paper, we use a anonymized
publicly available medical transcriptions dataset. To ensure integrity,
we make sure that the dataset does not include any personal informa-
tion (names, contacts, etc), but generated medical GP visits prescrip-
tions, and we keep the data on our local servers with no sharing to the
public, we share only performance search results in our paper. - Dataset
Source: This data was scraped from John Snow Labs; MTSample.
com can be publicly found here: https://​www.​johns​nowla​bs.​com/​marke​
tplace/​medic​al-​trans​cript​ion-​sampl​es/. We also aim to provide the data-
set on our GitHub repository. - Source License Requirements: N/A -
Source Citation: N/A - Expected update frequency: Annual.

Declarations 

Conflict of interest  No conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Abiteboul S, André B, Kaplan D (2015) Managing your digital
life. Commun ACM 58(5):32–35

	 2.	 Ge Y-F, Wang H, Cao J, Zhang Y (2022) An information-driven
genetic algorithm for privacy-preserving data publishing. In:
International Conference on Web Information Systems Engineer-
ing, 340–354. Springer

	 3.	 Kollnig K, Binns R, Van Kleek M, Lyngs U, Zhao J, Tinsman C,
Shadbolt N (2021) Before and after gdpr: Tracking in mobile apps.
arXiv preprint arXiv:​2112.​11117

	 4.	 Mazeh I, Shmueli E (2020) A personal data store approach for
recommender systems: enhancing privacy without sacrificing
accuracy. Expert Syst Appl 139:112858

	 5.	 Kahle B (2015) Locking the web open: a call for a decentralized
web. Brewster Kahle’s blog

	 6.	 Berners-Lee T (2010) Long live the web. Sci Am 303(6):80–85
	 7.	 Sambra AV, Mansour E, Hawke S, Zereba M, Greco N, Ghanem

A, Zagidulin D, Aboulnaga A, Berners-Lee T (2016) Solid: a plat-
form for decentralized social applications based on linked data.
MIT CSAIL & Qatar Computing Research Institute, Tech. Rep

	 8.	 Dedecker R, Slabbinck W, Hochstenbach P, Colpaert P, Verborgh
R (2022) What’s in a pod?–a knowledge graph interpretation for
the solid ecosystem

	 9.	 Sambra A, Guy A, Capadisli S, Greco N (2016) Building decen-
tralized applications for the social web. In: Proceedings of the
25th international conference companion on world wide web, pp.
1033–1034

	10.	 Zhao R, Goel N, Agrawal N, Zhao J, Stein J, Verborgh
R, Binns R, Berners-Lee T, Shadbolt N (2023) Libertas:

https://doi.org/10.1007/s41019-024-00263-w
https://www.johnsnowlabs.com/marketplace/medical-transcription-samples/
https://www.johnsnowlabs.com/marketplace/medical-transcription-samples/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2112.11117

447ESPRESSO: A Framework to Empower Search on the Decentralized Web﻿	

privacy-preserving computation for decentralised personal data
stores. arXiv preprint arXiv:​2309.​16365

	11.	 Troncoso C, Payer M, Hubaux J-P, Salathé M, Larus J, Bugnion
E, Lueks W, Stadler T, Pyrgelis A, Antonioli D, et al. (2020)
Decentralized privacy-preserving proximity tracing. arXiv pre-
print arXiv:​2005.​12273

	12.	 Tiropanis T, Poulovassilis A, Chapman A, Roussos G (2021)
Search in a redecentralised web. In: Computer science confer-
ence proceedings: 12th international conference on internet
engineering; Web Services (InWeS 2021)

	13.	 Morris M, Teevan J (2009) Collaborative web search: who,
what, where, when, and why. https://​doi.​org/​10.​2200/​S0023​
0ED1V​01Y20​0912I​CR014

	14.	 Mansour E, Sambra AV, Hawke S, Zereba M, Capadisli S, Gha-
nem A, Aboulnaga A, Berners-Lee T (2016) A demonstration of
the solid platform for social web applications. In: Proceedings
of the 25th international conference companion on world wide
web, 223–226

	15.	 Taelman R, Verborgh R (2023) Link traversal query processing
over decentralized environments with structural assumptions.
In: Payne TR, Presutti V, Qi G, Poveda-Villalón M, Stoilos G,
Hollink L, Kaoudi Z, Cheng G, Li J (eds) The semantic web -
ISWC 2023. Springer, Cham, pp 3–22

	16.	 Vandenbrande M, Jakubowski M, Bonte P, Buelens B, Ongenae
F, Van den Bussche J (2023) POD-QUERY: schema mapping
and query rewriting for solid pods, p. 5

	17.	 Ragab M, Savateev Y, Moosaei R, Tiropanis T, Poulovassilis
A, Chapman A, Roussos G (2023) ESPRESSO: a framework
for empowering search on decentralized web. In: Zhang, F.,
Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds.) Web infor-
mation systems engineering - WISE 2023 - 24th international
conference, Melbourne, VIC, Australia, October 25-27, 2023,
Proceedings. Lecture notes in computer science, vol. 14306, pp.
360–375. Springer. https://​doi.​org/​10.​1007/​978-​981-​99-​7254-8_​
28

	18.	 Ragab M, Savateev Y, Oliver H, Moosaei R, Tiropanis T, Pou-
lovassilis A, Chapman A, Roussos G (2024) A demonstration of
decentralized search over solid personal online datastores. In:
Companion proceedings of the ACM on web conference 2024,
1055–1058

	19.	 Raza A, Han K, Hwang SO (2020) A framework for privacy pre-
serving, distributed search engine using topology of dlt and onion
routing. IEEE Access 8:43001–43012

	20.	 Mayeur C, Hoof W (2021) Citizens’ conceptions of the genome:
related values and practical implications in a citizen forum on the
use of genomic information. Health Expect 24(2):468–477

	21.	 Luger E, Moran S, Rodden T (2013) Consent for all: revealing the
hidden complexity of terms and conditions. In: Proceedings of the
SIGCHI conference on human factors in computing systems. CHI
’13, pp. 2687–2696. Association for computing machinery, New
York, NY, USA. https://​doi.​org/​10.​1145/​24706​54.​24813​71

	22.	 Das S (2023) Nhs data breach: trusts shared patient details with
facebook without consent. The Observer

	23.	 Hudig AI, Singh J, Binns R, Cloete R, Haddadi H, Mandalari AM
(2023) Transparency in the consumer internet of things: data flows
and data rights. Information Commissioner’s Office, Technical
report

	24.	 Iacobucci G (2023) Data privacy: Gp surgery withdraws from kid-
ney screening pilot after patients voice concerns. BMJ 380:157.
https://​doi.​org/​10.​1136/​bmj.​p157

	25.	 Ge Y-F, Bertino E, Wang H, Cao J, Zhang Y (2023) Distributed
cooperative coevolution of data publishing privacy and transpar-
ency. ACM Trans Knowl Discov Data 18(1):1–23

	26.	 Bent G, Dantressangle P, Vyvyan D, Mowshowitz A, Mitsou V
(2008) A dynamic distributed federated database. In: Proceedings
of 2nd annual conference international technology alliance

	27.	 Vechtomova O (2009) Introduction to information Retrieval Chris-
topher D. Manning, Prabhakar Raghavan, and Hinrich Schütze
(Stanford University, Yahoo! Research, and University of Stutt-
gart) Cambridge: Cambridge University Press, 2008, xxi+ 482
pp; hardbound, ISBN 978-0-521-86571-5. MIT Press One Rogers
Street, Cambridge, MA 02142-1209, USA journals-info

	28.	 Mudgil P, Sharma AK, Gupta P (2013) An improved indexing
mechanism to index web documents. In: 2013 5th International
conference and computational intelligence and communication
networks

	29.	 Taelman R, Van Herwegen J, Vander Sande M, Verborgh R (2018)
Comunica: a modular SPARQL query engine for the web. In: The
semantic web–ISWC 2018: 17th international semantic web con-
ference, Monterey, CA, USA, October 8–12, 2018, Proceedings,
Part II 17, pp. 239–255. Springer

	30.	 Anderson A, Borfitz D, Getz K (2018) Global public attitudes
about clinical research and patient experiences with clinical trials.
JAMA Netw Open 1(6):182969

	31.	 Tai-Seale M, Olson CW, Li J, Chan AS, Morikawa C, Durbin M,
Wang W, Luft HS (2017) Electronic health record logs indicate
that physicians split time evenly between seeing patients and desk-
top medicine. Health Aff (Millwood) 36(4):655–662

	32.	 Vedsted P, Christensen MB (2005) Frequent attenders in general
practice care: a literature review with special reference to meth-
odological considerations. Public Health 119(2):118–137. https://​
doi.​org/​10.​1016/j.​puhe.​2004.​03.​007

	33.	 Ragab M, Savateev Y, Oliver H, Tiropanis T, Poulovassilis A,
Chapman A, Taelman R, Roussos G (2024) Decentralized search
over personal online datastores: architecture and performance
evaluation. In: International conference on web engineering, pp.
49–64. Springer

	34.	 Lindeborg A, Ödquist K (2024) Enhancing privacy in social
matching through mixnets and solid pods: a comparative study of
privacy enhancing technologies

	35.	 Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey
and comparison of peer-to-peer overlay network schemes. IEEE
Commun Surv Tutor 7(2):72–93. https://​doi.​org/​10.​1109/​COMST.​
2005.​16105​46

	36.	 Ragab M, Tommasini R, Eyvazov S, Sakr S (2020) Towards mak-
ing sense of spark-sql performance for processing vast distributed
rdf datasets. In: Proceedings of The international workshop on
semantic big data, pp. 1–6

	37.	 Hartig O (2013) An overview on execution strategies for linked
data queries. Datenbank-Spektrum 13:89–99

	38.	 Moaawad MR, O Mokhtar HM, Al Feel HT (2017) On-the-fly aca-
demic linked data integration. In: Proceedings of the international
conference on compute and data analysis, pp. 114–122

	39.	 Ge Y-F, Orlowska M, Cao J, Wang H, Zhang Y (2022) Mdde: mul-
titasking distributed differential evolution for privacy-preserving
database fragmentation. VLDB J 31(5):957–975

	40.	 Crestani F, Markov I (2013) Distributed information retrieval and
applications. In: Advances in information retrieval: 35th European
conference on IR research, ECIR 2013, Moscow, Russia, March
24-27, 2013. Proceedings 35, pp. 865–868. Springer

	41.	 Nordström E, Rohner C, Gunningberg P (2014) Haggle: oppor-
tunistic mobile content sharing using search. Comput Commun
48:121–132

	42.	 Balakrishnan H, Kaashoek MF, Karger D, Morris R, Sto-
ica I (2003) Looking up data in p2p systems. Commun ACM
46(2):43–48

	43.	 Sakr S, Bonifati A, Voigt H, Iosup A, Ammar K, Angles R, Aref
W, Arenas M, Besta M, Boncz PA et al (2021) The future is big
graphs: a community view on graph processing systems. Commun
ACM 64(9):62–71

	44.	 Ragab M, Tommasini R, Sakr S. Comparing schema advance-
ments for distributed rdf querying using sparksql

http://arxiv.org/abs/2309.16365
http://arxiv.org/abs/2005.12273
https://doi.org/10.2200/S00230ED1V01Y200912ICR014
https://doi.org/10.2200/S00230ED1V01Y200912ICR014
https://doi.org/10.1007/978-981-99-7254-8_28
https://doi.org/10.1007/978-981-99-7254-8_28
https://doi.org/10.1145/2470654.2481371
https://doi.org/10.1136/bmj.p157
https://doi.org/10.1016/j.puhe.2004.03.007
https://doi.org/10.1016/j.puhe.2004.03.007
https://doi.org/10.1109/COMST.2005.1610546
https://doi.org/10.1109/COMST.2005.1610546

448	 M. Ragab et al.

	45.	 Ragab M (2022) Towards prescriptive analyses of querying large
knowledge graphs. In: European conference on advances in data-
bases and information systems, 639–647. Springer

	46.	 Ragab M, Tommasini R, Awaysheh FM, Ramos JC (2021) An
in-depth investigation of large-scale rdf relational schema opti-
mizations using spark-sql

	47.	 Chen Y, Wang W, Liu Z, Lin X (2009) Keyword search on struc-
tured and semi-structured data. In: Proceedings of the 2009 ACM
SIGMOD international conference on management of data, pp.
1005–1010

	48.	 Ragab M, Savateev Y, Oliver H, Tiropanis T, Poulovassilis A,
Chapman A, Roussos G (2024) Unlocking the potential of health
data with decentralised search in personal health datastores. In:
Companion proceedings of the ACM on web conference 2024, pp.
1154–1157

	49.	 Ragab M, Awaysheh FM, Tommasini R (2021) Bench-ranking: a
first step towards prescriptive performance analyses for big data
frameworks. In: 2021 IEEE international conference on big data
(big data), pp. 241–251. IEEE

	50.	 Ragab M, Adidarma AS, Tommasini R. Papaya: A library for per-
formance analysis of sql-based rdf processing systems. Semantic
Web (Preprint), 1–19

	51.	 Ragab M, Tommasini R, Sakr S (2019) Benchmarking spark-sql
under alliterative rdf relational storage backends

	52.	 Arana N, Ragab M, Tiropanis T (2024) An investigation into the
feasibility of performing federated learning on social linked data
servers. In: Companion proceedings of the ACM on web confer-
ence 2024, 1712–1714

	53.	 Tommasini R, Ragab M, Falcetta A, Valle ED, Sakr S (2020)
A first step towards a streaming linked data life-cycle. In: The
Semantic Web–ISWC 2020: 19th International semantic web con-
ference, Athens, Greece, November 2–6, 2020, Proceedings, part
II 19, pp. 634–650. Springer

	54.	 Du J, Rong J, Wang H, Zhang Y (2021) Neighbor-aware review
helpfulness prediction. Decis Support Syst 148:113581

	55.	 Moawad MR, Maher MMMZA, Awad A, Sakr S (2019) Mina-
ret: a recommendation framework for scientific reviewers. In: the
22nd International conference on extending database technology
(EDBT)

	ESPRESSO: A Framework to Empower Search on the Decentralized Web
	Abstract
	1 Introduction
	2 Search Dynamics & Motivating Scenario
	2.1 Centralized Versus Decentralized Search
	2.2 Motivating Scenario

	3 ESPRESSO Framework
	3.1 ESPRESSO Architecture Overview
	3.2 Indexing & Search Over Pods

	4 Evaluation & Experimental Setup
	4.1 Experimental Environment & Setup

	5 Experimental Results and Discussion
	6 Limitations & Challenges Ahead
	7 Related Work
	8 Conclusion
	Acknowledgements
	References

