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Double Copy From Tensor Products of Metric BV■-Algebras

Leron Borsten, Branislav Jurčo, Hyungrok Kim, Tommaso Macrelli, Christian Saemann,
and Martin Wolf*

Field theories with kinematic Lie algebras, such as field theories featuring color–kinematics duality, possess an
underlying algebraic structure known as BV■-algebra. If, additionally, matter fields are present, this structure is
supplemented by a module for the BV■-algebra. The authors explain this perspective, expanding on our previous work
and providing many additional mathematical details. The authors also show how the tensor product of two metric
BV■-algebras yields the action of a new syngamy field theory, a construction which comprises the familiar double copy
construction. As examples, the authors discuss various scalar field theories, Chern–Simons theory, self-dual Yang–Mills
theory, and the pure spinor formulations of both M2-brane models and supersymmetric Yang–Mills theory. The latter
leads to a new cubic pure spinor action for 10-dimensional supergravity. A homotopy-algebraic perspective on
colour–flavour-stripping is also given, obtain a new restricted tensor product over a wide class of bialgebras, and it is
also show that any field theory (even one without colour–kinematics duality) comes with a kinematic L∞-algebra.

1. Introduction and Results

Background: The space of observables of a classical field theory is a rather complicated object. In order to obtain it, one needs
to quotient the classical field space by gauge transformations and then divide the ring of functions on this quotient space by the
ideal generated by the equations of motion. At the classical level, the Batalin–Vilkovisky (BV) formalism[1–6] turns this space into a
differential complex, called the BV complex, in which the observables are encoded in the cohomology of the classical BV differential.
We work at the purely classical level throughout.
The BV complex forms, in fact, a differential graded commutative algebra, which is the Chevalley–Eilenberg algebra, or the dual

description, of an L∞-algebra, see for example[7] for a detailed review as well as [8] for the discussion of equations of motion. Such an
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Table 1. Some entries in the dictionary describing the homotopy algebraic perspective on
perturbative quantum field theory.

Perturbative quantum field theory Homotopy algebraic perspective

Classical action S Metric L∞-algebra 𝔏S

Tree-level scattering amplitude for S Minimal model for 𝔏S

Choice of gauge fixing Embedding of the minimal model into 𝔏S

Integrating out fields Homotopy transfer from 𝔏S to smaller L∞-algebra

Semi-classical equivalence S ∼ S̃ Quasi-isomorphism 𝔏S ≅ 𝔏S̃

Feynman diagram expansion Homological perturbation lemma

Berends–Giele recursion relation Geometric series via homological perturbation lemma

Color-stripping of amplitudes Factorization 𝔏S ≅ 𝔤⊗ ℭ with ℭ a C∞-algebra

Special properties of amplitudes Homotopy algebraic refinement of L∞-algebra 𝔏S

Color–kinematics duality 𝔏S ≅ 𝔤⊗𝔅 with 𝔅 a homotopy BV■-algebra

Manifest color–kinematics duality 𝔏S ≅ 𝔤⊗𝔅 with 𝔅 a BV■-algebra

Loop level considerations Extend the above to loop homotopy algebras

L∞-algebra is a generalisation of a differential graded Lie algebra, in which the Jacobi identity holds only up to homotopy. Moreover,
the anti-bracket on the BV complex encodes a metric on the L∞-algebra. Altogether, this leads to the homotopy algebraic perspective on
perturbative quantum field theory, which implies a dictionary between physical concepts and algorithms and mathematical notions
and constructions; we list some elements of this dictionary in Table 1.
Particularly noteworthy is the fact that the homotopy algebraic perspective on quantum field theory puts action principles and

scattering amplitudes on equal footing: both are particular forms of L∞-algebras.
[7,9–13] Closely related to this perspective is also the

work by Costello[14] and Costello and Gwilliam.[15,16]

In this paper, our goal is to explain the connection between colour–kinematics duality in muchmore detail and to add the following
further line to Table 1:

Perturbative quantum field theory Homotopy algebraic perspective

Double copy Kinematic Lie algebra in tensor product of metric BV■-algebras

Recall that colour–kinematics (CK) duality[17–19] is a surprising and non-evident feature of perturbative quantum field theories, first
observed in tree-level scattering amplitudes of Yang–Mills theories. Concretely, the scattering amplitudes of a CK-dual field theory can
be decomposed into sums of cubic graphs with each diagram having a contribution 1

p2𝓁
from the propagator along each internal line 𝓁,

a color contribution, and a remaining kinematic contribution. CK duality is now the statement that the algebraic properties of the color
contributions induced by the anti-symmetry and Jacobi identity of the Lie bracket are preciselymirrored in the kinematic contributions.
It is natural to assume, and indeed is the case inmany examples, that the interaction vertices are cubic and decompose into products

of the structure constants of a colour Lie algebra and the structure constants of a second Lie algebra, usually called the kinematic Lie
algebra.[20–22] It is further natural to assume that the cubic graphs exhibiting CK duality are indeed the Feynman diagrams of the tree-
level perturbative expansion of a field theory given by an action principle. In this case, the kinematic Lie algebra is manifested in the
action itself, and a number of action-based approaches to CK duality and the double copy have been presented in the literature.[19,23–36]

Interestingly, the homotopy algebraic perspective has an elegant description of this situation. Since there are only cubic vertices, the
L∞-algebra 𝔏 encoding the action is simply a differential graded Lie algebra. The fact that we have a kinematic Lie algebra amounts to
a factorisation 𝔏 ≅ 𝔤⊗𝔅, where 𝔅 is a differential graded commutative algebra refined to a BV■-algebra.1 This fact was first noted
by Reiterer[37] in the context of Yang–Mills theory in a first-order formulation. In this picture, the kinematic Lie algebra appears in a
degree-shifted form as the Gerstenhaber bracket that each BV■-algebra naturally possesses. This homotopy algebraic perspective on
CK duality allowed us to produce a number of new and interesting results with comparatively little effort, cf. [34, 38].
CK duality has many implications and applications; see [39–43] for reviews. For this paper, it is important to recall that CK duality

is the key ingredient to the famous double copy prescription[17–19] summarised by the slogan that ‘gravity is the square of Yang–Mills
theory’.More precisely, the kinematic contribution to the CK-dual parametrisation of the Yang–Mills scattering amplitudes can be used
to replace the colour contribution, leading to the scattering amplitudes of = 0 supergravity. The latter theory is a string-theoretically
natural extension of Einstein–Hilbert gravity by a scalar dilaton field and a Kalb–Ramond 2-form field.
To arrive at a homotopy algebraic perspective on the double copy, it is natural to start from the BV■-algebras 𝔅 encoding the

kinematic Lie algebra of Yang–Mills theory and to consider the tensor product with itself, 𝔅̂ :=𝔅⊗𝔅. Recall that the tensor product

1 In most cases; in the body of the paper, we will explain that a kinematic Lie algebra merely implies a pseudo-BV■-algebra structure.

Fortschr. Phys. 2024, 2300270 2300270 (2 of 55) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

of differential graded commutative algebras is again a differential graded commutative algebra, and this tensor product extends to
BV■-algebras.
The field content of Yang–Mills theory is contained in 𝔅1, the linear subspace of 𝔅 containing the homogeneous elements of

degree 1. Correspondingly, the double-copied field content sits in 𝔅1 ⊗𝔅1 ⊆ 𝔅2. We expect the double copy to be described by a
differential graded Lie algebra with the double-copied fields in degree 1, so it is evident that we will have to degree-shift 𝔅. There is
now an evident candidate for this Lie algebra, namely the grade-shifted kinematic Lie algebra contained in the BV■-algebra 𝔅̂ in the
form of a Gerstenhaber bracket.
This suggestive answer has to be corrected in twoways. First of all, the domain of all fields in 𝔅̂ is formed by two copies of the original

space-time, somewhat akin to what happens in double field theory. This can be taken into account by introducing a cocommutative
Hopf algebraℌ whose elements correspond to the momenta labels of the field theory and act on𝔅 and, thus, naturally on 𝔅̂. We can
then restrict to the invariants under this action, leading to fields taking values on the original space-time.2

Secondly, the BV field space turns out to be twice the expected size of the usual BV field space for the double-copied field content.
This can be corrected by restricting to the kernel of a naturally defined operator on 𝔅̂. This kernel is closely related to level-matching
in string theory and was also used for the double copy in refs. [44, 49, 50]. The result is indeed the differential graded Lie algebra of
the double-copied field theory.
To demonstrate our mathematical constructions in detail, we consider a number of explicit examples in Section 5. In particular, we

discuss our formalism for both CK duality and the double copy for the biadjoint scalar field theory (as well as the instructive extension
to a biadjoint-bifundamental scalar field theory) and pure Chern–Simons theory. In the latter case, the double copy produces the
complete BV triangle for an interesting biform field theory, whose physical part was previously derived in ref. [32]. We also sketch our
description of CK duality of[34] and explain the relation to the recent work of ref. [49]. Ourmost important examples are the pure spinor
descriptions of Yang–Mills theory and M2-brane models. We review our description of full tree-level CK duality from,[38] but then also
develop the corresponding picture for the double copy. In the case of Yang–Mills theory, we obtain the first cubic pure spinor action
for ten-dimensional supergravity, which may also shed some light on questions in previous pure spinor actions for supergravity. In
the case of M2-brane models, we obtain the again a cubic biform action which is an extension of the one obtained for Chern–Simons
theory. This action is a candidate for either a supergravity or a Born–Infeld like action. We also consider the interesting example of a
sesquiadjoint scalar field theory, a deformation of a biadjoint scalar field theory in which one of the two Lie algebras is replaced by a
more general algebraic structure. In this case, the kinematic Lie algebra is lifted to a kinematic L∞-algebra, an object that any classical
field theory possesses.
Results: Altogether, our results can be summarised as follows. We show that any field theory that exhibits a kinematic Lie algebra

has an underlying pseudo-BV■-algebra, a mild generalisation of a BV■-algebra. In these pseudo-BV■-algebras, the kinematic Lie
algebra appears in a grade-shifted form, and the Lie bracket is given by a derived bracket.3 If ■ = □, the Minkowski d’Alembertian,
we have the usual form of CK duality. We also show that this kinematic Lie algebra is a special case of a more general kinematic L∞-
algebra that any classical field theory possesses, but does not, however, imply CK duality (see Section 3.6). We then give a construction
of the action of a syngamy field theory of two field theories with metric BV■-algebras. The familiar double copy is a special case of this
construction, and using pure spinors, we find a new cubic action for ten-dimensional supergravity. Finally, this contribution provides
a mathematically complete foundation for elements of our previous work, where the detailed mathematical tools were only sketched
and developed as far as absolutely required.
Byproducts of our constructions include the homotopy algebraic perspective on colour–flavour-stripping, see Section 2.3, as well as

a restricted tensor product of modules over a wide class of bialgebras, see Appendix A, which appears to be a new mathematical con-
struction.
Literature overview: There have been a number of important developments in recent years closely related to this work, some in

quick succession and happening in parallel, so it may be useful to give a brief contextual overview of the literature that uses an
action-based approach to CK duality and the double copy, particularly from the homotopy algebraic perspective.
The idea that CK duality and the double copy can be approached from the perspective of the action is rather old and dates back to;[19]

see[24–36] for work along the same lines. In the context of the double copy, homotopy algebras were first used4 in [28, 29], where the
double copy construction was given by a twisted tensor product; recent applications of this technology include homotopy double copies
for Navier–Stokes equations[33] and non-commutative gauge theories.[52] In this work, and in particular in [30], we demonstrated that
CK duality could be realised at the level of the complete off-shell BV action up to counterterms that may be required to ensuremanifest
unitarity. In particular, we provided an algorithm to construct the CK dualitymanifesting BV action to any order in perturbation theory.
This picture involved adding a tower of higher-order interaction terms to the BV action while preserving the S-matrix, building on the
results of [19, 24] by including ghost, longitudinal and off-shell states. The latter may induce counterterms required for unitarity that

2 Another possibility is to take a double field theory-like approach and to impose a section condition, as done in ref. [44]. A third possibility, suggested
by [45–48], is to replace the pointwise product with a convolution, as described in B.

3 Such constructions are common in homotopical algebra.
4 There is earlier work by Zeitlin,[51] in which a particular set of = 0 supergravity equations are reproduced within a tensor product of the homotopy
commutative algebras underlying Yang–Mills theories, at least for Hermitian manifolds and at least to first order in homotopification. This paper
does not link this observation to the double copy or the KLT relations.
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could break CK duality at the loop-level post-regularisation and prior to renormalisation unitarity may not be manifest, as explained
in [30].
In [37], Reiterermade a seminal contribution to our understanding of CKduality. In particular, it was shown that Zeitlin’s differential

graded commutative algebra of the (colour-stripped) first-order formulation of pure four-dimensional Yang–Mills theory[53] carries a
homotopy BV■

∞-algebra structure (also defined in ref. [37]). The central and immediate corollary is that the corresponding Feynman
diagram expansion of the S-matrix satisfies CK duality up to homotopies given by the BV■

∞-algebra. As for all homotopy algebras,
there is a corresponding strict form of the BV■

∞-algebra. Indeed, Reiterer provided a strictification (or rectification) relating the
BV■

∞-algebra to a BV
■-algebra, making CK duality of the tree-level S-matrix exact and manifest. An interesting precursor to[37] is

found in the work of Zeitlin. In [53], he speculates that there is a homotopy Gerstenhaber algebra in Yang–Mills theory, anticipating
parts of a BV■

∞-algebra structure. He also linked the homotopy commutative algebra arising in Yang–Mills theory in a particular
limit to a homotopy commutative algebra arising for the Courant algebroid,[54,55] for which there exists a sketch of an argument that
this algebra extends to a BV∞-algebra.

5

In [30, 56–61] it was explained that the higher-order interaction terms, introduced in [28–30] to render the BV action CK-dual,
correspond (after colour-stripping) precisely to the higher products of a BV■

∞-algebra.
6 By introducing auxiliary fields, the tower

of higher-order interactions can be made cubic and we arrive at a strict BV■-algebra with manifest CK duality.[30] The conclusion
(roughly) is that any theory with a CK duality manifesting BV action has an L∞-algebra carrying a BV

■-algebra structure.[30,34] This
gives rise to the penultimate entry in Table 1. Implicit in this statement, is a cyclic structure for the BV■

∞-algebra, inherited from the
anti-bracket, answering one of the open problems identified in [37]. We make this precise in the present contribution.
In light of these developments, CK duality is a (possibly anomalous7) symmetry of the action itself; as such, it is natural to expect

that there is an underlying organising principle manifesting this symmetry. In [31], the authors realised that pure spinor space can
provide such a principle, and using it, they could establish CK duality for the tree-level currents of ten dimensional supersymmetric
Yang–Mills theory. In [34], we then identified twistor spaces as a second, and closely related, organising principle. This should come
as no surprise; besides the even simpler biadjoint scalar field theory,[22,62–76] Chern–Simons theory is a prime example of a CK-dual
field theory, cf., [32] and both pure spinors and twistor space allow for a reformulation of Yang–Mills theories as Chern–Simons-
type theories.
Using twistor space, it is possible to concretely identify the kinematic Lie algebras of self-dual and full supersymmetric Yang–Mills

theories. In the case of self-dual Yang–Mills theory, the resulting kinematic Lie algebra comes in a form that implies conventional
CK duality even at the loop level. Having become aware of the work,[31] we also studied pure spinor space actions of ten dimensional
supersymmetric Yang–Mills theory in [38], where by using a different choice of gauge, we could lift the result of [31] to the tree-level
amplitudes. This implied a new proof of tree-level CK duality for Yang–Mills theories in arbitrary dimensions d ≤ 10 with an arbitrary
amount of supersymmetry, which is simpler than existing ones in that it uses directly the action and does not rely on any concrete
computations. In the same paper, we also extended Reiterer’s perspective on CK duality to gauge–matter theories, which come with
additional BV■-modules from the homotopy algebraic perspective. This, together with the pure spinor actions for M2-brane models
of [77, 78], allowed us to give the first proof of full, tree-level CK duality for M2-brane models.
Given Reiterer’s interpretation of CK duality as a BV■-algebra, it is natural to look for an interpretation of the double copy in the

tensor product of two BV■-algebras, as originally suggested in [37]. We presented initial ideas for such a construction in [30, 59,
61]. Independently, a double-field-theory-inspired version of this interpretation was then given in [44], drawing on ideas in earlier
work[23,79,80] relating the double copy to double field theory; see also[49,50,81] for recent work building on this, for example constructing
weakly constrained double field theory to quartic order and elucidating the case of self-dual gravity, as well as [82–86] for further double-
field-theory-inspired work on the double copy. Our present contribution mostly agrees with the constructions of [44],8 except that we
use a Hopf algebra9 to control momentum dependence, while[44] employs a double-field-theory-like section condition. However, we
would like to stress that our constructions go beyond those of[44] in a number of ways. First of all, all our construction applies to
metric10 BV■-algebras, and we give an explicit prescription for double copying the field-spacemetric. This is important for considering
amplitudes and action principles; in particular, a BV■-algebra implies CK-duality on currents, but not on amplitudes, as explained
in 2.4. Secondly, we discuss gauge–matter theories by allowing for modules over BV■-algebras. Thirdly, since we focus on BV■-
algebras, and all our constructions are exact; in [44], the authors use BV■

∞-algebras, for which the precise definition of tensor product
is unclear, forcing one to work order by order in the double copy.11

5 We thank Anton Zeitlin for pointing this out.
6 The non-trivial higher-products of the BV■

∞-algebra roughly split into three classes corresponding to interactions generated by Tolotti–Weinzierl-
type terms, gauge-fixing and field redefinitions. With hind-sight, the algorithms of [24, 28–30] can be understood as uncovering fragments of a
BV■

∞-algebra.
7 In the sense described above; CK duality violating counter-terms may be required to ensure manifest unitarity.[30]
8 which, in turn, have some similarity to those of [51]
9 This is in line with Reiterer’s original construction, and very helpful for the homotopification of this picture to be presented in [87].
10 Homotopy algebraists may prefer the term ‘cyclic’.
11 We note that in the conclusions of [44], the authors identify a complete form of the BV■

∞-algebra of Yang–Mills theory as the most important
outstanding problem. Our twistor space descriptions of self-dual and full Yang–Mills theories[34] provide such a complete form. To turn it into a
plain space-time expression, all one has to do is perform a mode expansion and integrate over the auxiliary spectral parameters in twistor space.
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Most recently, BV■-algebras were also used in [49] to study self-dual Yang–Mills theory, but contrary to [34], where the exact BV■-
algebra was given using an auxiliary space, a gauge-invariant formulation of self-dual Yang–Mills theory on space-time was studied
directly, leading to a BV■

∞-algebra deduced up to cubic order; we comment in detail on the relation between this work and our
perspective in Section 5.5.

2. Basics of Colour–Kinematics Duality

2.1. Colour–Kinematics Duality and the Double Copy

We begin with a concise review of colour–kinematics (CK) duality. For general reviews on CK duality and the double copy, see [39–43].
Colour–Kinematics Duality: A gauge field theory is said to possess colour–kinematics duality if its scattering amplitude integrands

can be parametrised in terms of cubic graphs (i.e. diagrams with vertices that all have degree 3) such that at vertices and connected
pairs of vertices, the gauge Lie algebra contribution to these diagrams has the same algebraic properties as the kinematic contribution.
More specifically, the n-point, L-loop scattering amplitude integrands𝒜n,L can be parametrised as

𝒜n,L ∼
∑
𝛾∈Γn,L

𝖼𝛾𝗇𝛾|𝖠𝗎𝗍(𝛾)|d𝛾 , (2.1)

where Γn,L is the set of n-point, L-loop cubic diagrams; 𝖼𝛾 is the colour numerator, that is, the contribution to the diagram 𝛾 due to
the metric and the structure constants of the gauge Lie algebra; d𝛾 is the product of the denominators of the propagators (without
colour component) for 𝛾 , usually 1

p2𝓁
for each propagator line 𝓁 ∈ 𝛾 ; |𝖠𝗎𝗍(𝛾)| is the symmetry factor of the diagram 𝛾 , i.e. the order of

its automorphism group; and 𝗇𝛾 is the kinematic numerator containing the remaining contributions of 𝛾 to 𝒜n,L. The anti-symmetry
of the Lie algebra structure constants and the Jacobi identity induce certain sums of colour numerators to vanish, i.e.

𝖼𝛾a1 + 𝖼𝛾a2 = 0 and 𝖼𝛾J1 + 𝖼𝛾J2 + 𝖼𝛾J3 = 0 (2.2)

for certain pairs (𝛾a1, 𝛾a2) and triples (𝛾J1, 𝛾J2, 𝛾J3). A theory is said to be colour–kinematics (CK) dual if the same relations hold for the
corresponding kinematic numerators:

𝗇𝛾a1 + 𝗇𝛾a2 = 0 and 𝗇𝛾J1 + 𝗇𝛾J2 + 𝗇𝛾J3 = 0. (2.3)

Full CK duality has been established for very few field theories; in particular, it is found for the archetypal cases of biadjoint scalar
field theory and Chern–Simons theory.12[32] For Yang–Mills theory and supersymmetric generalisations, CK duality has been estab-
lished at the tree level using a variety of approaches.[37,38,88–94] It is known, however, that loop–level CK duality for pure Yang–Mills
theory is not possible if one assumes that the kinematic numerators could have been derived from the Feynman diagrams of a local
action with manifest unitarity.[95] This conclusion is also confirmed by observations regarding possible CK-dual action principles in
[30, 34]. A lift up to anomalies, however, does exist [30].
Colour–Kinematics Duality for Currents: Note that we can also study CK duality for currents as, for example, the famous Berends–

Giele gluon currents.[96] These are essentially amplitudes, but with one external leg kept off-shell and a propagator attached to this
leg. They can be computed recursively, and sometimes possess a more evident form of CK duality, cf. for example.[20,31] Explicitly, we
have a similar parametrisation to (2.1), namely

𝒞n,L ∼
∑
𝛾∈Γn,L

𝖼𝛾𝗇𝛾|𝖠𝗎𝗍(𝛾)|d𝛾 (2.4)

such that (2.2) implies (2.3) in the evident fashion, but d𝛾 here contains an additional factor arising from the propagator on the single
external leg with propagator, and the 𝗇𝛾 now also may involve off-shell polarisations.
Double Copy: CK duality is the crucial ingredient in the double copy construction: the kinematic numerators 𝗇𝛾 of a CK-dual field

theory can be doubled to construct consistent scattering amplitude integrands of a new field theory,

𝒜n,L ∼
∑
𝛾∈Γn,L

𝗇𝛾𝗇𝛾|𝖠𝗎𝗍(𝛾)|d𝛾 . (2.5)

A similar construction exists for the pure spinor actions. From our perspective, an order-by-order computation is possible (as explained already in
[28, 29]), but we believe that just as for supersymmetry, using an auxiliary space providing an organising principle is much more useful.

12 As Chern–Simons theory is trivial on Minkowski space, one considers ‘scattering amplitudes’ of harmonic differential forms.
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It has been shown that starting from tree-level pure Yang–Mills scattering amplitudes, the double copy construction yields the tree-
level scattering amplitudes of = 0 supergravity,[17–19] and this generalises to supersymmetric gauge and gravity theories, see again
[17–19].
More generally, one can take the kinematic numerators 𝗇(1)𝛾 and 𝗇

(2)
𝛾 of two CK-dual field theories and form their syngamy13 theory,

that is,

𝒜n,L ∼
∑
𝛾∈Γn,L

𝗇
(1)
𝛾 𝗇

(2)
𝛾|𝖠𝗎𝗍(𝛾)|d𝛾 . (2.6)

In this paper, we shall focus on the Lagrangian perspective on CK duality and the double copy.[19,24,28–30,34] Our aim is then to explain
the relevant mathematical structures underlying the double copy prescription from this perspective.
Gauge–Matter Colour–Kinematics Duality: The above form of colour–kinematics duality can be extended from gauge theories to

gauge–matter theories.[97,98] See [99–105] for a variety of gauge–matter colour–kinematics duality and double copy examples. By gauge
theory, we mean any theory where all the fields are valued in the adjoint representation of the gauge Lie algebra 𝔤, such as Yang–
Mills and maximally supersymmetric Yang–Mills theories.14 Gauge–matter theories, on the other hand, include (possibly integer
spin) ‘matter’ fields carrying some other representation R of 𝔤. The colour–stripped amplitudes are constructed in the same manner
as the case of purely adjoint fields, although the colour decomposition may be more involved,[98] essentially due to the particular
representation theoretic properties of the matter. See Section 2.3 for the details relevant to our discussion.
CK duality proceeds much as before. The only structural difference from the case of gauge theories is that now (2.2) can hold either

due to the Jacobi identity of the gauge Lie algebra, as before, due to the commutation relations in the (not necessarily irreducible)
representation R,[97,98] or due to some combination of the two. Correspondingly, the sum over cubic Feynman diagrams (2.1) is
enlarged to include all possible decorations of the edges by matter field representations R:

𝒜n,L ∼
∑
𝛾∈ΓRn,L

𝖼𝛾𝗇𝛾|𝖠𝗎𝗍(𝛾)|d𝛾 . (2.7)

Here, ΓR
n,L denotes the set of n-point, L-loop cubic graphs with all consistent decorations of the edges by R, including the subset

Γn,L ⊆ ΓR
n,L without decorations (the pure adjoint graphs). Note thatRmay include several copies of the same irreducible representation

of the gauge Lie algebra to incorporate flavours.
Double Copy with Gauge–Matter Theories: The double copy is usually generalised to 𝖼

(1)
𝛾 (1)

𝗇
(1)
𝛾 (1)

→ 𝗇
(2)
𝛾 (2)

𝗇
(1)
𝛾 (1)
, where 𝛾 (1) and 𝛾 (2) either

both belong to Γn,L or belong to ΓR(1)
n,L ⧵ Γn,L and ΓR(2)

n,L ⧵ Γn,L, respectively.
15 This restriction reflects the fact that only field couplings

corresponding to R × R → 𝔤 and, dually, 𝔤 × R → R do not require any properties of the representations beyond the universal Jacobi
identities, commutation relations, and existence of conjugates.16 While more elaborate coupling are in principle possible, we explicitly
restrict to these cases, as described in Section 2.3. This is mathematically natural, see Section 4.3, and appears to be physically neces-
sary. Allowing, say, 𝛾 ∈ Γn,L and 𝛾

′ ∈ ΓR(2)
n,L ⧵ Γn,L could be used to produce arbitrary numbers of gravitini, which would be inconsistent

with the accompanying local supersymmetry.[100]

2.2. Field Theories and Homotopy Algebras

Our discussion will be based on the homotopy algebraic perspective on classical field theories, cf. e.g. [7, 29] or [8].

Metric Differential Graded Lie Algebras: The classical Batalin–Vilkovisky (BV) action17 of a field theory with cubic vertices is dual to
a metric differential graded (dg) Lie algebra (𝔏,𝜇1,𝜇2) with the underlying graded vector space 𝔏 ≅

⨁
i∈ℤ 𝔏i and cochain complex

(2.8)

13 We follow again our nomenclature of [30].
14 Thus, theories without gauge symmetry such as the biadjoint scalar or the non-linear sigma model on a principal homogeneous space are never-

theless ‘gauge theories’ in our sense.
15 Note, this is in the spirit of [41] and more general than the working rule 4 adopted in [100]. It is consistent nonetheless, at least when there is an

underlying action.
16 We are implicitly assuming here that R contains all required conjugate representations.
17 Note that the BV algebras and BV■-algebras that form an essential ingredient in our picture are not obtained from a BV formulation of the theories

we consider.
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Here, 𝔏0 contains the ghosts, 𝔏1 the fields, 𝔏2 the anti-fields, and 𝔏3 the anti-fields of the ghosts,
18 respectively. Hence, the degree |𝜙|

of a field 𝜙 ∈ 𝔏 is given by

|𝜙| := 1 − |𝜙|gh, (2.9)

where |𝜙|gh is the ghost degree of𝜙. Correspondingly, in a gauge-fixed BV formulation of an ordinary gauge theory,𝔏1 will also contain
theNakanishi–Lautrup field and the anti-field of the anti-ghost and𝔏2 will also contain the anti-field of theNakanishi–Lautrup field and
the anti-ghost. The differential 𝜇1 encodes all linear features of the theory, such as kinematic terms, linearised gauge transformations,
and their duals. Interactions, non-linear parts of gauge transformations, and their duals are encoded in a graded Lie bracket

𝜇2 : 𝔏 × 𝔏 → 𝔏, (2.10)

which is of degree 0, bilinear, graded anti-symmetric, compatible with the differential, and satisfies the graded Jacobi identity. The
metric (or cyclic structure)

⟨−,−⟩ : 𝔏 × 𝔏 → ℝ (2.11)

is a non-degenerate, bilinear, and graded symmetric map of a fixed degree, which is compatible with the differential 𝜇1 and the Lie
bracket 𝜇2 in the sense that

⟨𝜇1(𝜙1),𝜙2⟩ + (−1)|𝜙1|⟨𝜙1,𝜇1(𝜙2)⟩ = 0,

⟨𝜇2(𝜙1,𝜙2),𝜙3⟩ + (−1)|𝜙1| |𝜙2|⟨𝜙2,𝜇2(𝜙1,𝜙3)⟩ = 0
(2.12)

for all 𝜙1,2,3 ∈ 𝔏. If the metric is of degree −3, we can use it to write down an action principle

S := 1
2
⟨𝜙,𝜇1(𝜙)⟩ + 1

3!
⟨𝜙,𝜇2(𝜙,𝜙)⟩ (2.13)

for the fields 𝜙 ∈ 𝔏1. In this way, any action with exclusively cubic interaction vertices can be encoded in a metric dg Lie algebra.
Homotopy Transfer: We can obtain an equivalent field theory by ‘integrating out’ parts of the field content. This is done by an

appropriate tree-level Feynman diagram expansion, and mathematically, this corresponds to a homotopy transfer from the cochain

complex (𝔏,𝜇1) to a quasi-isomorphic cochain complex (𝔏̃, 𝜇̃1) consisting of the modes that have not been integrated out, cf. [106].19

In particular, we have the diagram

(2.14a)

where 𝗉 and 𝖾 are cochain maps, denoting a projection and an embedding, such that

𝗉 ◦ 𝖾 = 𝗂𝖽𝔏̃, (2.14b)

which implies that

Π := 𝖾 ◦ 𝗉 (2.14c)

is a projector. There is usually some ambiguity in choosing 𝖾, which involves a choice of gauge. The contracting homotopy 𝗁 : 𝔏 → 𝔏
is a map of degree −1 satisfying

id𝔏 − Π = 𝜇1 ◦ 𝗁 + 𝗁 ◦𝜇1 (2.14d)

as well as the annihilation or side conditions

𝗉 ◦ 𝗁 = 0, 𝗁 ◦ 𝖾 = 0, 𝗁 ◦ 𝗁 = 0. (2.14e)

Even if the side conditions do not hold, one can redefine 𝗁 such that they do, cf. [109]. Note that Equation (2.14d) implies that 𝗁 is the
inverse of 𝜇1 on the modes that are being integrated out.

18 Not to be confused with the anti-ghost fields
19 The fact that homotopy transfer amounts to integrating out fields is a general folklore in BV quantisation; see also [107] and [108] for recent appli-

cations.
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In other words, 𝗁 can be regarded as a propagator, and the homotopy transfer indeed reproduces the usual tree-level Feynman
diagram expansion with propagator 𝗁. The result of this homotopy transfer generically contains n-point vertices, which are encoded
in algebraic operations with n − 1 inputs and one output. Therefore, the result of the homotopy transfer is no longer a dg Lie algebra
but a generalisation known as an L∞-algebra. The notion of a dg Lie algebra is equivalent to that of a strict L∞-algebra. Further details
are again found, for example, in [7, 29], but they will be irrelevant to our discussion.
The smallest permissible cochain complex (𝔏̃, 𝜇̃1) yields the minimal model (𝔏◦, 0), and it is given by the cohomology 𝔏◦ :=H∙

𝜇1
(𝔏)

of (𝔏,𝜇1). The minimal model is unique up to (strict) isomorphisms, and its L∞-algebra structure encodes the tree-level scattering
amplitudes of the theory.[10–12,110–112] Indeed, physical fields in the cohomology satisfy the free or linearised equations of motion,
and linear gauge transformations have been quotiented out. We thus see that the physical fields in the cohomology correspond to
the asymptotically free fields, labelling the open legs of scattering amplitudes. Altogether, there is now a dictionary between physical
features and operations with scattering amplitudes and amputated correlators as well as (homotopy) algebraic operations, as indicated
in Table 1.
Factorisation: For example, we can factor out the colour or gauge Lie algebra (𝔤, [−,−]𝔤) by writing

𝔏 ≅ 𝔤⊗𝔅, (2.15)

where (𝔅, 𝖽,𝗆2) is the differential graded (dg) commutative algebra with

𝜇1(𝜏1 ⊗𝜙1) = 𝜏1 ⊗ 𝖽𝜙1,

𝜇2(𝜏1 ⊗𝜙1, 𝜏2 ⊗𝜙2) = [𝜏1, 𝜏2]𝔤 ⊗𝗆2(𝜙1,𝜙2)
(2.16)

for all 𝜏1,2 ∈ 𝔤 and 𝜙1,2 ∈ 𝔅. This is the mathematical formulation of what physicists would call colour-stripping, cf. [29, 53].
In this paper, we will always regard a field theory as a metric dg Lie algebra, and we collect many examples in Section 5.

2.3. Colour–Flavour-Stripping

We saw above that, mathematically, colour-stripping a cubic field theory amounts to a factorisation of the theory’s dg Lie algebra into a
colour Lie algebra and a dg commutative algebra. We are not aware of a discussion of the extension to colour–flavour-stripping in the
literature, so we give a more detailed account here. This will become important when discussing CK duality of gauge–matter theories.
Factorisation and Lie Algebra Representations: Consider a gauge field theory with only cubic interaction vertices and gauge Lie

algebra 𝔤. Then, the space of fields 𝔉 decomposes into irreducible representations of 𝔤 as

𝔉 ≅ (𝔤⊗ ℭ)⊕ (R(1) ⊗ V (1))⊕ (R(2) ⊗ V (2))⊕⋯ , (2.17)

in which ℭ is the graded vector space of fields transforming in the adjoint representation (such as the gauge potential or other
components of the gauge supermultiplet in supersymmetric gauge theories), and V (i) for i = 1, 2,… is the graded vector space of
fields transforming in the representation R(i). Since there are no invariant pairings between distinct irreducible representations, there
are no kinetic terms that mix fields of different representations. Thus, ℭ and V (i) are dg vector spaces (i.e., cochain complexes), each
endowed with invariant metrics.
To simplify the discussion, we combine R :=

⨁
i∈ℕ R

(i) and V :=
⨁

i∈ℕ V
(i), such that we can write

𝔉 ⊆ 𝔏 := (𝔤⊗ ℭ)⊕ (R⊗ V) (2.18)

for some cochain complexes ℭ and V endowed with invariant metrics. The right-hand side is generically larger than (2.17) since we
also get summands R(i) ⊗ V (j) for i ≠ j. We can, however, restrict to the subspace (2.17) if necessary or desired.20 The potential cubic
interaction vertices encoded in the product 𝜇2 can then be of a number of types,

𝜇2 : (𝔤⊗ ℭ) × (𝔤⊗ ℭ) → (𝔤⊗ ℭ), (2.19a)

𝜇2 : (𝔤⊗ ℭ) × (R⊗ V) → (R⊗ V), (2.19b)

𝜇2 : (R⊗ V) × (R⊗ V) → (𝔤⊗ ℭ), (2.19c)

20 This is a technical simplification. One can either regard the extra fields in 𝔏 ⧵ 𝔉 as free fields that decouple from the rest of the theory, or one
can choose to keep track of different kinds of matter, which would technically amount to working with operads (i.e., convenient tools for encoding
algebras, cf. [113, 114]) with more than two sorts.
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𝜇2 : (R⊗ V) × (R⊗ V) → (R⊗ V), (2.19d)

𝜇2 : (𝔤⊗ ℭ) × (R⊗ V) → (𝔤⊗ ℭ), (2.19e)

𝜇2 : (𝔤⊗ ℭ) × (𝔤⊗ ℭ) → (R⊗ V). (2.19f )

Whilst the last three types of products (2.19d)–(2.19f) are possible, they require additional algebraic structures on 𝔤 and R that go
beyond an ordinary Lie algebra representation. The products (2.19d) still appear in familiar field theories, but (2.19e) and (2.19f) are
very uncommon. We therefore restrict ourselves to the case in which only the first three types (2.19a)–(2.19c) of maps are non-trivial;
this certainly covers all field theories in which we are interested.21 We note that cyclicity of the metric on 𝔏 implies in particular

⟨𝜒1,𝜇2(𝜙,𝜒2)⟩ = (−1)|𝜙| |𝜒1|+1⟨𝜙,𝜇2(𝜒1,𝜒2)⟩ (2.20)

for all 𝜒1,2 ∈ R⊗ V and 𝜙 ∈ 𝔤⊗ ℭ, so that the product (2.19c) is fixed by the product (2.19b).
The first two types of product are captured by the Lie bracket on 𝔤, the action of 𝔤 on R, a structure of a dg commutative algebra on

ℭ, and an action of ℭ on the dg vector space V .
Putting all relevant structures together, we have the following mathematical description of colour–flavour-stripping.

Definition 2.1. Given a metric22 Lie algebra (𝔤, [−,−]𝔤, ⟨−,−⟩𝔤) with a metric representation (R,▻R, ⟨−,−⟩R) together with a metric dg
commutative algebra (ℭ, 𝖽ℭ,𝗆2, ⟨−,−⟩ℭ) and a metric ℭ-module (V, 𝖽V ,▻V , ⟨−,−⟩V ), we define the tensor product
𝔏 := (𝔤⊗ ℭ)⊕ (R⊗ V) (2.21a)

endowed with maps

𝜇1(𝜏1 ⊗𝜙1 + r1 ⊗ v1) := 𝜏1 ⊗ 𝖽ℭ𝜙1 + r1 ⊗ 𝖽Vv1,

𝜇2(𝜏1 ⊗𝜙1 + r1 ⊗ v1, 𝜏2 ⊗𝜙2 + r2 ⊗ v2) := [𝜏1, 𝜏2]𝔤 ⊗𝗆2(𝜙1,𝜙2) + 𝜇2(r1 ⊗ v1, r2 ⊗ v2)

+ (𝜏1▻Rr2)⊗ (𝜙1▻Vv2) − (−1)|v1| |𝜙2|(𝜏2▻Rr1)⊗ (𝜙2▻Vv1)

(2.21b)

with 𝜇2(r1 ⊗ v1, r2 ⊗ v2) defined by (2.20) as well as

⟨𝜏1 ⊗𝜙1 + r1 ⊗ v1, 𝜏2 ⊗𝜙2 + r2 ⊗ v2⟩𝔏 := ⟨𝜏1, 𝜏2⟩𝔤 ⟨𝜙1,𝜙2⟩ℭ + ⟨r1, r2⟩R ⟨v1, v2⟩V (2.21c)

for all 𝜏1,2 ∈ 𝔤, r1,2 ∈ R, 𝜙1,2 ∈ ℭ, and v1,2 ∈ V.

Proposition 2.2. The tuple (𝔏,𝜇1,𝜇2, ⟨−,−⟩) defined in (2.21) forms a metric dg Lie algebra.
Proof. By direct computation, cf. Appendix C. □

Clearly, the tensor product (2.21) can possess metric dg Lie subalgebras of the form (2.17). Contrary to the colour-stripping, colour–
flavour-stripping hence requires additional information about the desired branching of R⊗ V into the summands R(i) ⊗ V (i).
Altogether, colour–flavour-stripping is a decomposition of the form (2.21) such that the original metric dg Lie algebra 𝔉 is a subal-

gebra of the full tensor product 𝔏.
We specialise this factorisation further to CK-dual ones in Section 3.2, and physical examples are found in Sections 5.2

and 5.7.

2.4. Kinematic Lie Algebras from Actions

Motivation: For the action perspective on CK duality and the double copy, we will always assume that the diagrams 𝛾 ∈ Γn,L in the
expansions (2.1) and (2.4) are indeed the Feynman diagrams of scattering amplitudes, as obtained from the rules derived from an
action principle in the usual way. In this case, CK duality implies the existence of a kinematic Lie algebra, from which the kinematic
numerators 𝗇𝛾 are constructed in full analogy with the construction of the colour numerators 𝖼𝛾 from the gauge or colour Lie algebra.
Put differently, each cubic vertex of the Feynman diagram 𝛾 ∈ Γn,L contributes a structure constant to both 𝖼𝛾 and 𝗇𝛾 , and propagators
joining vertices amount to index contractions. The kinematic Lie algebra is the vital ingredient in the action perspective on CK duality,
and we are not aware of an example of a CK-dual field theory without a kinematic Lie algebra. Moreover, the concept of a kinematic

21 It is also mathematically natural. For example, it is reminiscent of the Lie algebra decomposition for symmetric spaces.
22 sometimes called quadratic or cyclic instead
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Lie algebra generalises far beyond theories with conventional CK duality, as we shall see. We will therefore always consider CK-dual
field theories as a subset of theories with kinematic Lie algebras.
As a fairly general and simple example of such a situation, consider the action

S := 1
2
𝗀𝗂𝗃𝗀̄𝖺̄𝖻̄Φ𝗂𝖺̄□Φ𝗃𝖻̄ + 1

3!
𝗀𝗂𝗃𝗀̄𝖺̄𝖻̄𝖿

𝗃
𝗄𝗅
𝖿 𝖻̄
𝖼̄𝖽̄
Φ𝗂𝖺̄Φ𝗄𝖼̄Φ𝗅𝖽̄, (2.22)

cf. [28–30]. Here, □ is the d’Alembertian, the 𝖿 𝗃
𝗄𝗅
and 𝖿 𝖻̄

𝖼̄𝖽̄
are structure constants of the gauge and kinematic Lie algebras, and the 𝗀𝗂𝗃

and 𝗀𝖺̄𝖻̄ are invariant metrics on each of the two Lie algebras, which are required for writing down an action principle. Note that 𝗂, 𝗃,…
are DeWitt indices combining momentum, species, polarisation, and spinor labels. Among the field theories featuring tree-level CK
duality that can be brought into this form are the biadjoint scalar field theory, the non-linear sigma-model, Chern–Simons theory, and
Yang–Mills theory.
Feynman Diagram Expansion: We will always be concerned with kinematic Lie algebras relative to a Feynman diagram expansion,

or, equivalently, relative to a propagator 𝗁, that is, a contracting homotopy in a deformation retract (2.14a). The kinematic Lie algebras
usually discussed in the literature are obtained when 𝗁 is the ordinary Feynman propagator, giving a contracting homotopy to the
minimal model of the underlying L∞-algebra, because this Feynman diagram expansion yields the scattering amplitudes. In the
case of Chern–Simons theory, the tree-level scattering amplitudes are trivial, and we consider generalised amplitudes of harmonic
differential forms.
In particular, we shall follow an idea of Reiterer[37] which assumes that the contracting homotopy or propagator 𝗁 can be written as

(2.23)

under the factorisation (2.15) such that 𝖻 is a differential of degree −1, which maps e.g. physical anti-fields to physical fields, ■

is a second-order differential operator of degree 0 (e.g. the d’Alembertian) with ■−1 its inverse defined to vanish on ker(■), and
for the projector (2.14c). Then, (2.14d) can be rewritten as

(2.24)

Derived Bracket: The operator 𝖻 now allows us to define the derived bracket

{𝜙1,𝜙2} := 𝖻(𝗆2(𝜙1,𝜙2)) −𝗆2(𝖻𝜙1,𝜙2) − (−1)|𝜙1|𝗆2(𝜙1, 𝖻𝜙2) (2.25)

for all 𝜙1,2 ∈ 𝔅, which measures the failure of 𝖻 to be a derivation of the product𝗆2. This derived bracket enters into the construction
of the kinematic numerators, analogously to the Lie algebra brackets entering into the colour numerators; and, in particular, it yields
the Lie bracket of the kinematic Lie algebra.
Returning to the action (2.22), the structure constants 𝖿 𝖻̄

𝖼̄𝖽̄
are those of the Lie algebra defined by the Lie bracket (2.25). This kinematic

Lie algebra arises when integrating out modes in the Feynman diagram expansion with propagator and cubic vertices
encoded in 𝜇2(−,−) = [−,−]𝔤 ⊗𝗆2(−,−).
Kinematic Lie Algebra for Currents: Concretely, let us look at an example of a field theory current, that is, a Feynman diagram with

n incoming fields and one outgoing, propagating field 𝜙0. This clearly demonstrates how the operator 𝖻 gets assigned to vertices:

(2.26)

Here, a solid line denotes a field and a dashed line denotes an anti-field. The operator 𝖻 is taken along its unique anti-field line to a
vertex and combined with 𝗆2 to the kinematic Lie bracket, which maps pairs of fields to fields. Note that 𝖻𝗆2 is indeed the kinematic
Lie algebra on fields because, as we shall see, these are in the kernel of 𝖻, at least after gauge fixing.
This prescription clearly extends to currents involving anti-fields, where the outgoing leg can be a field. We thus see that after the

re-assignment of the operator 𝖻, the vertices are turned into the derived bracket (2.25), which is therefore the kinematic Lie algebra.
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Kinematic Lie Algebra for Scattering Amplitudes: In the case of scattering amplitudes, the discussion is a bitmore subtle. Amplitudes
are obtained from the currents by removing the propagator on the outgoing leg of a current and pairing the anti-field coming out of the
diagram with the remaining field using the cyclic structure. For example, the amplitude 𝒜(𝜙0,𝜙1,𝜙2,𝜙3) will receive a contribution
from

(2.27)

It is then clear that CK duality will hold for any triple of subdiagrams not involving 𝜙0. For all physically interesting theories, however,
the relevant external fields will be 𝖻-exact, that is, in particular 𝜙0 = 𝖻𝜓 . In this case, we can compute the sum of the general s-, t- and
u-channels (i.e., the terms 𝗇𝛾J1 , 𝗇𝛾J2 , and 𝗇𝛾J3 from (2.3)) involving 𝜙0 as follows:

⟨𝜙0,𝗆2(T1, 𝖻𝗆2(T2, T3))⟩ + ⟨𝜙0,𝗆2(T2, 𝖻𝗆2(T3, T1))⟩ + ⟨𝜙0,𝗆2(T3, 𝖻𝗆2(T1, T2))⟩, (2.28)

where T1, T2, and T3 are currents, making up the rest of the diagrams. Again, in all physically interesting examples, 𝖻 is its own
adjoint, and hence we have

⟨𝜙0,𝗆2(T1, 𝖻𝗆2(T2, T3))⟩ = ⟨𝖻𝜓 ,𝗆2(T1, 𝖻𝗆2(T2, T3))⟩ = ⟨𝜓 , 𝖻𝗆2(T1, 𝖻𝗆2(T2, T3))⟩. (2.29)

If the derived bracket is a Lie bracket, then this reformulation makes it clear that (2.28) indeed vanishes. We note that, due to cyclic
symmetry of the amplitudes, it is sufficient if at least one external field is 𝖻-exact.
Underlying Algebraic Structure: Ultimately, the dg commutative algebra (𝔅, 𝖽,𝗆2) and the differential 𝖻 will form the structure of

a BV■-algebra,[34,37] see also [115]. We shall formalise and explore these in the remainder of this paper. Moreover, we shall extend this
picture to CK duality involving matter (i.e., fields taking values in representations of the gauge group that can be different from the
adjoint representation). This leads to the notion of BV■-modules, following the discussion of [38].
Comment Regarding the Loop Level: Consider now the dg Lie algebra of a cubic BV action Swhich has been gauge-fixed in the usual

manner. Suppose that the dg Lie algebra structure can be colour–stripped and enhanced to a BV■-algebra with■ the d’Alembertian□
andwith a second-order differential 𝖻. Using the Feynman rules following from S, we canwrite down the loop integrand for a Feynman
diagram corresponding to a process by using the propagator 𝖻

□
for each internal edge, the cubic interaction [−,−]𝔤 ⊗𝗆2(−,−) for the

vertices, and the cyclic structure to join loops formally. The resulting integrand for a trivalent graph Γ is then of the form

IΓ =
𝖼ΓNΓ∏
e∈E(Γ)□e

, (2.30)

where NΓ is a series of contractions of 𝗆2 and 𝖻.
Note that we can cut all loops open so that the loop diagram Γ reduces to a tree. In this tree, we can use the derived bracket (2.25)

to bring all vertices to the form [−,−]𝔤 ⊗ {−,−}, cf. (2.26), as long as all fields attached to incoming lines are in ker(𝖻). Since we are
working with a gauge-fixed action, there are no anti-fields running inside loops, so the above condition holds. Altogether, our vertices
are described by pairs of Lie algebra structure constants, and CK duality holds at the level of loop integrands.
We note that the situation regarding the number of 𝖻-operators that made the transition from currents to amplitudes subtle in

the case of tree diagrams is absent for loops: each loop adds a propagator relative to the tree diagrams, increasing the number of
𝖻-operators by one.

3. Colour–Kinematics Duality from BV■-Algebras and Their Modules

In this section, we fully develop the mathematical tools for an algebraic description of kinematic Lie algebras and colour–
kinematics duality.
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3.1. Pseudo-BV■-Algebras and Kinematic Lie Algebras

Pseudo-BV■-Algebras: We start with the most general definition of an algebra that implies the existence of a kinematic Lie algebra.

Definition 3.1. A pseudo-BV■-algebra is a tuple (𝔅, 𝖽,𝗆2, 𝖻) such that (𝔅, 𝖽,𝗆2) is a dg commutative algebra
23 endowed with an additional

differential 𝖻 : 𝔅 → 𝔅 of degree −1 such that the derived bracket

{𝜙1,𝜙2} := 𝖻(𝗆2(𝜙1,𝜙2)) −𝗆2(𝖻𝜙1,𝜙2) − (−1)|𝜙1|𝗆2(𝜙1, 𝖻𝜙2) (3.1)

for all 𝜙1,2 ∈ 𝔅 defines a shifted Lie algebra. That is, besides the shifted anti-symmetry24

{𝜙1,𝜙2} = (−1)|𝜙1||𝜙2|{𝜙2,𝜙1} (3.2a)

implied by (3.1), we also have the shifted Jacobi identity

{𝜙1, {𝜙2,𝜙3}} = (−1)|𝜙1|+1{{𝜙1,𝜙2},𝜙3} + (−1)(|𝜙1|+1)(|𝜙2|+1){𝜙2, {𝜙1,𝜙3}} (3.2b)

for all 𝜙1,2,3 ∈ 𝔅. Furthermore, we set

(3.3)

Hence, the derived bracket measures the failure of 𝖻 to be a derivation for 𝗆2. Note that .
A pseudo-BV■-algebra will turn out sufficient for describing CK duality of currents, but in order to extend the picture to amplitudes,

we will also need a cyclic structure or metric.

Definition 3.2. A metric pseudo-BV■-algebra is a pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) endowed with a non-degenerate graded symmetric
bilinear map

⟨−,−⟩ : 𝔅 ×𝔅 → ℝ, (3.4a)

called a cyclic structure,metric, or inner product, which is compatible with the pseudo-BV■-algebra structure in the sense that

⟨𝖽𝜙1,𝜙2⟩ + (−1)|𝜙1|⟨𝜙1, 𝖽𝜙2⟩ = 0,

⟨𝗆2(𝜙1,𝜙2),𝜙3⟩ − (−1)|𝜙1||𝜙2|⟨𝜙2,𝗆2(𝜙1,𝜙3)⟩ = 0,

⟨𝖻𝜙1,𝜙2⟩ − (−1)|𝜙1|⟨𝜙1, 𝖻𝜙2⟩ = 0

(3.4b)

for all 𝜙1,2,3 ∈ 𝔅. We say that ⟨−,−⟩ is of degree n if ⟨𝜙1,𝜙2⟩ ≠ 0 implies |𝜙1| + |𝜙2| + n = 0 for all 𝜙1,2 ∈ 𝔅.

Note that combining (3.4) with (3.3), we see that

(3.5)

for all 𝜙1,2,3 ∈ 𝔅.
We will want to use the operator for some Lie algebra 𝔤 as the contracting homotopy in a special deformation

retract (2.14a), and this will produce a Feynman diagram expansion. Among the general choices, the following is particularly relevant.

Definition 3.3. We call the operator 𝖻 in a BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) complete if ■−1b is the contracting homotopy in a special deformation
retract to the cohomology H∙

𝖽
(𝔅) of the cochain complex (𝔅, 𝖽).

Note that in this definition, we consider a ‘colour-stripped’ form of the homotopy transfer (2.14a). Physically, a BV■-algebra with
complete operator 𝖻 comes with a natural Feynman diagram expansion in which all non-physical fields are propagating and hence
integrated out.

23 We shall always assume that 𝗆2 is associative, that is, 𝗆2(𝗆2(𝜙1,𝜙2),𝜙3) = 𝗆2(𝜙1,𝗆2(𝜙2,𝜙3)) for all 𝜙1,2,3 ∈ 𝔅.
24 It is shifted graded anti-symmetric since the bracket carries a degree. We choose to work with this convention for shifted algebras, which is operad-

ically natural, in order to simplify later discussion.
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Kinematic Lie Algebras: Importantly, the shifted Jacobi identity (3.2b) allows us to associate a Lie algebra with a pseudo-BV■-
algebra.

Definition 3.4. Given a pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) with derived bracket (3.1), we call the associated Lie algebra𝔎𝔦𝔫(𝔅) given by25

𝔎𝔦𝔫(𝔅) := (𝔅[1], [−,−]𝔎𝔦𝔫(𝔅)) with
[
𝜙1[1],𝜙2[1]

]
𝔎𝔦𝔫(𝔅) := (−1)

|𝜙1|{𝜙1,𝜙2}[1] (3.6)

for all 𝜙1,2[1] ∈ 𝔎𝔦𝔫(𝔅) the kinematic Lie algebra.

We note that the map𝔎𝔦𝔫 extends to a functor from the evident category of pseudo-BV■-algebras to the category of Lie algebras.
Our discussion in Section 2.4, in particular the argument around (2.26), now yields the following result.

Theorem 3.5. A cubic gauge field theory comes with a kinematic Lie algebra if its underlying dg Lie algebra (𝔏,𝜇1,𝜇2) factorises into a Lie
algebra (𝔤, [−,−]𝔤) and a pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) such that 𝔏 ≅ 𝔤⊗𝔅 and

𝜇1(𝜏1 ⊗𝜙1) = 𝜏1 ⊗ 𝖽𝜙1,

𝜇2(𝜏1 ⊗𝜙1, 𝜏2 ⊗𝜙2) = [𝜏1, 𝜏2]𝔤 ⊗𝗆2(𝜙1,𝜙2)
(3.7)

for all 𝜏1,2 ∈ 𝔤 and 𝜙1,2 ∈ 𝔅.

Proposition 3.6. For any pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) with derived bracket (3.1), we have

(3.8)

for all 𝜙1,2 ∈ 𝔅.

Note that𝔎𝔦𝔫(𝔅) together with 𝖽 generally fails to be a dg Lie algebra as the following proposition makes clear.

Proof. This follows from a straightforward calculation using the definition of the derived bracket (3.1) together with the defini-
tion (3.3) of ■ and the fact that both 𝖽 and 𝖻 are differentials. The second equation has already been observed in [116], see also
[115]. □

Put differently, this proposition says that, whilst 𝖻 is a derivation for the derived bracket, 𝖽 is not. This proposition also implies the
following.

Corollary 3.7. With respect to the derived bracket (3.1), ker(𝖻) is closed. In fact, (3.1) implies that

{ker(𝖻), ker(𝖻)} ⊆ im(𝖻) ⊆ ker(𝖻). (3.9)

Thus, in Definition 3.4, we may restrict the kinematic Lie algebra𝔎 :=𝔎𝔦𝔫(𝔅) to a shifted Lie subalgebra 𝔎̃ with

im(𝖻)[1] ⊆ 𝔎̃ ⊆ ker(𝖻)[1]. (3.10)

For most physically interesting field theories, such as e.g. Yang–Mills theory, we have im(𝖻) = 𝔉 = ker(𝖻), where 𝔉 is the space of
fields (as opposed to anti-fields), at least after gauge fixing. For other theories, such as Chern–Simons theory, im(𝖻) may be smaller
than ker(𝖻) in general, but after gauge fixing, the space of fields𝔉 satisfies (3.10), as we shall see in Section 3.5. For an explicit example,
see Section 5.4. The kinematic Lie algebra that is usually discussed in the literature is the one restricted to fields, or further to physical
fields. We therefore make the following definition:

Definition 3.8. The restricted kinematic Lie algebra𝔎𝔦𝔫0(𝔅) of a BV■-algebra 𝔅 is the Lie subalgebra

𝔎𝔦𝔫0(𝔅) := ker(𝖻)[1] ⊆ 𝔎𝔦𝔫(𝔅). (3.11)

Colour–Kinematics Duality: We conclude with a sufficient criterion for CK duality. There are several restrictions for a theory with
kinematic Lie algebra or, equivalently, pseudo-BV■-algebra to exhibit traditional CK duality.
A theory with a pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) will produce a Feynman diagram expansion of currents that is naturally of the

form (2.4). The ‘amputated correlators’, i.e. the currents paired off with the final propagators removed and paired off with fields using
the cyclic structure, have a Feynman diagram expansion of the form (2.1) if at least one of the external fields lies in the image of 𝖻.

25 We use square brackets [k] with k ∈ ℤ to denote a degree shift for a graded vector space V =
⨁

i∈ℤ Vi by V [k] =
⨁

i∈ℤ(V [k])i :=
⨁

i∈ℤ Vi+k.
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If now the operator 𝖻 is complete, then in the Feynman diagram expansion all non-physical fields are propagating and hence inte-
grated out. The above currents and amputated correlators become ‘physical currents’ and ‘physical amplitudes’ with expansions (2.4)
and (2.1).
Finally, if the operator■ is the d’Alembertian on the underlying space-time, then the amplitude parametrisation (2.1) is of the form

conventionally discussed in the literature, i.e. d𝛾 is the product of
1
p2𝓁
ranging over all internal lines 𝓁. Theorem 3.5 therefore has the

following immediate corollary.

Corollary 3.9. Consider a cubic gauge field theory whose underlying dg Lie algebra factorises into a Lie algebra and a pseudo-BV■-algebra
(𝔅, 𝖽,𝗆2, 𝖻) with complete operator 𝖻 and ■ = □. Then the corresponding Feynman diagram expansion yields a CK-dual parametrisation of
the currents (2.4) and a CK-dual parametrisation of the amplitudes (2.1) with at least one external field in the image of 𝖻.

We note that, when considering physical amplitudes, the physical fields 𝜙 usually satisfy the gauge condition 𝖻𝜙 = 0, cf. the exam-
ples in Section 5. Moreover, in most physically interesting cases, the cohomology of 𝖻 is trivial, so that a pseudo-BV■-algebra with
structure ■ = □ and all non-physical modes propagating directly implies CK duality of the amplitudes.
We also note that a CK-dual field theory does not necessarily have to have a kinematic Lie algebra. In particular, the parametrisa-

tion (2.1) does not have to come from the Feynman diagram expansion obtained from a path integral.
A pseudo-BV■-algebra structure as in Corollary 3.9 with complete 𝖻 and ■ = □ implies full, off-shell CK duality of all tree-level

correlators. Given an anomaly-free path-integral measure completing the action to a quantum theory, this is sufficient to obtain full
loop level CK duality as we shall see later. In many concrete examples, however, CK duality only exists at the tree level, and this is then
visible in various obstacles to obtain the above mentioned situation. For example, we saw that the field redefinitions introduced in [30]
to reformulate the Yang–Mills action such that it has an underlying pseudo-BV■-algebra introduced Jacobian counterterms leading
to anomalies. In another case, the twistor description of supersymmetric Yang–Mills theory that where used to produce pseudo-BV■-
algebra descriptions in [34] come with a non-standard ■-operator. Finally, in the case of pure spinors,[38] the tree-level constructions
did not lift to the loop level, as there was again a problem with the regularisation, cf. Section 5.6. This problem is expected and
unavoidable due to the results of [95].

3.2. Modules Over Pseudo-BV■-Algebras

Pseudo-BV■-Modules: For CK-dual field theories involving matter fields, that is, fields which do not take values in the gauge Lie
algebra 𝔤, we need to extend the concept of a pseudo-BV■-algebra to a pseudo-BV■-module.

Definition 3.10. A module over a pseudo-BV■-algebra (𝔅, 𝖽𝔅,𝗆2, 𝖻𝔅) is a tuple (V, 𝖽V ,▻V , 𝖻V ) such that (V, 𝖽V ,▻V ) is a (left) module
over the dg commutative algebra (𝔅, d𝔅,𝗆2) with the action ▻V : 𝔅 × V → V of degree 0 and which is endowed with an additional differential
𝖻V : V → V of degree −1 such that the derived bracket

{𝜙, v}V := 𝖻V (𝜙▻Vv) − (𝖻𝔅𝜙)▻Vv − (−1)|𝜙|𝜙▻V (𝖻Vv) (3.12)

for all 𝜙 ∈ 𝔅 and v ∈ V satisfies

{𝜙1, {𝜙2, v}V}V = (−1)|𝜙1|+1{{𝜙1,𝜙2}𝔅, v}V + (−1)(|𝜙1|+1)(|𝜙2|+1){𝜙2, {𝜙1, v}V}V (3.13)

for all 𝜙1,2 ∈ 𝔅 and v ∈ V, where {−,−}𝔅 is the derived bracket (3.1). Furthermore, we set

(3.14)

Finally, in analogy with Definition 3.3, we call the operator 𝖻V complete if is the contracting homotopy in a special deformation
retract to the cohomology H∙

𝖽V
(V) of the cochain complex (V, 𝖽V ).

When there is no confusion, wewill drop the subscriptsV and𝔅 on all the operations.We also note that, for all physical applications,
pseudo-BV■-modules with V concentrated in degrees 1 (fields) and 2 (anti-fields) will turn out to be sufficient.
Just as for BV■-algebras, we also need to introduce a metric to talk about action principles and amplitudes.

Definition 3.11. Ametric of degree n on a module (V, 𝖽V ) over a dg Lie algebra (𝔤, 𝖽𝔤) is a non-degenerate bilinear graded-symmetric map of
degree n

⟨−,−⟩V : V × V → ℝ (3.15)
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such that

⟨v1, 𝖽Vv2⟩V + (−1)|v1|⟨𝖽Vv1, v2⟩V = 0,

⟨𝜙▻Vv1, v2⟩V − (−1)|𝜙||v1|⟨v2,𝜙▻Vv1⟩V = 0
(3.16)

for all v1,2 ∈ V and 𝜙 ∈ 𝔤. Ametric dg Lie module is a dg Lie module equipped with a metric.
A metric on a pseudo-BV■ module is defined in the same way, with the evident compatibility condition with 𝖻V ; a metric

pseudo-BV■ module is a pseudo-BV■ module equipped with a metric.

Note that on a cyclic module V over a cyclic dg Lie algebra 𝔤, one can define a graded-anti-symmetric bilinear operation ∧V as

⟨𝜙, v1 ∧V v2⟩𝔤 := ⟨𝜙▻Vv1, v2⟩V (3.17)

for any v1,2 ∈ V and 𝜙 ∈ 𝔤. Similarly, on a cyclic module V over a cyclic pseudo-BV■-algebra 𝔅, one can define a graded-symmetric
bilinear operation ∙V as

⟨𝜙, v1 ∙V v2⟩𝔅 := ⟨𝜙▻Vv1, v2⟩ (3.18)

for any v1,2 ∈ V and 𝜙 ∈ 𝔅.
We now have the following result.

Proposition 3.12. Given a module V = (V, 𝖽V ,▻V , 𝖻V ) over a pseudo-BV■-algebra 𝔅 = (𝔅, 𝖽𝔅,𝗆2, 𝖻𝔅), we have a graded (left) module
(𝔙,▻𝔙) over the kinematic Lie algebra𝔎𝔦𝔫(𝔅) with 𝔙 :=V [1] and

▻𝔙 : 𝔎𝔦𝔫(𝔅) ×𝔙 → 𝔙,

𝜙[1]▻𝔙v[1] := (−1)|𝜙|{𝜙, v}V [1]
(3.19)

for all 𝜙[1] ∈ 𝔎𝔦𝔫(𝔅) and v[1] ∈ 𝔙 with {−,−}V denoting the derived bracket (3.12).

Proof. By direct calculation, cf. Appendix C. □

Gauge–Matter Colour–Kinematics Duality: It is now easy to see that these structures are the appropriate ones for capturing gauge–
matter CK duality. Firstly, as a direct extension of Theorem 3.5, we have the following result.

Theorem 3.13. A cubic gauge–matter theory has a kinematic Lie algebra with Lie algebra module if its underlying dg Lie algebra factorises
into a Lie algebra representation and a pseudo-BV■-algebra with pseudo-BV■-module.

Explicitly, we consider the Feynman diagram expansion induced by the pseudo-BV■-algebra and its module, which uses the prop-
agator . The operators 𝖻 are then moved from the propagators to the interaction vertices, as indicated
in (2.26). This turns the interaction vertices into derived brackets of the form (3.1) or (3.12). Hence, the Feynman diagram expansion
of currents possesses a kinematic Lie algebra with Lie algebra module, which extends to amplitudes with at least one external leg in
the image of 𝖻𝔅 or 𝖻V .
As in the pure gauge case, the above theorem has the following corollary, the analogue of Corollary 3.9, which provides a sufficient

criterion for gauge–matter theories to possess CK duality.

Corollary 3.14. The Feynman diagram expansion of a cubic gauge–matter theory whose underlying dg Lie algebra factorises into a Lie algebra
representation and a pseudo-BV■-algebra (𝔅, 𝖽𝔅,𝗆2, 𝖻𝔅) with together with a module (V, 𝖽V ,▻V , 𝖻V ) over a pseudo-BV

■-algebra
with and both 𝖻𝔅 and 𝖻V complete yields a gauge–matter CK-dual parametrisation of the physical currents and a gauge–matter
CK-dual parametrisation of the physical amplitudes with at least one external field in the image of 𝖻𝔅 or 𝖻V .

3.3. Pseudo-BV■-Algebras and Their Modules Over Hopf Algebras

For technical reasons, it is convenient to define and work with the notion of a pseudo-BV■-algebra over a Hopf algebra, following.[37]

The technical reasons are twofold. Firstly, in futurework,[117] we intend to give the full homotopy algebraic picture, lifting the restriction
to cubic actions; in this case, it is convenient to work with the framework of operadic Koszul duality, for which the Hopf algebra (that
provides an ambient symmetric monoidal category) will be necessary. Secondly, our discussion of the double copy to ordinary space-
time (as opposed to a double field theory on doubled space) is most easily understood using tensor products over Hopf algebras.
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Hopf Algebras: Let us first recall some relevant definitions.

Definition 3.15. A bialgebra over ℝ is a tuple (ℌ,Δ, 𝜖, 𝟙), where (ℌ, 𝟙) is an associative unital algebra over ℝ and Δ : ℌ → ℌ⊗ℌ (the
coproduct) and 𝜖 : ℌ → ℝ (the counit) are unital homomorphisms of ℝ-algebras such that Δ is coassociative,

(Δ⊗ idℌ)Δ = (idℌ ⊗ Δ)Δ, (3.20)

and 𝜖 is indeed a counit,

(idℌ ⊗ 𝜖)Δ = idℌ = (𝜖 ⊗ idℌ)Δ. (3.21)

It will be convenient to use the common (sumless) Sweedler notation

𝜒 (1) ⊗ 𝜒 (2) :=Δ(𝜒) (3.22)

for 𝜒 ∈ ℌ, and in this notation, (3.20) and (3.21) read as

𝜒 (1) ⊗
(
(𝜒 (2))(1) ⊗ (𝜒 (2))(2)

)
=

(
(𝜒 (1))(1) ⊗ (𝜒 (1))(2)

)
⊗ 𝜒 (2),

𝜖(𝜒 (1))𝜒 (2) = 𝜒 = 𝜒 (1)𝜖(𝜒 (2)).
(3.23)

Definition 3.16. A bialgebra (ℌ,Δ, 𝜖) is called commutative if the algebra ℌ is commutative; it is called cocommutative if it satisfies the
condition

𝜒 (1) ⊗ 𝜒 (2) = 𝜒 (2) ⊗ 𝜒 (1) (3.24)

for all 𝜒 ∈ ℌ.
AHopf algebra over ℝ is a tuple (ℌ,Δ, 𝜖, S) where (ℌ,Δ, 𝜖) is a bialgebra and where S : ℌ → ℌ is an ℝ-linear map (the antipode) such

that

S(𝜒 (1))𝜒 (2) = 𝜒 (1)S(𝜒 (2)) = 𝜖(𝜒)𝟙 (3.25)

for all 𝜒 ∈ ℌ.

Example 3.17. Let 𝕄d :=ℝ1,d−1 be d-dimensional Minkowski space with metric tensor 𝜂 = diag(−1, 1… , 1) and Cartesian coordinates x𝜇

with 𝜇, 𝜈,… = 0,… , d − 1. TheHopf algebraℌ𝕄d is the Hopf algebra of differential operators with constant coefficients on𝕄d that is generated
by the partial derivatives 𝜕

𝜕x𝜇
.

Explicitly,ℌ𝕄d is the vector space of power series in the partial derivative 𝜕

𝜕x𝜇
with unit 𝟙 = 1 and evident product. The coproduct on elements

in ℌ𝕄d is fully defined by unitality and the Leibniz rule,

Δ(1) = 1⊗ 1 and Δ
( 𝜕
𝜕x𝜇

)
= 𝜕
𝜕x𝜇

⊗ 1 + 1⊗ 𝜕
𝜕x𝜇

, (3.26)

and the counit is the projection onto the constant part of the power series, i.e.

𝜀(1) = 1 and 𝜀
( 𝜕
𝜕x𝜇

)
= 0. (3.27)

Finally, the antipode is defined by

S(1) = 1, S(𝜒1𝜒2) = S(𝜒2)S(𝜒1), and S
( 𝜕
𝜕x𝜇

)
= − 𝜕

𝜕x𝜇
. (3.28)

This Hopf algebra is evidently commutative (hence restrictedly tensorable) and cocommutative.

In the following, we shall always work with restrictedly tensorable (see Definition A.2) cocommutative Hopf algebras over ℝ.26 A
trivial example of such a Hopf algebra is ℝ itself with the ordinary product and all other maps trivial. Another important example to
our discussion is the following.

26 In this paper, we do not really need the antipode, so it suffices to work with bialgebras. However, the antipode will become important for operadic
Koszul duality.
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Pseudo-BV■-Algebras and Modules Over Hopf Algebras: We start with the obvious notion of a dg commutative algebra over ℌ.

Definition 3.18. A differential graded (dg) commutative algebra over a cocommutative Hopf algebra ℌ is a tuple (ℭ, 𝖽,𝗆2,▻) such that
(ℭ, 𝖽,𝗆2) is a dg commutative algebra, (ℭ,▻) is a graded (left) module overℌ with an action ▻ : ℌ × ℭ → ℭ of degree 0, and the differential
𝖽 and the product 𝗆2 are ℌ-linear in the sense that

𝜒▻𝖽𝜙1 = 𝖽(𝜒▻𝜙1),

𝜒▻𝗆2(𝜙1,𝜙2) = 𝗆2(𝜒
(1)▻𝜙1,𝜒

(2)▻𝜙2)
(3.29)

for all 𝜒 ∈ ℌ and 𝜙1,2 ∈ ℭ, where we use again the Sweedler notation (3.22).

This notion extends to pseudo-BV■-algebras over ℌ, where we additionally demand that .

Definition 3.19. A pseudo-BV■-algebra over a cocommutative Hopf algebraℌ is a tuple (𝔅, 𝖽,𝗆2, 𝖻,▻) such that (𝔅, 𝖽,𝗆2, 𝖻) is a pseudo-
BV■-algebra, (𝔅, 𝖽,𝗆2,▻) is a dg commutative algebra over ℌ, the differential 𝖻 is linear over ℌ, i.e.

𝜒▻(𝖻𝜙) = 𝖻(𝜒▻𝜙) (3.30)

for all 𝜒 ∈ ℌ and 𝜙 ∈ 𝔅, and there is a such that for all 𝜙 ∈ 𝔅. (In the following, we will be sloppy
and identify or even write [𝖽, 𝖻] ∈ ℌ.)
A metric pseudo-BV■-algebra over a cocommutative Hopf algebra ℌ is a pseudo-BV■-algebra 𝔅 equipped with a metric ⟨−,−⟩ : 𝔅⊗ℝ

𝔅 → ℝ that is anℌ-linear map, whereℝ is equipped with the trivialℌ-module structure and𝔅⊗ℝ𝔅 is equipped with theℌ-module structure
induced by the coproduct.

It remains to extend the notion of a pseudo-BV■-module to a pseudo-BV■-module over ℌ.

Definition 3.20. A pseudo-BV■-module over a cocommutative Hopf algebra ℌ is a module (V, 𝖽V ,▻V , 𝖻V ) over a pseudo-BV■-algebra
(𝔅, 𝖽𝔅,𝗆2, 𝖻𝔅,▻𝔅) over ℌ such that all maps are ℌ-linear in the sense that

𝜒▻V (𝖽Vv) = 𝖽V (𝜒▻Vv),

𝜒▻V (𝖻Vv) = 𝖻V (𝜒▻Vv),

𝜒▻V{𝜙, v}V = {𝜒 (1)▻𝔅𝜙,𝜒
(2)▻Vv}V

(3.31)

for all h ∈ ℌ, 𝜙 ∈ 𝔅, and v ∈ V. Here, {−,−}V is the derived bracket (3.12) associated with (V, 𝖽V ,▻V , 𝖻V ). In addition, we require that
.

A cyclic module over a cyclic pseudo-BV■-algebra𝔅 over a cocommutative Hopf algebraℌ is a pseudo-BV■-module V equipped with a
metric ⟨−,−⟩ : V ⊗ℝV → V that is a ℌ-linear map, where ℝ is equipped with the trivial ℌ-module structure and V ⊗ℝV is equipped with
the ℌ-module structure induced by the coproduct.

3.4. BV■-Algebras and Their Modules

As we will see, it is both physically and mathematically natural to specialise our pseudo-BV■-algebras to the case of BV■-algebras.[37]

These are pseudo-BV■-algebras in which the operator 𝖻 is a second-order differential in the sense of27 Akman.[115] We start by recalling
the notion of higher-order differentials.
Higher-Order Differentials: Consider a graded vector space 𝔄 with a multilinear operation 𝗆 of arity28 k + 1 and degree |𝗆| and a

differential 𝛿 : 𝔄 → 𝔄 of degree |𝛿|. For all r ∈ ℕ, we define recursively the maps Φr+1
𝛿 by

Φ1
𝛿(𝜙1) := 𝛿𝜙1,

Φ2
𝛿(𝜙1,… ,𝜙k+1) := Φ1

𝛿(𝗆(𝜙1,… ,𝜙k+1)) − (−1)|𝗆||𝛿|𝗆(Φ1
𝛿(𝜙1),𝜙2,… ,𝜙k+1) −⋯ − (−1)(|𝗆|+|𝜙1|+⋯+|𝜙k|)|𝛿|𝗆(𝜙1,… ,𝜙k,Φ1

𝛿(𝜙k+1)),

⋮

27 This concept was first defined for commutative and associative algebras by Koszul.[116] Here, we choose to work with the more flexible definition
in [115], which extends to non-commutative and non-associative algebras.

28 The generalisation from binary 𝗆2 to arbitrary arity was not considered in [115] but is straightforward, although it is not needed in this paper. In
particular, if a theory has a 3-Lie algebra[118] colour structure and a corresponding quartic-vertex CK duality,[119–121] then the colour-stripped theory
is naturally captured by an analogue of a (pseudo-)BV■-algebra with a totally graded-symmetric ternary𝗆3 and a second-order differential operator.
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Φr+1
𝛿 (𝜙1,… ,𝜙rk+1) := Φr

𝛿(𝜙1,… ,𝜙(r−1)k,𝗆(𝜙(r−1)k+1,… ,𝜙rk+1)) − (−1)|𝗆|(|𝛿|+|𝜙1|+⋯+|𝜙(r−1)k|)𝗆(Φr
𝛿(𝜙1,… ,𝜙(r−1)k+1),𝜙(r−1)k+2,… ,𝜙rk+1)

−⋯

− (−1)(|𝗆|+|𝜙(r−1)k+1|+⋯+|𝜙rk|)(|𝜙1|+⋯+|𝜙(r−1)k|+|𝛿|)𝗆(𝜙(r−1)k+1,… ,𝜙rk,Φr
𝛿(𝜙1,… ,𝜙(r−1)k,𝜙rk+1)), (3.32)

for all 𝜙1,…,rk+1 ∈ 𝔄, which measure the failure of Φr
𝛿(𝜙1,… ,𝜙(r−1)k,−) to be a derivation of the (k + 1)-ary product 𝗆.

Definition 3.21. A differential 𝛿 on (𝔄,𝗆2) is said to be a differential operator of order r if Φr+1
𝛿 = 0.

Example 3.22. For a pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻), the condition for 𝖻 being of second order is

𝖻(𝗆2(𝗆2(𝜙1,𝜙2),𝜙3)) = (−1)|𝜙1|𝗆2(𝜙1, 𝖻(𝗆2(𝜙2,𝜙3))) + (−1)(|𝜙1|+1)|𝜙2|𝗆2(𝜙2, 𝖻(𝗆2(𝜙1,𝜙3))) + (−1)|𝜙3|(|𝜙1|+|𝜙2|+1)𝗆2(𝜙3, 𝖻(𝗆2(𝜙1,𝜙2)))

+ (−1)|𝜙1|+|𝜙3|+|𝜙2||𝜙3|+1𝗆2(𝗆2(𝜙1,𝜙3), 𝖻𝜙2) + (−1)|𝜙1|+|𝜙2|+1𝗆2(𝗆2(𝜙1,𝜙2), 𝖻𝜙3)

+ (−1)(|𝜙1|+1)(|𝜙2|+|𝜙3|)+1𝗆2(𝗆2(𝜙2,𝜙3), 𝖻𝜙1) (3.33)

for all 𝜙1,2,3 ∈ 𝔅.

Note that a differential of r-th order is automatically of order r + 1.

Example 3.23. For a module (V, 𝖽V ,▻V , 𝖻V ) over a pseudo-BV
■-algebra (𝔅, 𝖽𝔅,𝗆2, 𝖻𝔅), the condition for 𝖻V being of second order amounts

to

𝖻V (𝜙1▻V (𝜙2▻Vv)) = (−1)|𝜙1|𝜙1▻V𝖻V (𝜙2▻Vv) + (−1)(|𝜙1|+1)|𝜙2|𝜙2▻V𝖻V (𝜙1▻Vv) + 𝖻𝔅(𝗆2(𝜙1,𝜙2))▻Vv

+ (−1)|𝜙1|+|𝜙2|+1𝜙1▻V (𝜙2▻V (𝖻Vv)) + (−1)|𝜙1|+1𝜙1▻V ((𝖻𝔅𝜙2)▻Vv) − (𝖻𝔅𝜙1)▻V (𝜙2▻v) (3.34)

for all 𝜙1,𝜙2 ∈ 𝔅 and v ∈ V.

BV■-Algebras: We now refine Definitions 3.1 and 3.2 as follows.

Definition 3.24. A (cyclic) BV■-algebra is a (cyclic) pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) in which 𝖻 is of second order.

Proposition 3.25. Let (𝔅, 𝖽,𝗆2, 𝖻) be a pseudo-BV■-algebra. The condition that 𝖻 is of second order is equivalent to the
shifted Poisson identity

{𝜙1,𝗆2(𝜙2,𝜙3)} = 𝗆2({𝜙1,𝜙2},𝜙3) + (−1)(|𝜙1|+1)|𝜙2|𝗆2(𝜙2, {𝜙1,𝜙3}) (3.35)

for all 𝜙1,2,3 ∈ 𝔅 for the derived bracket (3.1). The shifted Poisson identity, in turn, implies the shifted Jacobi identity (3.2b).

We have already seen in Definition 3.1 that the derived bracket (3.1) for a pseudo-BV■-algebra automatically satisfies the shifted
anti-symmetry (3.2a). The operator 𝖻 being of second order now implies that also shifted Jacobi identity (3.2b) automatically holds as
the following proposition shows.

Proof. By direct computation, cf. Appendix C. □

Proposition 3.26. For a BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻), the operator is of second order.

Proof. This follows from the fact that the (graded) commutator of an r-th order differential and an s-th order differential is a
differential of order r + s − 1, cf. [115, Eq. (6.iii)]. □

Note that by virtue of Proposition 3.25, for (𝔅, 𝖽,𝗆2, 𝖻) a BV
■-algebra, the tuple (𝔅,𝗆2, {−,−}) with {−,−} the derived bracket (3.1)

is what is commonly known as a Gerstenhaber algebra, that is, a Poisson algebra of degree −1.

Definition 3.27. A BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻) with is called a differential graded (dg) Batalin − Vilkovisky (BV) algebra.

We then have the following immediate corollary to Proposition 3.6:

Corollary 3.28. Consider a BV algebra𝔅 with differential 𝖽. Together with 𝖽[1], the kinematic Lie algebra𝔎𝔦𝔫(𝔅) and the restricted kinematic
Lie algebra𝔎𝔦𝔫0(𝔅) defined in Definition 3.8 become dg Lie algebras.

BV■-Algebra Modules: Let us also specialise the notion of modules. Firstly, we define BV■-modules by refining Definition 3.10.

Definition 3.29. Amodule over a BV■-algebra𝔅 is a module (V, 𝖽V ,▻V , 𝖻V ) over𝔅, regarded as a pseudo-BV■-algebra, in which 𝖻V is of
second order.
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We now have the analogues of Propositions 3.25 and 3.26.

Proposition 3.30. For 𝖻V of second order, the derived bracket (3.12) always satisfies (3.13) as well as

{𝜙1,𝜙2▻Vv}V = {𝜙1,𝜙2}𝔅▻Vv + (−1)(|𝜙1|+1)|𝜙2|𝜙2▻V{𝜙1, v}V (3.36)

for all 𝜙1,2 ∈ 𝔅 and v ∈ V.

Proposition 3.31. For a BV■-module (V, 𝖽V ,▻V , 𝖻V ), the operator is of second order.

If we specialise to the situation , we obtain dg Lie modules.

Proposition 3.32. Given a module V = (V, 𝖽V ,▻, 𝖻V ) over a dg BV algebra 𝔅 = (𝔅, 𝖽,𝗆2, 𝖻), then𝔐𝔬𝔡0(V) := (ker𝖻V )[1] is a module over
the dg Lie algebra𝔎𝔦𝔫0(𝔅).

Proof. By direct calculation, cf. Appendix C. □

Finally, we also refine the notions of pseudo-BV■-algebras and pseudo-BV■-modules over Hopf algebras introduced in Definitions
3.19 and 3.20, see also Definition 3.15, as follows.

Definition 3.33. A BV■-algebra over a cocommutative Hopf algebra ℌ is a tuple (𝔅, 𝖽,𝗆2, 𝖻,▻) such that (𝔅, 𝖽,𝗆2, 𝖻) is a BV
■-algebra,

(𝔅, 𝖽,𝗆2,▻) is a dg commutative algebra over ℌ, the differential 𝖻 is linear over ℌ,

𝜒▻(𝖻𝜙) = 𝖻(𝜒▻𝜙) (3.37)

for all 𝜒 ∈ ℌ and 𝜙 ∈ 𝔅, and we require that .

It remains to extend the notion of a BV■-module to a BV■-module over ℌ.

Definition 3.34. A BV■-module over a cocommutative Hopf algebraℌ is a module (V, 𝖽V ,▻V , 𝖻V ) over a BV
■-algebra (𝔅, 𝖽𝔅,𝗆2, 𝖻𝔅,▻𝔅)

over ℌ such that we have linearity over ℌ in the sense of

𝜒▻V (𝖽Vv) = 𝖽V (𝜒▻Vv),

𝜒▻V (𝖻Vv) = 𝖻V (𝜒▻Vv),

𝜒▻V{𝜙, v}V = {𝜒 (1)▻V𝜙,𝜒
(2)▻Vv}V

(3.38)

for all h ∈ ℌ, 𝜙 ∈ 𝔅, and v ∈ V. Here, {−,−}V is the derived bracket (3.12) associated with (V, 𝖽V ,▻V , 𝖻V ), and we have used Sweedler
notation (3.22). In addition, we require that .

Definition 3.35. A metric on a BV■-module V on a cyclic BV■-algebra 𝔅 is the same as a metric as a pseudo-BV■-module. A cyclic
BV■-module is a cyclic pseudo-BV■-module that is a BV■-module.

Comments: Anticipating our upcoming work,[87] we note that the above definitions have a nice operadic formulation, which is
crucial for a generalisation to homotopy algebras, providing a generalisation of the present analysis of double copy to theories with
interactions beyond cubic terms. Operads are algebraic gadgets that encode the axioms of an algebraic structure. They are formulated
inside an ambient setting of symmetric monoidal categories; in the present case, the category is that of cochain complexes of modules
over the Hopf algebra ℌ, with the monoidal operation given by tensor product over ℝ (rather than the smaller tensor product over
ℌ). This means that all operations are linear (rather than multi-linear) over ℌ. Thus, one can construct an operad in the category of
cochain complexes of ℌ-modules such that algebras over this operad are BV■-algebras over ℌ. Similarly, one can construct a two-
sorted operad over the cochain complexes of ℌ-modules, with one sort for elements of the BV■-algebra itself and the other sort for
elements of the module; an algebra over this operad is then a BV■-algebra over ℌ together with a BV■-module over it.

3.5. Gauge Fixing

Let us now examine how gauge fixing a BV action of a CK-dual gauge field theory affects the pseudo-BV■-algebra structure on the
colour-stripped dg commutative algebra. We shall focus on ordinary gauge theories; higher gauge theories can be dealt with in a
similar fashion.
General Gauge-Fixing Procedure: The traditional gauge-fixing procedure in the BV formalism usually consists of the following

three steps,[2,3] see also [7, 122] for a detailed review:

(i) Add trivial pairs of fields to the BV action as needed. For ordinary gauge theories, one such gauge Lie algebra valued pair,
consisting of a Nakanishi–Lautrup field and an anti-ghost, is sufficient. For higher gauge theories, one needs a full BV triangle
of trivial pairs, cf. [3] and [7] for a review.
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(ii) Using these fields, define a gauge-fixing fermion Ψ, i.e. a function of ghost degree −1 in the BV fields, which, in turn, defines a
symplectomorphism or canonical transformation

(𝜙,𝜙+) → (𝜙̃, 𝜙̃+) :=
(
𝜙,𝜙+ + 𝛿Ψ

𝛿𝜙

)
(3.39)

for the fields 𝜙 and anti-fields 𝜙+. For simplicity, we always restrict ourselves to the usual quadratic gauge-fixing fermions, for
which the canonical transformation becomes a constant rotation.

(iii) Inmost cases of interest to us (ordinary gauge and gauge–matter theories, as well as = 0 supergravity) the BV action is linear in
the anti-fields after this symplectomorphism, and we can simply put to zero all terms containing anti-fields from the gauge-fixed
action.

Even for considering tree-level CK duality, it is helpful (albeit not necessary) to consider the gauge-fixed BV action as the kinematic
operator exclusively maps fields to anti-fields.
Step (i): Trivial Pairs: Consider a cubic gauge field theory with an underlying pseudo-BV■-algebra (𝔅, 𝖽,𝗆2, 𝖻). The first step in

the gauge-fixing procedure consists of adding trivial pairs which amounts to extending the field space by V ⊕ V [−1] for V a graded
vector space.

Proposition 3.36. Let (𝔅, 𝖽,𝗆2, 𝖻) be a pseudo-BV
■-algebra and V a graded vector space with an action of ■. Then the tuple (𝔅′, 𝖽′,𝗆′

2, 𝖻
′)

with

𝔅′ :=𝔅⊕ V ⊕ V [−1] (3.40a)

and29

(3.40b)

for all 𝜙1,2 ∈ 𝔅, n1,2 ∈ V, and c̄1,2 ∈ V [−1] is a pseudo-BV■-algebra with .

Proof. It is straightforward to see that 𝖽′2 = 0 and that 𝖽′ is a derivation for 𝗆′
2. Thus, (𝔅

′,𝗆′
2, 𝖽

′) is a dg commutative algebra.
Likewise, 𝖻′2 = 0 and . In addition, the derived bracket (3.1) for (𝔅′, 𝖽′,𝗆′

2, 𝖻
′) is

{(𝜙1, n1, c̄1), (𝜙2, n2, c̄2)}
′ = ({𝜙1,𝜙2}, 0, 0), (3.41)

where {−,−} is the derived bracket for (𝔅, 𝖽,𝗆2, 𝖻). Consequently, the conditions (3.2) are also satisfied. Altogether, (𝔅′, 𝖽′,𝗆′
2, 𝖻

′) is
a pseudo-BV■-algebra. □

Step (ii): Gauge-Fixing Fermion and Canonical Transformation: The second step in the gauge-fixing procedure, namely intro-
ducing a gauge-fixing fermion Ψ and performing the canonical transformation (3.39) preserves the BV■-algebra structure for
the usual quadratic30 Ψ, as in this case the canonical transformation (3.39) is merely a constant rotation of all the fields and
anti-fields.
We will mostly be interested in the gauge-fixing condition 𝖻A = 0, and we can implement this condition by using the usual gauge-

fixing fermion for R𝜉 -gauges. This leads to an interesting phenomenon. For simplicity and concreteness sake, let us consider the

29 We use ni to indicate Nakanishi–Lautrup fields to avoid the notational collision of the usual b with our operator 𝖻.
30 Recall that we assume that Ψ is quadratic in all BV fields. This includes the usual gauge-fixing fermions, as for example, those for R𝜉 -gauges.
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differentials for the pseudo-BV■-algebra 𝔅 in an ordinary gauge theory on d-dimensional Minkowski space 𝕄d. In degree 0 and 1,
we have the following structure before applying the symplectomorphism:

(3.42)

where K is a kinematic operator, for example, K = d†d for Yang–Mills theory, or K = ⋆d for Chern–Simons theory, and K+ is the
corresponding operator 𝖻 so that we have , for example, K+ = 𝗂𝖽 for Yang–Mills theory and K+ = d†⋆ for Chern–Simons
theory, with ■ = □ in these two examples. After the symplectomorphism induced by the usual R𝜉 -gauge-fixing fermion for the gauge
𝖻A = d†A = 0, we have the following:

(3.43)

Step (iii): Removing Anti-Fields: The third and final step is now the most subtle one, as we need to truncate the interaction vertices
to a subset to remove the anti-fields. The colour-stripped fields form a subspace𝔉 of𝔅with a natural complement𝔄 of colour-stripped
anti-fields, and we have projectors Π𝔉 and Π𝔄 such that

𝗂𝖽𝔅 = Π𝔉 + Π𝔄, Π2
𝔉 = Π𝔉. (3.44)

Removing the anti-fields from the BV action then changes the dg commutative algebra (𝔅, 𝖽,𝗆2) of the colour-stripped action to the
dg commutative algebra (𝔅′, 𝖽′,𝗆′

2). Because the action contains only fields, the differential and product it encodes can only map
fields to anti-fields. Hence,

𝖽′ :=Π𝔄 ◦ 𝖽 ◦Π𝔉,

𝗆′
2 :=Π𝔄 ◦𝗆2 ◦ (Π𝔉 ⊗ Π𝔉)

(3.45)

with a potential cyclic structure preserved. This directly extends to modules encoding potential matter fields.
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This projection requires to redefine 𝖻 to preserve . It is, however, clear that there is a redefinition of 𝖻 to an operator 𝖻′

such that all fields are in its kernel and that . In our above example, we have

(3.46)

We see that the anti-field of the Nakanishi–Lautrup field takes over the role of the ghost, and this is a generic feature of gauge fixing
to 𝖻A = 0. It is therefore clear that a redefinition 𝖻 → 𝖻′ with always exists.
Moreover, it follows that the image of 𝖻′ is now fully contained in the subspace of fields 𝔉 ⊆ 𝔅:

im(𝖻′) ⊆ 𝔉 ⊆ ker(𝖻′). (3.47a)

Analogously, we have for the anti-fields 𝔄 ⊆ 𝔅:

im(𝖽′) ⊆ 𝔄 ⊆ ker(𝖽′). (3.47b)

This generalises to arbitrary gauge theories as well as abelian higher gauge theories, such as = 0 supergravity.
In all cases of interest, it turns out that gauge fixing in thismanner ensures that 𝖻 is of second order, so that we arrive at a gauge-fixed

BV■-algebra (𝔅, 𝖽′,𝗆′
2, 𝖻

′). This observation directly extends to BV■-modules.

Definition 3.37. A gauge-fixed BV■-algebra is a BV■-algebra 𝔅 together with a decomposition 𝔅 = 𝔉⊕𝔄 as graded vector spaces into
field and anti-field spaces such that (3.47) are satisfied.

3.6. Koszul Hierarchy: Kinematic L∞-Algebras

Let us briefly give an outlook on our forthcoming paper,[87] in which we shall discuss the homotopy generalisation of the picture pre-
sented here. That is, the algebras with unary and binary operations (i.e. differentials and binary products) appearing in our discussion
will be replaced by operations with arbitrary arity. But we can encounter such homotopy algebras already here.
Derived brackets of the type (3.1) are reminiscent of other derived bracket constructions, cf. [123–125], which naturally produce

higher brackets of arbitrary arity. A similar phenomenon can be observed here. Consider a theory with colour-stripped dg commutative
algebra (𝔅, 𝖽,𝗆2) together with a nilpotent operator 𝖻 of degree −1 which gives rise to the colour-stripped propagator

𝖻

[𝖻,𝖽]
. While the

derived bracket {−,−} given in (3.1), which is the operator Φ2
𝖻
in 𝔅 as defined in (3.32), is no longer a Lie bracket, one finds that the

Jacobi identity is violated only up to homotopy. Generally, we have the following result.

Proposition 3.38 [126, Section 2.5]. Given a graded commutative algebra 𝔄 with a differential 𝛿 of degree −1, the operations Φr
𝛿 defined

in (3.32) form the grade-shifted higher products of an L∞-algebra. This L∞-algebra is known as the Koszul hierarchy. It is quasi-isomorphic
to the cochain complex defined by 𝛿.

For examples, see also [126, 127].
Another important observation was made in [128], where the Koszul hierarchy was interpreted as a twisting of a cochain complex

by a specific twist, see also [129]. This observation not only gives a surprisingly simple proof of the above proposition but also provides
for new examples of hierarchies of higher brackets, called higher braces there. Such braces are referred to as natural ones if they use
only the data that are available for any graded associative commutative algebra with a differential 𝛿. As such, they could possibly also
be relevant as kinematic L∞-algebras.
The Koszul hierarchy is singled out by the requirement that the binary bracket measures the failure of 𝛿 being first order, the

coefficient of 𝛿(𝗆2(𝗆2(𝜙1,𝜙2),𝜙3)) in Φ3
𝛿(𝜙1,𝜙2,𝜙3) in (3.32) is ±1 and that Φk

𝛿 = 0 implies Φk+1
𝛿 = 0 (hereditarity), cf. [128].

Hence, we can define pre-BV■-algebras.

Definition 3.39. A pre-BV■-algebra is a dg commutative algebra (𝔅, 𝖽,𝗆2) together with a differential 𝖻 of degree −1. The
kinematic L∞-algebra of a pre-BV

■-algebra is the (shifted) L∞-algebra given by the Koszul hierarchy.
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Recall, however, from above, that there are, in fact, a number of possibly relevant kinematic L∞-algebras (which are, again, isomor-
phic to the Koszul hierarchy).
We then have the following immediate specialisations of our above notions:

Corollary 3.40. A pre-BV■-algebra in which the higher product 𝜇2 in the kinematic L∞-algebra satisfies the shifted Jacobi identity (3.2b) is a
pseudo-BV■-algebra. A pre-BV■-algebra with strict kinematic L∞-algebra is a BV

■-algebra.

Recall from (3.32) that 𝖻 being of second order is tantamount to Φ3
𝛿(−,−,−) being trivial.

There are two important points to note. First of all, while L∞-algebras can always be strictified, there is no reason to believe that
any pre-BV■-algebra is quasi-isomorphic to a pseudo-BV■-algebra. Hence, we cannot expect all field theories to have an underlying
pseudo-BV■-algebra, or, equivalently, exhibit CK duality. So, although every theory has a kinematic L∞-algebra associated to it, this
does not imply every theory has CK duality; this kinematic algebra should not be regarded as that of some CK-duality respecting
numerators nor an off-shell CK-duality manifesting action.
Secondly, it may be surprising that such a physically evidently non-trivial datum as the kinematic Lie algebra extends to a dg Lie

algebra which is quasi-isomorphic to an ordinary cochain complex. Again, however, we have to note that this quasi-isomorphism does
not amount to a physical equivalence, which would be captured by a quasi-isomorphism of the underlying pseudo-BV■-algebras.
Moreover, we note that for most interesting field theories, the operator 𝖻 has trivial cohomology, and hence the kinematic L∞-algebra
is quasi-isomorphic to the trivial one.
We plan to investigate the deeper implications of kinematic L∞-algebras in future work.

[87]

Pseudo-BV■-Algebras vs BV■-Algebras: Let us close this section on CK duality with a comment on the difference between pseudo-
BV■-algebras and BV■-algebras. As we saw, a pseudo-BV■-algebra (and a module over it) is the minimal requirement for having a
kinematic Lie algebra manifested on the Feynman diagram expansion of the currents of a field theory. We can now conclude that the
restriction to BV■-algebras is certainly natural from a mathematical perspective: the fact that the operator 𝖻 in the data of a pseudo-
BV■-algebra is of second order is equivalent to the Poisson identity by Proposition 3.25, which, in turn, is equivalent to the Koszul
hierarchy being a dg Lie algebra.
From a physics perspective, it is natural to ask for the kinematic Lie algebra to lift uniquely to arbitrary local operators constructed

by multiplying the fields in the theory. This unique lift is provided by the additional Poisson identity.

4. Double Copy and Syngamies for Special BV■-Algebras

In this section, we shall explain how two BV■-algebras of field theories can be combined into a syngamy. The double copy of gauge
theories to supergravity theories is a special case of this construction.
Outline: Given our discussion of CK duality, we are led to looking for an interpretation of the double copy in terms of BV■-

algebras,31 and the obvious starting point is the tensor product of two BV■-algebras.[30,44,59,60] As we will see below, this tensor product
exists, extending the tensor product of two dg commutative algebras.
This direct tensor product, however, does not match our expectations. To see this, let us sketch the simple example of biadjoint

scalar field theory, which is fully developed in Section 5.1. The BV■-algebra of this theory has an underlying cochain complex 𝖢𝗁(𝔅)
which is concentrated in degrees 1 and 2,

𝖢𝗁(𝔅) =
(
𝔅1

𝖽
←←←←←←←←←←→ 𝔅2

)
=

(
𝔤⊗𝒞∞(𝕄d)

𝗂𝖽𝔤⊗□
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝔤⊗𝒞∞(𝕄d)

)
(4.1)

for 𝔤 some Lie algebra. The kinematic Lie algebra is simply the Lie algebra 𝔤, and the double copy of𝔅 with itself is expected to yield
biadjoint scalar field theory with fields taking values in 𝔤⊗ 𝔤⊗𝒞∞(𝕄d).
The tensor product 𝖢𝗁(𝔅)⊗ 𝖢𝗁(𝔅), however, is given by the cochain complex((
𝔤⊗𝒞∞(𝕄d)

)⊗2 𝖽̂
←←←←←←←←←←→ ℝ2 ⊗

(
𝔤⊗𝒞∞(𝕄d)

)⊗2 𝖽̂
←←←←←←←←←←→

(
𝔤⊗𝒞∞(𝕄d)

)⊗2)
(4.2)

concentrated in degrees 2, 3, and 4, which has several problems. First of all, there are no BV fields, as all elements of degree 1
are trivial. We will show that this problem can be solved by switching from the tensor product BV■-algebra 𝔅̂ to its kinematic Lie
algebra 𝔎̂ :=𝔎𝔦𝔫(𝔅̂), which involves a degree shift. After this, we end up with a cochain complex concentrated in degrees 1, 2, and 3.
The field space, 𝔎̂1 =

(
𝔤⊗𝒞∞(𝕄d)

)⊗2
, however, is still larger than the expectation 𝔤⊗ 𝔤⊗𝒞∞(𝕄d). This issue can be addressed by

considering BV■-algebra over the Hopf algebra ℌ𝕄d of Example 3.17, which is generated by the differential operators on space-time
𝕄d with constant coefficient and hence allows us to control momentum dependence. As shown in Appendix A, there is a natural

31 In the rest of the paper, we will focus on BV■-algebras and comment here and there on the problems of generalising the picture to pseudo-BV■-
algebras.
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notion of restricted tensor product of BV■-algebras which are modules over a restrictedly tensorable cocommutative Hopf algebra
such as ℌ𝕄d , which here amounts to restricting the tensor product to the kernel of the operators

𝜕
𝜕x𝜇

⊗ 𝗂𝖽 − 𝗂𝖽⊗
𝜕
𝜕x𝜇

(4.3)

with x𝜇 the Cartesian coordinates on𝕄d. As a result the tensor product𝒞∞(𝕄d)⊗𝒞∞(𝕄d) is reduced to𝒞∞(𝕄d), and we have a new,
reduced kinematic Lie algebra 𝔎̃. Even after this reduction, however, the homogeneous subspaces of 𝔎̃ of degrees 2 and 3 are still too
large and require further reduction. In fact, we note that the space of BV fields is, in a sense, double its expected size.32 Moreover, we
note that for the biadjoint scalar field theory, 𝔎̃ is split in half as

𝔎̃ = coker(𝖻⊗ 𝗂𝖽 − 𝗂𝖽⊗ 𝖻)⊕ ker(𝖻⊗ 𝗂𝖽 − 𝗂𝖽⊗ 𝖻), (4.4)

and ker(𝖻⊗ 𝗂𝖽 − 𝗂𝖽⊗ 𝖻) is naturally a dg Lie subalgebra. Hence, we restrict further to the kernel 𝖻⊗ 𝗂𝖽 − 𝗂𝖽⊗ 𝖻, and the resulting
dg Lie algebra turns out to be the expected one for biadjoint scalar field theory. This restriction should be seen analogously to the
section condition in double field theory (albeit we only double the functions, not the dimensions of the tensors). In this sense, the
double copy is closely related to double field theory, cf. also [44]. After a first version of this paper was finished, we became aware
of the paper,[51] in which essentially the same restriction was used in the context of a special form of = 0 supergravity on Hermi-
tian manifolds.
In the following, we will develop the construction sketched above in detail.

4.1. Tensor Products of BV■-Algebras

Ordinary Tensor Product: Recall that BV■-algebras as defined in Definition 3.24 are dg commutative algebras endowed with an
additional operation 𝖻. The tensor product of two dg commutative algebras ℭL = (ℭL, 𝖽L,𝗆2L) and ℭR = (ℭR, 𝖽R,𝗆2R) is another dg
commutative algebra ℭ̂ = (ℭ̂, 𝖽̂, 𝗆̂2) with ℭ̂ = ℭL ⊗ ℭR and the differential and product defined by

𝖽̂(𝜙1L ⊗𝜙1R) := 𝖽L𝜙1L ⊗𝜙1R + (−1)|𝜙1L|𝜙1L ⊗ 𝖽R𝜙1R,

𝗆̂2(𝜙1L ⊗𝜙1R,𝜙2L ⊗𝜙2R) := (−1)|𝜙1R||𝜙2L|𝗆2L(𝜙1L,𝜙2L)⊗𝗆2R(𝜙1R,𝜙2R).
(4.5a)

If both ℭL and ℭR are endowed with metric ⟨−,−⟩L and ⟨−,−⟩R of degrees nL and nR, respectively, then the tensor product ℭ̂ is
endowed with a metric of degree nL + nR given by

33

⟨𝜙1L ⊗𝜙1R,𝜙2L ⊗𝜙2R⟩ := (−1)|𝜙1R||𝜙2L|+nR(|𝜙1L|+|𝜙2L|)⟨𝜙1L,𝜙2L⟩L⟨𝜙1R,𝜙2R⟩R. (4.5b)

This definition extends to a tensor product of two (metric) BV■-algebras 𝔅L and 𝔅R.

Definition 4.1. The tensor product of two BV■-algebras 𝔅L and 𝔅R is the BV
■-algebra 𝔅̂, whose underlying dg commutative algebra is the

tensor product of 𝔅L and 𝔅R, both regarded as dg commutative algebras, and whose operator 𝖻̂ is defined as

𝖻̂(𝜙L ⊗𝜙R) := 𝖻̂+(𝜙L ⊗𝜙R) := 𝖻L𝜙L ⊗𝜙R + (−1)|𝜙L|𝜙L ⊗ 𝖻R𝜙R (4.5c)

for all 𝜙L ⊗𝜙R ∈ 𝔅̂. Correspondingly, we have a natural definition of ■ on the tensor product,

(4.5d)

We will be particularly interested in the special case that both 𝔅L and 𝔅R are BV■-algebras over a Hopf algebra ℌ with
. In this case, 𝔅̂ = 𝔅L ⊗𝔅R is also a module over ℌ with

𝜒▻(𝜙L ⊗𝜙R) := (𝜒▻𝜙L)⊗𝜙R + 𝜙L ⊗ (𝜒▻𝜙R) (4.5e)

for all 𝜒 ∈ ℌ and 𝜙L ⊗𝜙R ∈ 𝔅̂.

32 A similar problem arises in the pure spinor formulation of supergravity, see the comments in 5.6.
33 For a proof of the cyclicity of this tensor product, see Appendix C.
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Restricted Tensor Product: As explained above, the ordinary tensor product is not directly suitable for an interpretation of the double
copy, and we have to use the restricted tensor product introduced in Appendix A.

Proposition 4.2. Let ℌ be a restrictedly tensorable cocommutative Hopf algebra. Given two BV■-algebras 𝔅L = (𝔅L, 𝖽L,𝗆2L, 𝖻L) and 𝔅R =
(𝔅R, 𝖽R,𝗆2R, 𝖻R) over ℌ with , the tuple (𝔅̂, 𝖽̂, 𝗆̂2, 𝖻̂) with

𝔅̂ :=𝔅L ⊗
ℌ 𝔅R :=

⋂
𝜒∈ℌ

ker
(
(𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒)▻

)
⊆ 𝔅L ⊗𝔅R (4.6a)

and34

𝖽̂(𝜙1L ⊗
ℌ 𝜙1R) := 𝖽L𝜙1L ⊗𝜙1R + (−1)|𝜙1L|𝜙1L ⊗ 𝖽R𝜙1R,

𝗆̂2(𝜙1L ⊗
ℌ 𝜙1R,𝜙2L ⊗

ℌ 𝜙2R) := (−1)|𝜙1R||𝜙2L|𝗆2L(𝜙1L,𝜙2L)⊗𝗆2R(𝜙1R,𝜙2R),

𝖻̂−(𝜙1L ⊗
ℌ 𝜙1R) := 𝖻L𝜙1L ⊗𝜙1R − (−1)|𝜙1L|𝜙1L ⊗ 𝖻R𝜙1R

(4.6b)

for all 𝜙1L,2L ∈ 𝔅L and 𝜙1R,2R ∈ 𝔅R forms a dg BV algebra; in particular, 𝖻̂− is of second order with respect to 𝗆̂2.
If both 𝔅L and 𝔅R come with ℌ-linear metrics ⟨−,−⟩L and ⟨−,−⟩R of degrees nL and nR, respectively, then

⟨𝜙1L ⊗
ℌ 𝜙1R,𝜙2L ⊗

ℌ 𝜙2R⟩ := (−1)|𝜙1R||𝜙2L|+nR(|𝜙1L|+|𝜙2L|)⟨𝜙1L,𝜙2L⟩L⟨𝜙1R,𝜙2R⟩R (4.6c)

defines a metric for (𝔅̂, 𝖽̂, 𝗆̂2, 𝖻̂−) of degree nL + nR for all 𝜙1L,2L ∈ 𝔅L and 𝜙1R,2R ∈ 𝔅R.

Proof. From the discussion in Appendix A, it is clear that (𝔅̂, 𝖽̂, 𝗆̂2) forms a dg commutative algebra, and that 𝖻̂− is a differen-
tial of degree −1. Furthermore, we have 𝜒▻(𝜙L ⊗

ℌ 𝜙R) = (𝜒▻𝜙L)⊗
ℌ 𝜙R = 𝜙L ⊗

ℌ (𝜒▻𝜙R) for all 𝜒 ∈ ℌ, 𝜙L ∈ 𝔅L, and 𝜙R ∈ 𝔅R.
Consequently,

(4.7)

because of the assumption . In addition, the derived bracket (3.1) now becomes

{𝜙1L ⊗
ℌ 𝜙1R,𝜙2L ⊗

ℌ 𝜙R2} = (−1)|𝜙1R||𝜙2L|{𝜙1L,𝜙2L}L ⊗𝗆2R(𝜙1R,𝜙2R) − (−1)|𝜙1R||𝜙2L|+|𝜙1L|+|𝜙2L|𝗆2L(𝜙1L,𝜙2L)⊗ {𝜙1R,𝜙2R}R (4.8)

for all 𝜙1L,2L ∈ 𝔅L and 𝜙1R,2R ∈ 𝔅R, and closure on 𝔅̂ follows from closure of the defining operations on 𝔅̂. It remains to show that
𝖻̂− is of second order, which is equivalent to the shifted Poisson identity (3.35), as we saw in Proposition 3.25. Using the Poissonator
defined in (C.3), some lengthy but straightforward calculation similar to the derivation (C.4) shows that

𝖯𝗈𝗂𝗌𝗌(𝜙1L ⊗
ℌ 𝜙1R, 𝜙2L ⊗

ℌ 𝜙2R, 𝜙3L ⊗
ℌ 𝜙3R) = (−1)|𝜙2R||𝜙3L|+|𝜙1R|(|𝜙2L|+|𝜙3L|) [𝖯𝗈𝗂𝗌𝗌L(𝜙1L,𝜙2L,𝜙3L)⊗𝗆2R(𝜙1R,𝗆2R(𝜙2R,𝜙3R))

− (−1)|𝜙1L||𝜙2L|+|𝜙3L|𝗆2L(𝜙1L,𝗆2L(𝜙2L,𝜙3L))⊗ 𝖯𝗈𝗂𝗌𝗌R(𝜙1R,𝜙2R,𝜙3R)
]

(4.9)

for all 𝜙1L,2L,3L ∈ 𝔅L and 𝜙1R,2R,3R ∈ 𝔅R. Hence, the shifted Poisson identities for (𝔅L, 𝖽L,𝗆2L, 𝖻L) and (𝔅R, 𝖽R,𝗆2R, 𝖻R) imply that of
(𝔅̂, 𝖽̂, 𝗆̂2, 𝖻̂−). The properties of the metric follow by restriction of those on the ordinary tensor product, see also Appendix C. □

Remark 4.3. When (𝔅L, 𝖽L,𝗆2L, 𝖻L) and (𝔅R, 𝖽R,𝗆2R, 𝖻R) aremere pseudo-BV■-algebras, see Definition 3.1, then the tuple (𝔅̂, 𝖽̂, 𝗆̂2, 𝖻̂−)
defined in (4.6) is generally not even a pseudo-BV■-algebra. This is because the Jacobiator (C.3) for the derived bracket (4.8) does not
only involve the Jacobiators for the derived brackets of (𝔅L, 𝖽L,𝗆2L, 𝖻L) and (𝔅R, 𝖽R,𝗆2R, 𝖻R) but also their Poissonators, defined in (C.3).
In all physical applications, however, we are dealing exclusively with (gauge-fixed) BV■-algebras.

Remark 4.4. Consider BV■-algebras 𝔅L and 𝔅R, which are modules over the Hopf algebra ℌ𝕄d defined in Example 3.17 and whose
homogeneously graded vector spaces are rings over 𝒞∞(𝕄d) and hence fields over space-time 𝕄d. The above construction of the
restricted tensor product will ensure that the homogeneously graded subspaces of 𝔅̂ are still fields over 𝕄d, instead of fields over
𝕄d ⊗𝕄d, as would be the case for the ordinary tensor product.

34 Note the sign flip between the two summands in 𝖻̂ relative to (4.5c), which will turn out to be convenient.
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4.2. Syngamies of Pure Gauge Theories

Syngamies: Let us now come to the construction of syngamies, i.e. the construction of a field theory from two BV■-algebras. The
usual double copy constructions and its variants will turn out to be special cases of this construction. We start with the construction for
pure gauge theories, such as pure Yang–Mills or Chern–Simons theory, and theories with a flavour Lie algebra, such as the biadjoint
scalar theory; theories withmatter, i.e. fields in general representation of a gauge or flavour Lie algebra, will be discussed in Section 4.3.
Even after taking the restricted tensor product𝔅L ⊗

ℌ 𝔅R of two BV
■-algebras (𝔅L, 𝖽L,𝗆2L, 𝖻L) and (𝔅R, 𝖽R,𝗆2R, 𝖻R) underlying two

field theories, we still end up with a BV field space that is twice the expected size. Concretely, each of the factors 𝔅L and 𝔅R contains
subspaces for fields and anti-fields, and hence the tensor product contains the subspaces

fields⊗ fields, fields⊗ anti-fields, anti-fields⊗ fields, anti-fields⊗ anti-fields, (4.10)

which is twice the expected field content of a syngamy.35 We therefore have to restrict to the correct subspace, and a convenient choice
in the case of gauge-fixed BV■-algebras is the restriction to

ker(𝖻̂−) = ker(𝖻L ⊗ 𝗂𝖽 − 𝗂𝖽⊗ 𝖻R) (4.11)

with 𝖻̂− defined in (4.6b), which naturally extends the restriction from the ordinary tensor product to the restricted tensor product over
ℌ. Recall from Definition 3.37 that for gauge-fixed BV■-algebras, the kernel of 𝖻 contains the field space.36 Considering the kernel of
𝖻means to work with a slightly enlarged BV field space 𝔉′ = ker(𝖻) ⊇ 𝔉, which will turn out to be harmless in all relevant examples.
Denoting the cokernel by𝔄′, the kernel of 𝖻̂− will consist of the space 𝔉′

L ⊗
ℌ 𝔉′

R as well as elements of 𝔉′
L ⊗

ℌ 𝔄′
R ⊕ 𝔄′

L ⊗
ℌ 𝔉′

R that
are symmetrised such that 𝖻̂− annihilates them.
The BV algebra structure on ker(𝖻̂−) yields a (metric) dg Lie algebra, which defines the syngamy field theory.

Definition 4.5. Let ℌ be a restrictedly tensorable cocommutative Hopf algebra. Furthermore, let 𝔅L = (𝔅L, 𝖽L,𝗆2L, 𝖻L) and 𝔅R =
(𝔅R, 𝖽R,𝗆2R, 𝖻R) be two gauge-fixed BV■-algebras over ℌ with and let 𝔅̂ = (𝔅̂, 𝖽̂, 𝗆̂2, 𝖻̂−) be the restricted tensor
product over ℌ as defined in (4.6). The syngamy of 𝔅L and 𝔅R is the restricted kinematic dg Lie algebra𝔎𝔦𝔫0(𝔅̂) of Corollary 3.28.

Inner Product: As we shall show now,𝔎0 can naturally be endowed with ametric of degree−3, which is necessary for the definition
of the action. The following construction may seem a bit abstract and not particularly well-motivated. Nevertheless, it will be the one
reproducing all expected features when we will look at concrete examples in Section 5.37

Firstly, in view of the tensor product (4.6), let us write

𝖽̂±(𝜙L ⊗
ℌ 𝜙R) := 𝖽L𝜙L ⊗𝜙R ± (−1)|𝜙L|𝜙L ⊗ 𝖽R𝜙R (4.12)

for all 𝜙L,R ∈ 𝔅L,R. Evidently, 𝖽̂+ = 𝖽̂. It is then easy to check that

(4.13a)

and

⟨𝖽̂±𝜙̂1, 𝜙̂2⟩ = −(−1)|𝜙̂1|⟨𝜙̂1, 𝖽̂±𝜙̂2⟩ (4.13b)

for all 𝜙̂1,2 ∈ 𝔅̂.

Definition 4.6. Let 𝔅̂ = (𝔅̂, 𝖽̂, 𝗆̂2, 𝖻̂−) be the dg BV algebra defined in (4.6) and let𝔎0 = 𝔎𝔦𝔫0(𝔅̂) be the associated syngamy. Suppose that
𝔅̂ has a metric ⟨−,−⟩𝔅̂ of degree −6. We say that a metric ⟨−,−⟩𝔎0 on the syngamy of degree −3 is compatible if

(4.14)

35 Again we note that the same problem arises in the pure spinor formulation of supergravity, see the comments in 5.6.
36 In many examples, ker(𝖻) = 𝔉 = im(𝖻).
37 There is an analytical subtlety here, which we will largely gloss over outside of this footnote. If ⟨−,−⟩𝔅L

and ⟨−,−⟩𝔅R
are finite and well-defined,

then of course so is the tensor product ⟨−,−⟩𝔅̂ and, thus, ⟨−,−⟩𝔎0 defined with respect to it. Now, for analytic purposes it is convenient to have
𝔅L and 𝔅R be nuclear topological vector spaces, for example, spaces of smooth functions 𝒞∞(𝕄d) with the usual Fréchet topology, such that the
topological tensor product behaves well. In that case, however, the naïve inner product ⟨f, g⟩ = ∫𝕄d fg fails to be finite for general smooth f and g,
and if one double-copies this, the restricted tensor product will consist of functions that are translation-invariant along d directions in 𝕄d ×𝕄d,
which means that ⟨−,−⟩𝔅̂ and therefore ⟨−,−⟩𝔎0 have an ‘infinite volume factor’ vol(𝕄d) that must be cancelled or otherwise regulated away.
Working naïvely, one thus runs into such harmless but annoying infinite factors, which are an artefact of the lack of infrared regulators. For more
sophisticated approaches to infrared regulators, see for example.[11,130]
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for all 𝜙̂1,2[1] ∈ 𝔎0 with 𝖽̂− defined in (4.12).

Proposition 4.7. Consider again the situation in Definition 4.6 and suppose that the action of ■ is invertible. Then

(4.15)

for all 𝜙̂1,2[1] ∈ 𝔎0 is a compatible metric on the syngamy.

If ■ is invertible, there is a unique compatible metric on𝔎0.

Proof. Note that as pointed out in (4.13), we have that . Consequently,
and so, our assumption that ■ is invertible implies that 𝖽̂− is injective. Thus, ⟨−,−⟩𝔎0 is non-degenerate.
Next, we must show that

⟨𝜙̂1[1], 𝜙̂2[1]⟩𝔎0 = (−1)|𝜙̂1[1]||𝜙̂2[1]|⟨𝜙̂2[1], 𝜙̂1[1]⟩𝔎0 ,

⟨𝖽𝔎0 𝜙̂1[1], 𝜙̂2[1]⟩𝔎0 = −(−1)|𝜙̂1[1]|⟨𝜙̂1[1], 𝖽𝔎0 𝜙̂2[1]⟩𝔎0 ,

⟨[𝜙̂1[1], 𝜙̂2[1]]𝔎0 , 𝜙̂3[1]⟩𝔎0 = −(−1)|𝜙̂1[1]||𝜙̂2[1]|⟨𝜙̂2[1], [𝜙̂1[1], 𝜙̂3[1]]𝔎0⟩𝔎0

(4.16)

for all 𝜙̂1,2,3[1] ∈ 𝔎0.
Firstly, again using (4.13), we find

(4.17)

Furthermore, (4.13) also yields

(4.18)

Finally,

(4.19)

where in the third step we have used (4.13), inserted the definition (3.1) of the derived bracket, and used that 𝜙̂1,2,3 ∈ ker(𝖻̂−), and in
the sixth step we have used the cyclicity of 𝗆2. □

We note, however, that in most cases, ■ is not invertible. Indeed, the kernel of ■ usually consists of the asymptotically free fields
in the perturbative expansion. Nevertheless, this is a set of measure zero in the space of all fields, and the action is expected to be
continuous on this space. We can therefore always extend the inner product between the interacting fields to the full field space, up
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to technical issues of mathematical analysis that are of little consequence for physical computations. Moreover, operator insertions
closely analogous to have also been introduced in the context of Kodaira–Spencer theory or Bershadsky–Cecotti–Ooguri–Vafa
(BCOV) theory.[131]38

We also note that the inner product is non-local, such that the resulting (Maurer–Cartan) action may be also non-local, since it
contains a factor of ■−1; this happens for instance in the double copy of Chern–Simons theory, which agrees with the non-local action
found in [32]. However, in the common case where 𝖻 is merely a degree shift (as in the biadjoint scalar) and hence 𝖽̂ is a degree-shifted
version of ■, so that combine to a degree shift. Hence, the inner product and the resulting action are local if the original left
and right theories are local.
Relation to the Double Copy: Let us briefly explain how the above construction relates to the usual double copy construction.

Recall the two perspectives on the CK duality depicted in (2.26). There was a freedom as to whether to assign the operator 𝖻 in the

colour-stripped propagator to the propagator or to the interaction vertex. In the combination of two kinematic Lie algebras as for
example, in the double copy construction, we double copy everything except for the operator ■. Correspondingly, if we consider the
combination of the kinematic Lie algebras of two BV■-algebras 𝔅L and 𝔅R, we can either work with the propagator and interaction
vertex39 very schematically written as follows:

(4.20)

or, and this is the picture emerging from our tensor product construction,

(4.21)

This is the same choice as made in [44, 49, 50] when defining the double copy. Note that we have indeed

(4.22)

on ker(𝖻̂−), as required for the equivalence of the two perturbative expansions. The kinematic operator 𝖽𝔎 should be, when defined,
the inverse of the propagator P̃. Note that for the differential operator 𝖽̂ = 𝖽̂+ of the tensor product, we have

(4.23)

as required. Hence, the perturbative expansions of currents of the reduced kinematic dg Lie algebra𝔎0 of the restricted tensor product
𝔅L ⊗

ℌ 𝔅R indeed reproduces the expected result of a combination of the kinematic Lie algebras.
To see that the cyclic structure is the correct one is a bit more subtle. It turns out that the differential and the Lie bracket in𝔎0 are

such that they can be rescaled by a factor to produce local expressions, modulo a few technical subtleties. Instead of presenting
an abstract discussion, we simply refer to the concrete examples in Section 5.
Tensoring by Colour: The above procedure allows us to produce a field theory or dg Lie algebra from two BV■-algebras. The inverse

of colour-stripping, namely tensoring a dg commutative algebra by a Lie algebra also yields a field theory in the form of a dg Lie algebra.
It will turn out that there is a special BV■-algebra, namely that of the biadjoint scalar field theory, for which both constructions are
equivalent. Further details are found in Remark 5.1.
Relation to our Previous Construction: In our previous work,[29] we considered the factorisation of the dg Lie algebra 𝔏 of a gauge

field theory into three parts:

𝔏 ≅ 𝔤⊗ (𝔨⊗𝜏 𝔖𝔠𝔞𝔩), (4.24)

where 𝔤 is the gauge Lie algebra, 𝔨 is a kinematic vector space and𝔖𝔠𝔞𝔩 :=𝒞∞(𝕄d)[−1]⊕𝒞∞(𝕄d)[−2] is the BV field space of a field
theory of a single, real-valued scalar field. Moreover,⊗𝜏 is a twisted tensor product, a generalisation of a semi-direct product, allowing
𝔨 to act on 𝒞∞(𝕄d).
In our new picture, the BV■-algebra 𝔅 is an algebraic enhancement of the dg commutative algebra 𝔨⊗𝜏 𝔖𝔠𝔞𝔩. Moreover, if 𝔅

carries an action of the Hopf algebra ℌ𝕄d , then the kernel of this action can naturally be associated with the space T∗[−1]𝔨.

38 We are grateful to Pietro Antonio Grassi for bringing this to our attention.

39 Here and in the following, we are a bit cavalier with the action of , but the meaning should be obvious.
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In [29], we constructed the double copy by doubling the kinematic Lie algebra:

𝔏double ≅ 𝔨⊗𝜏 (𝔨⊗𝜏 𝔖𝔠𝔞𝔩), (4.25)

which makes intuitive sense. Here, we tensor together two copies of 𝔅, which results in an unwanted doubling of 𝔖𝔠𝔞𝔩. This is
eliminated by considering the restricted tensor product⊗ℌ, reducing the functions to those on a single copy space-time𝕄d, and the
kernel of 𝖻̂−, reducing the quadrupled BV field space to the expected one.
Syngamies via Compactified Space-Time: In the case of concrete field theories over Minkowski space 𝕄d, we run into the usual

analytical problems of field theories. For example, the metrics are really defined only for a subset of fields that do not include, for
example, asymptotically free fields. While inconsequential for concrete considerations, trying to resolve these issues leads to some
interesting observations.
A natural way to cure these is to compactify space-time from 𝕄d to the torus 𝕄d∕Λℤd with size Λ and work with the space 𝒞 of

finite linear combinations of (possibly off-mass-shell) plane waves on the torus. Note that the Hopf algebra ℌ𝕄d has a natural action
on𝒞 after compactification. Moreover, we can replace the restricted tensor product of Appendix A by the ordinary tensor product over
the Hopf algebra, because

𝒞 ⊗ℌ𝕄d
𝒞 ≅ 𝒞, (4.26)

as shown in Proposition B.1.
Such a compactification is certainly useful since it cures all infrared divergences, but it raises also some conceptual issues: what

does it mean to consider scattering amplitudes in a compact space and — worse — periodic time? The answer is that, formally, one
can always define the scattering amplitudes via the homological perturbation lemma, and this, in turn, is equivalent to computing the
scattering amplitudes on flat space subject to the condition that all incoming and outgoing momenta lie on the dual lattice to Λℤd.
Thus, by setting the radii of the compactified torus appropriately, one can recover all scattering amplitudes.

4.3. Syngamies of Theories with Matter Fields

Our above constructions readily extend to theories containing matter fields. In the following, we briefly explain the required construc-
tions. The relevant theorems are more or less the same as for pure gauge theories, and we will omit the proofs if they parallel to those
for the pure gauge theory case up to minor and evident changes.
In the pure gauge case, the syngamywas constructed from a tensor product of BV■-algebras. The evident generalisation for theories

with fields in general representations of a gauge or flavour Lie algebra is to consider tensor products of BV■-modules.
Tensor Products of BV■-Modules: In the following, let ℌ be again a restrictedly tensorable cocommutative Hopf algebra. We then

have the following result for the tensor product of BV■-modules.

Proposition 4.8. Given two BV■-algebras𝔅L = (𝔅L, 𝖽L,𝗆2L, 𝖻L) and𝔅R = (𝔅R, 𝖽R,𝗆2R, 𝖻R) with overℌ and mod-
ules VL = (VL, 𝖽VL ,▻VL

, 𝖻VL ) and VR = (VR, 𝖽VR ,▻VR
, 𝖻VR ) over them respectively, the tuple V̂ = (V̂, 𝖽V̂ ,▻V̂ , 𝖻V̂−) with

V̂ :=VL ⊗
ℌ VR (4.27a)

and

𝖽V̂ (vL ⊗
ℌ vR) := 𝖽VLvL ⊗ vR + (−1)|vL|vL ⊗ 𝖽VRvR,

(𝜙L ⊗
ℌ 𝜙R)▻V̂ (vL ⊗

ℌ vR) := (−1)|𝜙R||vL|(𝜙L▻VL
vL)⊗ (𝜙R▻VR

vR),

𝖻V̂−(vL ⊗
ℌ vR) := 𝖻VLvL ⊗ vR − (−1)|vL|vL ⊗ 𝖻VRvR

(4.27b)

for all vL ∈ VL, vR ∈ VR, 𝜙L ∈ 𝔅L, and 𝜙R ∈ 𝔅R forms a dg BV module over the dg BV algebra 𝔅̂ :=𝔅L ⊗
ℌ 𝔅R defined in Proposition 4.2.

The extension of the derived bracket on 𝔅̂ to V̂ reads as

{𝜙L ⊗
ℌ 𝜙R, vL ⊗

ℌ vR} = (−1)|𝜙R||vL|{𝜙L, vL}⊗ (𝜙R▻VR
vR) − (−1)|𝜙R||vL|+|𝜙L|+|vL|(𝜙L▻VL

vL)⊗ {𝜙R, vR}. (4.27c)

Provided that both𝔅L and𝔅R come withℌ-linear metrics ⟨−,−⟩L and ⟨−,−⟩R of degrees nL and nR, respectively, and both VL and VR come
with ℌ-linear metrics ⟨−,−⟩VL and ⟨−,−⟩VR of degrees nL and nR, respectively, then
⟨v1L ⊗ v1R, v2L ⊗ v2R⟩V̂ := (−1)|v1R||v2L|+nR(|v1L|+|v2L|)⟨v1L, v2L⟩VL⟨v1R, v2R⟩VR (4.28)

defines a ℌ-bilinear metric for V̂ of degree nL + nR for all v1L,2L ∈ VL and v1R,2R ∈ VR.

Proof. The proof follows closely that of Proposition 4.2. □
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Syngamies: We can straightforwardly generalise syngamies to gauge theories with matter as follows.

Definition 4.9. Let 𝔅L = (𝔅L, 𝖽L,𝗆2L, 𝖻L) and 𝔅R = (𝔅R, 𝖽R,𝗆2R, 𝖻R) be two BV■-algebras over ℌ with , and
let 𝔅̂ = (𝔅̂, 𝖽𝔅̂, 𝗆̂2, 𝖻𝔅̂−) be their tensor product over ℌ as defined in (4.6). Let VL = (VL, 𝖽VL ,▻VL

, 𝖻VL ) and VR = (VR, 𝖽VR ,▻VR
, 𝖻VR )

be BV■-modules over 𝔅L and 𝔅R, respectively, and let V̂ = (V̂, 𝖽V̂ ,▻V̂ , 𝖻V̂−) be their tensor product over ℌ as defined in (4.27). The
syngamy of the pairs (𝔅L, VL) and (𝔅R, VR) is the restricted kinematic Lie algebra 𝔎𝔦𝔫0(𝔅̂) as defined in Definition 3.8, together with the

restricted kinematic Lie algebra module𝔐𝔬𝔡0(V̂) over𝔎𝔦𝔫0(𝔅̂), defined in Proposition 3.32.

By Proposition 3.32, we know that the syngamy is a dg Lie module over a dg Lie algebra.
To complete the syngamy, we have to endow 𝔐𝔬𝔡0(V̂) with a metric. Analogously to the case of BV■-algebras and in view of the

tensor product (4.27), let us define

𝖽V̂±(vL ⊗ vR) := 𝖽VLvL ⊗ vR ± (−1)|vL|vL ⊗ 𝖽VRvR (4.29)

for all vL,R ∈ VL,R; evidently, 𝖽̂+ = 𝖽̂. It is then easy to check that

(4.30a)

and

⟨𝖽V̂±v1, v2⟩V̂ = −(−1)|v1|⟨v1, 𝖽V̂±v2⟩V̂ (4.30b)

for all v1,2 ∈ V̂ . Next, we introduce the notion of compatible metrics for modules.

Definition 4.10. Let (V̂, 𝖽V̂ ,▻V̂ , 𝖻V̂−) be the dg BV module over the dg BV algebra 𝔅̂ = (𝔅̂, 𝖽𝔅̂, 𝗆̂2, 𝖻𝔅̂−) defined in (4.27) and let
(𝔎0, 𝖽𝔎0 , [−,−]𝔎0 ) and (𝔙0, 𝖽𝔙0 ,▻𝔙0 , 𝖻𝔙0 ) be the associated syngamy. Suppose that 𝔅 has a metric ⟨−,−⟩𝔅̂ of degree −6. We say that a
metric ⟨−,−⟩𝔙0 on the dg Lie algebra module V0 in the syngamy (𝔎0,𝔙0) of degree −3 is compatible if

(4.31)

for all v1,2[1] ∈ 𝔙0 = ker(𝖻V̂−)[1] with 𝖽V̂− as defined in (4.29).

Proposition 4.11. Consider again the situation of Definition 4.10 and assume that the actions of ■ on both the BV algebra and the BVmodule
are invertible. Then,

(4.32)

for all v1,2[1] ∈ 𝔙0 = ker(𝖻V̂−)[1] with 𝖽V̂− as defined in (4.12) is a compatible metric on the syngamy.

Proof. The proof is a minor variation of that of Proposition 4.7. □

5. Examples

5.1. Biadjoint Scalar Field Theory

The simplest and archetypal example of a theory with colour–kinematics duality is certainly the theory of a biadjoint scalar field with
evident cubic interaction, a theory that is frequently used as a toy model in the scattering amplitudes literature.[22,62–76]

Differential Graded Lie Algebra: Consider two flavour metric Lie algebras 𝔤 and 𝔤̄ with bases 𝖾a and 𝖾̄ā, structure constants fab
c and

f̄āb̄
c̄ and metrics gab and ḡāb̄, respectively. Classically, a biadjoint scalar field 𝜑 is a (𝔤⊗ 𝔤̄)-valued function on𝕄d, and we write

𝜑 = 𝖾a ⊗ 𝖾̄ā ⊗𝜑aā ∈ (𝔤⊗ 𝔤̄)⊗𝒞∞(𝕄d). (5.1)

We shall be interested in the theory with action functional

Sbiadj := ∫ ddx
{1
2
𝜑aāgabgāb̄□𝜑bb̄ + 1

3!
𝜑aāgabgāb̄fcd

bf̄c̄d̄
b̄𝜑cc̄𝜑dd̄

}
. (5.2)
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The L∞-algebra corresponding to this field theory is the dg Lie algebra 𝔏biadj =
⨁

p∈ℤ 𝔏
biadj
p with underlying cochain complex

(5.3a)

where ∗ denotes the trivial vector space. In particular, we have the field40 𝜑 ∈ 𝔏biadj
1 , the corresponding anti-fields𝜑+ = 𝜑+

aā𝖾
a𝖾̄ā ∈ 𝔏biadj

2

for 𝖾a = gab𝖾a and 𝖾̄ā = ḡ āb̄𝖾̄ā, and the only non-trivial component of the differential 𝜇1 := 𝗂𝖽𝔤⊗𝔤̄ ⊗□. The non-vanishing components
of the cyclic inner product are

⟨𝜑,𝜑+⟩ := ∫ ddx𝜑aā𝜑+
aā. (5.3b)

The interactions are encoded in the Lie bracket 𝜇2 : 𝔏biadj × 𝔏biadj → 𝔏biadj, and the only non-trivial components are

𝜇2(𝜑1,𝜑2) := fab
c𝖾c ⊗ f̄āb̄

c̄ 𝖾̄c̄ ⊗𝜑aā
1 𝜑

bb̄
2 (5.3c)

for all 𝜑1,2 ∈ 𝔏biadj
1 .

BV■-Algebra and Colour–Kinematics Duality: Regarding one of the two Lie algebras (say 𝔤) as colour, we may strip it off to form a
BV■-algebra. This amounts to the factorisation

𝔏biadj ≅ 𝔤⊗𝔅biadj. (5.4)

Explicitly, 𝔅biadj has the underlying cochain complex

(5.5a)

with 𝜑 = 𝖾̄ā 𝜑
ā ∈ 𝔅biadj

1 , 𝜑+ = 𝖾̄ā 𝜑+
ā ∈ 𝔅biadj

2 , and 𝖽 := 𝗂𝖽𝔤̄ ⊗□. Note that we continue to label colour-stripped fields by 𝜑, slightly abus-
ing notation. Furthermore, we have

𝗆2(𝜑1,𝜑2) := f̄āb̄
c̄ 𝖾̄c̄ ⊗𝜑ā

1𝜑
b̄
2 and ⟨𝜑,𝜑+⟩ := ∫ ddx𝜑ā𝜑+

ā . (5.5b)

To extend 𝔅̄biadj to a BV■-algebra, we need to endow it with an operator 𝖻 such that [𝖽, 𝖻] = □. The evident choice here is the shift
isomorphism (denoted [1]).

𝖻 := [1] : 𝔅biadj
2

≅
←←←←←←←←←←←→ 𝔅biadj

1 . (5.6a)

The derived bracket {−,−} of (3.1) is then

{𝜑1,𝜑2} = 𝖻(𝗆2(𝜑1,𝜑2)) = f̄āb̄
c̄ 𝖾̄c̄ ⊗𝜑ā

1𝜑
b̄
2 ∈ 𝔅biadj

1 ,

{𝜑1,𝜑
+
2 } = 𝗆2(𝜑1, 𝖻𝜑

+
2 ) = f̄āb̄

c̄gb̄d̄ 𝖾̄c̄ ⊗𝜑ā
1𝜑

+
2d̄
= {𝜑+

2 ,𝜑1} ∈ 𝔅biadj
2 .

(5.6b)

It is then easy to check that all the remaining axioms are satisfied; in particular, 𝖻 is of second order, which amounts to the following
specialisation of (3.33):

0 = −𝗆2(𝜑1, 𝖻(𝗆2(𝜑2,𝜑3))) +𝗆2(𝜑2, 𝖻(𝗆2(𝜑1,𝜑3))) −𝗆2(𝜑3, 𝖻(𝗆2(𝜑1,𝜑2))) (5.7)

for all 𝜑1,2,3 ∈ 𝔅biadj
1 , a consequence of the Jacobi identity. We will denote the resulting BV■-algebra also by𝔅𝔤̄, to indicate the choice

of Lie algebra 𝔤̄. This BV■-algebra will play an important role as a replacement for the colour Lie algebra 𝔤̄ later.
According to Corollary 3.9, the existence of the BV■-algebra 𝔅𝔤̄ proves that the biadjoint scalar field theory possesses CK duality

on its currents. Because 𝖻 is a shift isomorphism, all fields 𝜑 are of the form 𝜑 = 𝖻𝜑+ for some anti-field 𝜑+, and hence CK-duality
extends to the amplitudes.

40 in the sense of the BV formalism, i.e. as opposed to an anti-field
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Syngamy: We now follow the approach of Section 4 and consider the syngamy of the two BV■-algebras 𝔅𝔤 and 𝔅𝔤̄ for 𝔤, 𝔤̄ some
Lie algebras. To this end, we note that the BV■-algebra comes with a natural action of the Hopf algebraℌ𝕄d from Example 3.17, and
it is easy to check that all operations are ℌ𝕄d -linear with respect to this action.
The restricted tensor product 𝔅̂ :=𝔅𝔤 ⊗ℌ 𝔅𝔤̄ has then the underlying cochain complex

(5.8)

and we have a corresponding kinematic Lie algebra 𝔎 concentrated in degrees 1,2,3. We will be interested in the shifted Lie bracket
[−,−][1] on fields 𝜑1,2 ∈ 𝔅𝔤 ⊗ℌ 𝔅𝔤̄, which reads as

[𝜑1,𝜑2][1] = 𝖻𝗆2(𝜑
(1)
1 ,𝜑(1)

2 )⊗𝗆2(𝜑
(2)
1 ,𝜑(2)

2 ) +𝗆2(𝜑
(1)
1 ,𝜑(1)

2 )⊗ 𝖻𝗆2(𝜑
(2)
1 ,𝜑(2)

2 ), (5.9)

where we used again Sweedler notation 𝜑1,2 = 𝜑(1)
1,2 ⊗𝜑(2)

1,2.
We note that the cochain complex (5.8) is split in half, into the kernel and cokernel of the operator

𝖻̂− := [1]⊗ 𝗂𝖽 − 𝗂𝖽⊗ [1]. (5.10)

In particular, the kernel is given by 𝔅̂2 as well as the symmetrised sum of the two copies of 𝔤⊗ 𝔤̄⊗𝒞∞(𝕄d) contained in 𝔅̂3.
With Corollary 3.28, we note that the restricted kinematic Lie algebra𝔎0 = 𝔎𝔦𝔫0(𝔅̂), i.e.𝔎 restricted to the kernel, cf. 3.8, together

with the differential 𝖽̂[1] becomes a dg Lie algebra𝔎0 with underlying cochain complex

(5.11)

Moreover, the product 𝜇2 can be read off from (5.9), and its non-trivial components are given by

𝜇2(𝜑1,𝜑2) := 𝖾c ⊗ 𝖾̄c̄ ⊗𝜑aā
1 𝜑

bb̄
2 fab

c f̄āb̄
c̄ (5.12)

for all 𝜑1,2 ∈ 𝔎0
1.

On fields that are not in the kernel of ■ = □ (e.g., Schwartz-type functions describing interacting fields), a metric can be defined
by means of Proposition 4.7:

⟨𝜑1,𝜑2⟩𝔎0 := ⟨□−1𝖽̂−𝜑1,𝜑2⟩𝔅̂. (5.13)

Because of the symmetry of ⟨−,−⟩𝔎0 established in Proposition 4.7, we can assume that 𝜑1 is a field, i.e. and element in 𝔅̂2[1], without
loss of generality. In this case, |𝜑(1)

1 | = 1 and hence

□−1(𝖽̂−𝜑1) = □−1(□𝜑(1)
1 ⊗𝜑(2)

1 − 𝜑(1)
1 ⊗□𝜑(2)

1 )

= (𝜑(1)
1 [−1]⊗𝜑(2)

1 − 𝜑(1)
1 ⊗𝜑(2)

1 [−1]),
(5.14)

where we used that (□−1𝜑(1)
1 )⊗𝜑(2)

1 = 𝜑(1)
1 ⊗ (□−1𝜑(2)

1 ). The restriction to ker(𝖻̂−) ⊆ 𝔅̂2 ⊕ 𝔅̂3 with 𝔎0, together with the removal of
the infinite volume factor along the constant directions (cf. the discussion in 4.2), then leads to the expected inner product (5.3b).
Altogether, we see that𝔎0 = 𝔏biadj and, as expected, the resulting double copy is the biadjoint scalar theory with Lie algebras 𝔤 and

𝔤̄.

Remark 5.1. Note that, as predicted above, the role of the colour Lie algebras is played by the BV■-algebras 𝔅𝔤 and 𝔅𝔤̄. In particular,
constructing the syngamy of a BV■-algebra𝔅with the BV■-algebra𝔅𝔤 produces the same field theory (in the form of a dg Lie algebra)
as if we tensored the dg commutative algebra underlying𝔅with 𝔤. This relation is quite evident for field theories where the differential
in𝔅 is 𝖽 = □, such as biadjoint scalar and conventional rewritings of Yang–Mills theory, but it also extends to Chern–Simons theory,
as we shall see in Section 5.4.
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5.2. Biadjoint Scalar Theory with Bifundamental Matter

The simplest example including matter fields is the biadjoint scalar theory coupled to a bifundamental scalar, cf. [68, 70, 76, 100], i.e. a
scalar field taking values in the (metric) fundamental representations41 R⊗ R̄ of the Lie algebras 𝔤⊗ 𝔤̄.
Differential Graded Lie Algebra: Explicitly, we couple the biadjoint scalar field theory (5.2) to the action for a bifundamental scalar

field

Sbiadj-fun :=Sbiadj + ∫ ddx
{

1
2
𝜓 i𝚤□gijḡ𝚤𝚥𝜓

j𝚥 + 1
2
𝜓 i𝚤gijḡ𝚤𝚥Taj

iT̄ā𝚥
𝚤𝜑aā𝜓 j𝚥

}
, (5.15)

where

𝜓 = 𝖾i ⊗ 𝖾𝚤 ⊗ 𝜓 i𝚤 ∈ (R⊗ R̄)⊗𝒞∞(𝕄d), (5.16)

and where we have introduced bases, 𝖾i and 𝖾𝚤, metrics gij and g𝚤𝚥 with respect to these bases, and structure constants, Taj
i and T̄ā𝚥

𝚤,
describing the interactions, for R and R̄, respectively.
The underlying cochain complex of the dg Lie algebra 𝔏biadj-fun is that of 𝔏biadj enlarged to

(5.17)

where the anti-fields 𝜑+ and 𝜓+ belong to the degree shifted copies of (𝔤⊗ 𝔤̄)⊗𝒞∞(𝕄d) and (R⊗ R̄)⊗𝒞∞(𝕄d), respectively. The
fields 𝜑,𝜓 and anti-fields 𝜑+,𝜓+ have dg Lie algebra degree 1 and 2 (and, thus, ghost degree 0 and 1), respectively.
The interactions are encoded in the graded anti-symmetric Lie bracket

𝜇2 : 𝔏biadj-fun × 𝔏biadj-fun → 𝔏biadj-fun, (5.18)

which has non-trivial components

𝜇2(𝜑1,𝜑2) := 𝖾cfab
c ⊗ 𝖾̄c̄ f̄āb̄

c̄ ⊗𝜑aā
1 𝜑

bb̄
2 ,

𝜇2(𝜑,𝜓) := 𝖾jTai
j ⊗ 𝖾̄𝚥T̄ā𝚤

𝚥 ⊗ 𝜑aā𝜓 i𝚤 = 𝜇2(𝜑,𝜓),

𝜇2(𝜓1,𝜓2) := 𝖾aT
a
ij ⊗ 𝖾̄āT̄

ā
𝚤𝚥 ⊗ 𝜓 i𝚤

1𝜓
j𝚥
2

(5.19)

for all 𝜑,𝜑1,2 and 𝜓 ,𝜓1,2 in the evident subspaces of 𝔏biadj-fun
1 . The assumption that R, R̄ are metric implies the existence of a cyclic

structure with non-vanishing components

⟨𝜑 + 𝜓 ,𝜑+ + 𝜓+⟩ := ∫ ddx
{
𝜑aā𝜑+

aā + 𝜓 i𝚥𝜓+
i𝚥

}
(5.20)

for all 𝜑,𝜓 and 𝜑+,𝜓+ in the evident subspaces of 𝔏biadj-fun
1 and 𝔏biadj-fun

2 , respectively. Altogether, 𝔏biadj-fun is a metric nilpotent dg
Lie algebra.
Colour–Flavour-Stripping: The next step is to perform a colour–flavour-stripping as explained in Section 2.3. Without loss of gen-

erality, we can chose 𝔤 and R to be the colour–flavour factors and we expect a factorisation of the dg Lie algebra 𝔏biadj-fun as follows:

𝔏biadj-fun ≅ 𝔤⊗𝔅biadj ⊕ R⊗ Vbifun (5.21a)

41 The choice of fundamental representation is just for concreteness sake; the theory straightforwardly generalises to arbitrary metric representations.
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with 𝔅biadj as defined in (5.5) and Vbifun = (Vbifun, 𝖽Vbifun ,▻Vbifun ) is a (dg) module over 𝔅biadj with underlying cochain complex

(5.21b)

The action is defined as

𝜑▻Vbifun𝜓 := 𝖾̄𝚤Ta𝚥
𝚤 ⊗ 𝜑a𝜓𝚥. (5.21c)

A short computation then verifies the factorisation (5.21).
BV■-Module Structure andColour–Kinematics Duality: We have already seen that the dg commutative algebra𝔅biadj can be enriched

to a BV■-algebra 𝔅ḡ ; it remains to enriched Vbifun to a BV■-algebra module, which we will denote by the same letter. As in the case
of the dg commutative algebra, also here the required additional operator 𝖻Vbifun is given by the evident degree shift

𝖻Vbifun := [1] : Vbiadj
2

≅
←←←←←←←←←←←→ Vbiadj

1 . (5.22a)

The derived bracket {−,−}Vbifun : 𝔅biadj × Vbifun → Vbifun as defined in (3.12) reads as

{𝜑,𝜓}Vbifun = (𝖾̄𝚤T̄ā𝚥
𝚤 ⊗ 𝜑ā𝜓𝚥)[1],

{𝜑,𝜓+}Vbifun = 𝖾̄𝚤T̄ā𝚥
𝚤 ⊗ 𝜑ā(𝜓+𝚥[1]),

{𝜑+,𝜓}Vbifun = 𝖾̄𝚤T̄ā𝚥
𝚤 ⊗ (𝜑+ā[1])𝜓𝚥,

{𝜑+,𝜓+}Vbifun = 0

(5.22b)

for all 𝜑 ∈ 𝔅biadj
1 , 𝜑+ ∈ 𝔅biadj

2 , 𝜓 ∈ Vbifun
1 , and 𝜓+ ∈ Vbifun

2 . Together with the derived bracket of the biadjoint scalar theory, see (5.6b),
it follows that {−,−}Vbifun satisfies the shifted Poisson identity (3.13) and

(Vbifun, 𝖽Vbifun ,▻Vbifun , 𝖻Vbifun ) (5.23)

is a BV□-module over the BV■-algebra 𝔅biadj.
Double Copy: To illustrate syngamies involving matter fields, let us consider the syngamy of two copies of (𝔅biadj, Vbifun) with Lie

algebras and metric fundamental representations (𝔤, R) and (𝔤̄, R̄), respectively. The restricted tensor product of the two BV■-algebras
is given in (5.8), and the restricted tensor product V̂ of the BV■-modules similarly has underlying cochain complex

(5.24)

and by Proposition 3.12, there is a corresponding underlying module𝔙 for the kinematic Lie algebra𝔎 of 𝔅̂ defined in (5.8). Again,
the cochain complex (5.24) is split in half into the kernel and cokernel of the operator

𝖻V̂− := [1]⊗ 𝗂𝖽 − 𝗂𝖽⊗ [1], (5.25)

and ker(𝖻V̂−) consist of 𝔅̂2 and a symmetrised sum of the two copies of R⊗ R̄⊗𝒞∞(𝕄d) in 𝔅̂3. Restricted to this kernel,𝔙 becomes
a dg module 𝔙0 over the reduced kinematic dg Lie algebra𝔎0 of 𝔅̂ by Proposition 3.32.
The reduced kinematic dg Lie algebra 𝔎0 and the dg module 𝔙0 now combine into a single dg Lie algebra, and it is not hard to

see that this dg Lie algebra is 𝔏biadj-fun, the dg Lie algebra we started from. In particular, the double copy of the metric (5.20) is fully
analogous to that of the metric in biadjoint scalar theory. Hence, the syngamy of two copies of (𝔅biadj, Vbifun) yields a biadjoint scalar
theory coupled to bifundamental matter.

5.3. The Sesquiadjoint Scalar and Kinematic L∞-Algebras

In order to illustrate at least one case of a kinematic L∞-algebra (again, anticipating our future work
[87]), we introduce a sesquiadjoint

scalar field theory.
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Differential Graded Lie Algebra and Colour-Stripping: The setup is almost identical to the biadjoint scalar, except that we replace
𝔤̄ in 𝔤⊗ 𝔤̄ with a vector spaceW equipped with an anti-symmetric binary operation [−,−] :W ×W → W that does not (necessarily)
fulfil the Jacobi identity.42

Colour-stripping, we have a dg commutative algebra ℭseqadj with underlying cochain complex,

(5.26)

and non-trivial graded symmetric product

𝗆2 : W ⊗𝒞∞(𝕄d) ×W ⊗𝒞∞(𝕄d) → (W ⊗𝒞∞(𝕄d))[−1],
𝗆(𝜑1,𝜑2) := 𝖾cfab

c ⊗ (𝜑a
1𝜑

b
2),

(5.27)

where we have introduced a basis, 𝖾a, for W and structure constants fab
c for the binary operation [−,−] that does not obey the Ja-

cobi identity.
Kinematic L∞-Algebra: As before, the shift isomorphism

𝖻 := [1] : ℭsesqadj
2

≅
←←←←←←←←←←←→ ℭsesqadj

1 . (5.28)

satisfies 𝖽𝖻 + 𝖻𝖽 = □. The non-trivial higher-order differentials, as defined in (3.32) with 𝛿 = 𝖻 = [1], are given by

Φ1
𝖻(𝜙

+
1 ) :=𝜙+

1 [1],

Φ2
𝖻(𝜙1,𝜙2) :=𝗆(𝜙1,𝜙2)[1],

Φ2
𝖻(𝜙1,𝜙

+
2 ) :=𝗆(𝜙1,𝜙

+
2 [1]),

Φ2
𝖻(𝜙

+
1 ,𝜙2) := −𝗆(𝜙+

1 [1],𝜙2),

Φ3
𝖻(𝜙1,𝜙2,𝜙3) :=𝗆(𝜙1[1],𝗆(𝜙2,𝜙3)) −𝗆(𝗆(𝜙1,𝜙2)[1],𝜙3) +𝗆(𝜙2,𝗆(𝜙1,𝜙3)[1]).

(5.29)

By Proposition 3.38, the higher products 𝜇i :=Φi
𝖻
define an L∞-algebra on the shifted cochain complex 𝖢𝗁(ℭseqadj)[1]. Here, 𝜇3 (as

always) describes the homotopy that encodes the failure of 𝜇2 to satisfy the Jacobi identity, which in turn is due to the bracket [−,−]
not satisfying the Jacobi identity. This derived L∞-algebra is directly analogous to the derived Lie algebra of the kinematic Lie algebra.
It is an example of the kinematic L∞-algebras described in Section 3.6. We stress that the homotopy Jacobi relations in this example
are non-trivial.
General Setting: Since there is always a graded commutative product 𝗆2, every perturbative Lagrangian BV theory has such a

kinematic L∞-algebra (under the very weak assumption that there is a suitable 𝖻).We plan to explore the significance of this observation
further in future work. The most radical implication that one might envisage, is that every theory can be double-copied using the
kinematic L∞-algebra structure. This seems (at least superficially) unlikely, and the standard double copy argument[19] for scattering
amplitudes is certainly not generalised in an obvious fashion.
In the above example, in particular, the differential Φ1

𝖻
has trivial cohomology, and hence the L∞-algebra of the Koszul hierarchy is

quasi-isomorphic to the trivial one.43 By contrast, the usual kinematic Lie algebra is non-trivial precisely because we can halve the field
content and render the (cohomology of the) kinematic algebra non-trivial. This possibly suggests that generic kinematic L∞-algebras
are not of use in the double copy.

5.4. Pure Chern–Simons Theory

So far, we encountered scalar field theories which directly exhibited CK duality. In this example, we increase the complexity by intro-
ducing gauge symmetry while still maintaining manifest CK duality.
Differential Graded Lie Algebra: Let 𝔤 be a metric Lie algebra with basis 𝖾a relative to which we have structure constants fab

c and
a metric gab. Furthermore, let Ωp(𝕄3) be the differential p-forms on 𝕄3 with the exterior differential d : Ωp(𝕄3) → Ωp+1(𝕄3) and let
⋆ : Ωp(𝕄3) → Ω3−p(𝕄3) be the usual Hodge operator with respect to the Minkowski metric on𝕄3.
The field content of Chern–Simons theory consists of the Chern–Simons gauge potential A = 𝖾a ⊗ Aa with Aa ∈ Ω1(𝕄3) and its

ghost c = 𝖾a ⊗ ca with ca ∈ Ω0(𝕄3) paired with their anti-fields A+ = 𝖾a ⊗ A+a with A+a ∈ Ω2(𝕄3) and its ghost c+ = 𝖾a ⊗ c+a with

42 Such products were considered, for example, in [132, §3].
43 This is in close analogy to the Lie or L∞-algebra of inner derivations of a Lie or L∞-algebra being contractible or quasi-isomorphically trivial.

Fortschr. Phys. 2024, 2300270 2300270 (35 of 55) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

c+a ∈ Ω3(𝕄3). In addition to this usual BV field content, we also add a Nakanishi–Lautrup field n = 𝖾a ⊗ na with na ∈ Ω1(𝕄3) and an
anti-ghost c̄ = 𝖾a ⊗ c̄a with c̄a ∈ Ω1(𝕄3) together with the corresponding anti-fields n+ and c̄+. After gauge fixing with the gauge-fixing

fermion Ψ = ∫ {
gabc̄

a ∧ ⋆(d†Ab − 1
2
nb)

}
, the action functional looks as follows:44

SCS := ∫
{1
2
gabA

a ∧ dAb + 1
3
gabfcd

bAa ∧ Ac ∧ Ad − gabc̄
a ∧ ⋆d†(∇c)b + 1

2
gabn

a ∧ ⋆nb + gabn
a ∧ ⋆d†Ab

}
. (5.30)

The dg Lie algebra structure is readily read off, and we directly continue with colour-stripping.
Colour-Stripping and BV■-Algebra Structure: All of the fields take values in the colour Lie algebra, and after colour-stripping, we

obtain a dg commutative algebra𝔅CS, which comes with a natural operator 𝖻, and has the following underlying bidirectional complex,
cf. (3.43):

(5.31)

The binary products are given as follows:

𝗆2

⎛⎜⎜⎝
⎛⎜⎜⎝
A1
n1
c̄+1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
A2
n2
c̄+2

⎞⎟⎟⎠
⎞⎟⎟⎠ :=

⎛⎜⎜⎝
A1 ∧ A2

0
0

⎞⎟⎟⎠ ∈ 𝔅CS
2 ,

𝗆2

⎛⎜⎜⎝
⎛⎜⎜⎝
A1
n1
c̄+1

⎞⎟⎟⎠ , c2
⎞⎟⎟⎠ :=

⎛⎜⎜⎝
0
0

d†(A1c2)

⎞⎟⎟⎠ ∈ 𝔅CS
1 ,

𝗆2

⎛⎜⎜⎝c1,
⎛⎜⎜⎝
A+
2

n+2
c̄2

⎞⎟⎟⎠
⎞⎟⎟⎠ :=

⎛⎜⎜⎝
cdc̄
0
0

⎞⎟⎟⎠ ∈ 𝔅CS
2 ,

(5.32)

where the notation and positions of the components in the arguments and images in these expressions correspond to those of dia-
gram (5.31). We clearly see that the operator 𝖻 implied by (5.31) is of second order with respect to these binary products, and we obtain
indeed a BV■-algebra structure. Moreover, there is an evident metric with the following, non-vanishing components:

⟨A,A+⟩ := ∫ A ∧ A+, ⟨c, c+⟩ := ∫ c ∧ c+,

⟨n, n+⟩ := ∫ n ∧ ⋆n+, ⟨c̄, c̄+⟩ := ∫ c̄ ∧ ⋆c̄+.

(5.33)

Colour–Kinematics Duality: We recall that the tree-level amplitudes of Chern–Simons theory on𝕄d are all trivial. However, follow-
ing for example,[32] we can consider the homotopy transfer to harmonic forms45 on𝕄d, and it is the CK duality for this Feynman dia-
gram expansion that the BV■-algebra𝔅CS manifests. Moreover, we have , which is evident from the diagram (5.31),
so that the arising kinematic Lie algebra is indeed for the ordinary form of CK duality with propagator 1

□
. Note that here, we have full

loop level CK-duality.

44 For the L∞-algebra before gauge-fixing, see for example.[29]
45 i.e. amputated correlation functions with external legs being harmonic forms
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Comments: Before coming to the double copy, let us comment on a new feature in Chern–Simons theory. Contrary to previous
theories, the 𝖻-operator, concretely the component 𝖻|𝔅CS

2
, is no longer simply a shift isomorphism. Therefore the kernel of 𝖻 no longer

cleanly cuts the BV field space into fields and anti-fields, and some parts of the anti-fields are left in ker(𝖻). These parts, however, are
very small; they consists of exact and coexact anti-fields A+ of the gauge potential (which on𝕄3 amounts to a harmonic scalar field) as
well as constant Nakanishi–Lautrup anti-fields n+. We can usually ignore this issue, as the common constraints on a quantum field
theory such as locality etc. allow us to truncate away subspaces that are not full 𝒞∞(𝕄d)-modules. If one feels uncomfortable about
this truncation, one can also extend our notion of BV■-algebra to BV■-algebras with polarisations, i.e. structures that compatibly split
the field space into fields and complementing anti-fields, respecting in particular (3.10). Because of the additional technicalities that
do not add much in concrete discussions, we refrained from using these notions.
Double Copy: With the above technicality out of the way, we can follow our usual prescription using the evident Hopf algebraℌ𝕄3

generated by the translation operators on 𝕄3, and consider the kernel of 𝖻̂−, cf. (4.6b). This leads to a BV field space with the fields,
i.e. the (truncated) elements of ker(𝖻L)⊗

ℌ ker(𝖻R) ⊆ ker(𝖻̂−) given by the direct sums of the spaces

(5.34)

where we have indicated the origin of the subspaces using the component notation of (5.31), and we have also indicated the degree
of the fields in the resulting double-copied dg Lie algebra 𝔏CSCS. The corresponding anti-fields form a grade-shifted and flipped copy
dual of this field space, and together they form the graded vector space of the dg Lie algebra 𝔏CSCS.
The differential and the product of the dg Lie algebra 𝔏CSCS are straightforwardly constructed, but the cyclic structure is a bit

more complicated. For the propagating field components, i.e. those components of fields that are not in the kernel of □, we can
use Proposition 4.7 to define this inner product. We can then continue the resulting expression to all fields by locality.
Altogether, the double copy leads to a rather unusual BV field theory, whose physical part was first presented in [32]. Explicitly, the

kinetic term of the action for the physical fields given by the (1,1)-biforms AL ⊗ AR ∈ Ω1(𝕄3)⊗Ω1(𝕄3) reads as

1
4 ∫

{
(AL ⊗ AR) ∙□−1𝖽̂−𝜇1(AL ⊗ AR)

}
= 1
2 ∫

{
(AL ⊗ AR) ∙

d⊗ d
□

AL ⊗ AR)
}
, (5.35)

where the product ∙ : Ωp1 (𝕄3)⊗Ωq1 (𝕄3) × Ω(𝕄3)p1 ⊗Ωq2 (𝕄3) → Ωp1+p2 (𝕄3)⊗Ωq1+q2 (𝕄3) on biforms is defined as

(A1 ⊗ B1) ∙ (A2 ⊗ B2) := (A1 ∧ A2)⊗ (B1 ∧ B2). (5.36)

The interaction terms for the physical fields are given by

∫
1
3!
(AL ⊗ AR) ∙ (AL ⊗ AR) ∙ (AL ⊗ AR), (5.37)

and together, (5.35) and (5.36) are the double-copied Chern–Simons action of [32] in the (p, q)-formalism of [133, 134]. A further study
of this action is certainly warranted, particularly, since it will also appear in Section 5.7 in the context of M2-brane models.
We note that a useful outcome of our double copy construction is the full BV triangle required for studying biform theories.

5.5. Self–Dual Yang–Mills Theory and Self–Dual Gravity

The field theories studied in the previous sections came with in a BV■-algebra in their original formulation. This is contrary to the
case of Yang–Mills theory, where the action has to be rewritten in an equivalent form in order to manifest CK duality, cf. [19, 24] and
the detailed discussion in [29]. A theory that is in between both cases is self-dual Yang–Mills (SDYM) theory, which features CK duality
on its currents.[20] Presented in light-cone gauge, it is essentially a biadjoint scalar field theory, and therefore manifestly CK-dual. In
the gauge-invariant form of the Chalmers–Siegel action,[135] which contains an enlarged field content featuring also an anti-self-dual
2-form field, however, it does require an equivalent rewriting in order to manifest CK duality. As stated in the introduction, CK duality
is ultimately a symmetry of the action and therefore we may expect an organisational principle that leads to a manifest formulation.

Fortschr. Phys. 2024, 2300270 2300270 (37 of 55) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

In [34], we showed that the twistor space Z, i.e. the total space of the holomorphic vector bundle (1)⊕ (1) over ℂP1 can serve
as such an organising principle. Explicitly, SDYM theory can be equivalently formulated as a holomorphic Chern–Simons theory on
Z, and, as for ordinary Chern–Simons theories, there is a natural adjoint of the Dolbeault differential that is of second order with
respect to the binary product, and hence an operator 𝖻 that enhances the evident dg commutative algebra structure for holomorphic
Chern–Simons theory onZ to a BV■-algebra structure. Even better, we have■ = □, the d’Alembertian on space-time in this situation,
so that the kinematic Lie algebra describes indeed ordinary CK duality on currents and, in the maximally supersymmetric case, even
loop level amplitudes. An elegant example of the formalism presented in this paper can be found in [136], where we consider an action
equivalent to and reminiscent of the light-cone formulation of SDYM theory on twistor space, which elegantly double copies to an
analogous formulation of self-dual gravity, also on twistor space. For all the technical details of the above, we refer to [34] and [136].
Instead, let us briefly compare this result with that of [49]. In this paper, the authors considered the equations of motion and

gauge transformations of SDYM theory on space-time, together with its colour-stripped dg commutative algebra, in order to study the
kinematic algebra in the absence of space-time gauge-fixing (as opposed to the light-cone gauge analysis of [20]). As for Chern–Simons
theory, there is a natural candidate for the 𝖻-operator, namely 𝖻 = d†, the usual Hodge dual of the de Rham differential. As it stands,
this differential is not second order with respect to the binary product, as the latter is not just a wedge product of forms, but at least
on fields, it contains a projection operator. Therefore, as observed in this paper, the derived bracket (3.1) in this picture is not a Lie
bracket, but as explained in Section 3.6, the binary bracket in a kinematic L∞-algebra. This is precisely what the authors of [49] observe
to lowest order: there is a ternary operation, given by the expression from the Koszul hierarchy, so that the derived bracket satisfies
the homotopy Jacobi identity of an L∞-algebra.
The authors of [49], however, obtain more. They show that the graded Poisson relation (3.35) of the derived bracket (3.1) is violated

in a controlled way, and they compute the correction to this order. This leads to parts of a BV■
∞-algebra,

[37] see also [87]. In this sense,
CK duality is not manifested literally, but only ‘up to homotopy’. The usual strictification theorem for homotopy algebras applies,
and hence one can rewrite the theory in an equivalent form that makes use of an ordinary BV■-algebra, and therefore manifests
CK duality. We note that the 3-bracket inserted in [49] corresponds, after inserting a metric, and further an action principle, to a
Tolotti–Weinzierl-type term that may be added to the action to manifest CK-duality to this order.
We also note that our rewriting on twistor space directly produces such a rewriting. Twistor space Z is diffeomorphic to the space46

ℝ4 × ℂP1, and one can perform a mode expansion along ℂP1. Some of these infinitely many modes correspond to physical fields on
space-time, the rest will be the auxiliary fields that produce the Tolotti–Weinzierl terms47 in the action necessary for manifesting CK
duality. The obtained action will hence be the usual first order formulation of SDYM theory given by the Chalmers–Siegel action[135]

plus additional trivial terms, which will become non-trivial after colour-stripping. Note that the twistor formulation allows for a choice
of gauge, usually called space-time gauge, that directly leads to the Chalmers–Siegel action,[137,138] see also [139, §5.2].
Altogether, we saw that twistor space can serve as an organising principle that naturally leads to CK-dual formulations of field

theories. In the case of full Yang–Mills theory, one can use ambitwistor space, and while this description still yields a kinematic Lie
algebra, the operator ■ is not the space-time d’Alembertian operator, so we only obtain a generalised form of CK duality. For this case,
a more suitable organisational principle is found in pure spinor space, to which we turn next.

5.6. Pure Spinor Formulation of Supersymmetric Yang–Mills Theory

Closely related to the twistor construction of self-dual Yang–Mills theory mentioned in the previous section is the pure spinor for-
mulation of supersymmetric gauge theories. In particular, ten-dimensional supersymmetric Yang–Mills theory can be formulated as
Chern–Simons type action on pure spinor space, providing a natural BV■-algebra structure. Contrary to the ambitwistor space con-
struction of four-dimensional supersymmetric Yang–Mills theory in [34], however, there is a natural operator 𝖻 that leads to ■ = □,
the d’Alembertian, so that conventional CK duality can be established[31] for amplitude currents. As explained in [38], however, reduc-
ing the currents to tree-level numerators in this picture involves a diverging integral over the pure spinors. This can be fixed by an
alternative choice of 𝖻,[38], and we briefly review this construction.
Pure Spinor Space: For the ten-dimensional supersymmetric Yang–Mills theory, we start from the superspace

ℳ̂10d=1 :=𝕄10|16 × (ℝ2|1 ⊗ 10dMW), (5.38)

where𝕄10|16 is the ten-dimensional = 1 Minkowski superspace and 10dMW is the space of Majorana–Weyl spinors in ten dimen-
sions. Hence, ℝ2|1 ⊗ 10dMW is the (32|16)-dimensional superspace with coordinates48 (𝜆A, 𝜆̄A, d𝜆̄A), which transform in the 16, 16,
and 16 of 𝖲𝗉𝗂𝗇(1, 9), respectively. The pure spinor spaceℳ10d=1 is obtained from this space as the quadric

𝜆A𝛾MAB𝜆
B = 𝜆̄A𝛾

MAB𝜆̄B = 𝜆̄A𝛾
MABd𝜆̄B = 0, (5.39)

46 In the supersymmetric case, ℝ4 is replaced by ℝ4|2 .
47 These are terms in the action that vanish due to the Jacobi identity of the colour algebra, cf. [24] and also [29].
48 Note that d𝜆̄A is indeed common notation for a coordinate.
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Table 2. Properties of ten-dimensional coordinates and operators.

𝖲𝗉𝗂𝗇(1, 9) Mass dimension Graßmann degree Ghost number

x 10 −1 0 0

𝜃 16 − 1
2

1 0

𝜆 16 − 1
2

0 1

𝜆̄ 16 1
2

0 −1

d𝜆̄ 16 1
2

1 0

D 16 1
2

1 0

Q 1 0 1 1

𝖻 1 2 1 −1

where 𝛾MAB and 𝛾
MAB are the evident Clifford algebra generators. Operationally, we will work with fields on ℳ̂10d=1 and identify the

fields onℳ10d=1 as a quotient of these by the ideal  generated by the quadrics (5.39).
The space ℳ̂10d=1 comes with a natural vector field Q ,

Q = 𝜆ADA + d𝜆̄A
𝜕

𝜕𝜆̄A
, (5.40)

where the DA are the usual covariant superderivatives on𝕄10|16, satisfying
DADB + DBDA = −2𝛾MAB

𝜕
𝜕xM

. (5.41)

This vector field Q descends to a differential on the functions onℳ10d=1 due to (5.39); in particular,  is a differential ideal.
There is now a family of operators 𝖻 such that

𝖻2 = 0 and Q𝖻 + 𝖻Q = □ (5.42)

with□ the d’Alembertian on𝕄10.[140–144] Usually, a Lorentz-covariant choice

𝖻Lorentz :=
𝜆̄A𝛾

MABDB

2(𝜆A𝜆̄A)
𝜕

𝜕xM
+⋯ , (5.43)

M = 0,… , 9, is made, but this choice is less suitable for our purposes; instead, we work with the 𝖻-operator of the Y -formalism,[145–147]

𝖻 := −
vA𝛾

MABDB

2𝜆AvA

𝜕
𝜕xM

, (5.44)

where we have chosen a reference pure spinor v, satisfying vA𝛾
MABvB = 0. Evidently, this operator is of second order, and it is

straightforward to verify that the relations (5.42) are satisfied.
We summarise the properties of all the objects introduced so far in Table 2.
Pure Spinor Action and Siegel Gauge: There is now a simple, Chern–Simons type formulation of the BV action of ten-dimensional

supersymmetric Yang–Mills theory.[148,149] The field content is organised into a single scalar superfieldΨ onℳ10d=1 of ghost number
1,mass dimension 0, andGraßmann degree 1, which takes values in themetric gauge Lie algebra (𝔤, ⟨−,−⟩𝔤). Together with the natural
volume form Ω10d=1 on pure spinor spaceℳ10d=1 that was given in [150], we can write down the action functional

S10d=1 := ∫ Ω10d=1

⟨
Ψ, QΨ + 1

3
[Ψ,Ψ]

⟩
𝔤
. (5.45)

The underlying cochain complex of the pure spinor BV L∞-algebra is compactly encoded in the space of smooth functions on the
pure spinor space,

𝖢𝗁(𝔏psYM) ≅ 𝒞∞(𝔤⊗ℳ10d=1). (5.46)

To recover the component (anti-)fields and identify the graded vector spaces to which they belong, one Taylor-expands the 𝔤-valued
superfield Ψ(xM, 𝜃A, 𝜆A, 𝜆̄A, d𝜆̄A) with respect to the 𝜆A, 𝜆̄A, d𝜆̄A coordinates.
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There is an evident dg Lie algebra structure on 𝒞∞(𝔤⊗ℳ10d=1). The differential is given by 𝗂𝖽𝔤 ⊗Q and

𝜇2(Ψ1,Ψ2) := [Ψ1,Ψ2] = fab
c𝖾c ⊗Ψa

1 ⋅Ψ
b
2, (5.47)

where − ⋅ − is just the pointwise product on 𝒞∞(ℳ10d=1).
In order to compute perturbative scattering amplitudes, cf. [140, 141], we can work in Siegel gauge,

𝖻Ψ = 0. (5.48)

Note that our choice (5.44) of 𝖻 imposes a form of axial gauge along v.
The propagator in this gauge is simply 𝖻

□
, and, evidently, this is a generalisation of the propagator we encountered in the discussion

of pure Chern–Simons theory in Section 5.4.
BV■-Algebra Structure and Colour–Kinematics Duality: It is now rather evident that the metric dg commutative algebra induced

by the action (5.45) becomes a BV■-algebra

𝔅psSYM := (𝒞∞(ℳ10d=1), Q,− ⋅ −, 𝖻) (5.49)

with 𝖻 given by (5.44) from the Y -formalism. The only fact to check is that 𝖻 is of second order with respect to the function product
on pure spinor spaceℳ10d=1, but this is evident from the explicit expression for 𝖻 in (5.44). Note that the pure spinor field already
contains the Nakanishi–Lautrup field and anti-ghosts (as well as the corresponding anti-fields), so that it indeed packages up all the
BV fields required for a gauge-fixed action, cf. [151].
By Corollary 3.9, we thus have a theory with manifest CK-dual parametrisation of its currents, and this observation had been made

before in [32] for the commonly used, covariant 𝖻-operator (5.43). Using the 𝖻-operator (5.44) of the Y -formalism, this result extends
to the amplitudes, as we explain now, following the argument in [38].
Recall from the discussion in Section 2.4 that in order to convert a current into an amplitude, we have to remove the propagator

on the outgoing leg and pair it off with another incoming, asymptotically free field. This latter pairing involves an integral over
pure spinor space, which may lead to divergences. These divergences certainly cancel in the tree-level amplitudes, but they do not
necessarily cancel in individual diagrams. This is a problem since we can only establish CK duality, if we can extract finite numerators
of a CK-dual parametrisation of the scattering amplitudes.
The tree-level numerators can suffer from two types of divergences. Firstly, we have to account for the fact that pure spinor space49

is non-compact, and therefore we will encounter infrared-like divergences from integrating over the unbounded (𝜆, 𝜆̄)-domains. These
divergences are mostly harmless, and there is a well-knownQ-invariant regularisation of the integral measure by a factor of the form

e−𝜖{Q,𝜒} = e−𝜖(𝜆
A 𝜆̄A+⋯), (5.50)

where 𝜖 is a real positive constant and 𝜒 is a pure spinor field of ghost degree−1 which can be chosen a 𝜒 = −𝜆̄A𝜃A +⋯,[150,152] cf. also
[153]. This manifestly suppresses the would-be infrared divergences[154] while preserving the kinematic Lie algebra (and hence CK
duality) since the bracket is merely scaled.
Secondly, there are ultraviolet-like divergences arising when (𝜆, 𝜆̄) → 0. Those are more difficult to deal with when trying to establish

CK duality as we shall explain next. In particular, in the covariant non-minimal formalism (5.43), the scattering amplitude integrands
will contain singularities of the form 1

(𝜆A 𝜆̄A)n
due to the propagator 𝖻Lorentz

□
and the Siegel gauge (5.48). However, the regulator[154]

𝖻Lorentz, 𝜖 := e−𝜖(wAw̄
A+⋯)𝖻Lorentz (5.51)

will render these singularities harmless since 𝖻Lorentz, 𝜖 is Q-cohomologuous to 𝖻Lorentz, 𝜖=0. Here, wA, w̄
A are conjugate to 𝜆A, 𝜆̄A and

whilst this superficially spoils the second-orderness of the 𝖻Lorentz, all that is needed that the difference between this operator and the
one that is used in the end is Q-exact. Moreover, to establish CK duality, the singular contributions ought to be integrals of Q-exact
terms as such terms will ultimately drop out due to the gauge invariance of the total scattering amplitudes. This was made explicit in
[31], where it was inductively proven for supersymmetric Yang–Mills theory and illustrative examples at low points were given.
Importantly, this conclusion also applies to the 𝖻-operator (5.44) in the Y -formalism. In fact, we first note that

𝖻Ψ = 𝖻Lorentz, 𝜖=0Ψ (5.52)

for all representativesΨ of theQ-cohomology.[147] Consequently, since in the covariant non-minimal formalism all the singular contri-
butions to the total scattering amplitudes areQ-exact, the same holds true in the Y -formalism.Hence, we can employ the Y -formalism

49 contrary, for example, to the base of twistor space, which provides an alternative ordering principle for CK duality[34]
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to compute scattering amplitudes since all the potential singularities will sum into a Q-exact terms which, in turn, drop out due to
gauge invariance. This is all that is needed to establish CK duality in the Y -formalism.
It is important to realise that the preceding argument does not prevent individual Feynman diagrams, and hence their numerators,

from having singular contributions. In the covariant non-minimal formalism using 𝖻Lorentz, 𝜖=0, these singularities could spoil CK
duality.[31] On the other hand, we obtain Y -formalism Siegel gauge physical states (unintegrated vertex operators) by starting with the
non-singular representatives 𝜆A𝜆BAB of the antifield cohomology classes and applying 𝖻 to them,[155]

Ψ = 𝖻(𝜆A𝜆BAB) = −
vA𝛾

MABDB

2𝜆AvA

𝜕
𝜕xM

(𝜆C𝜆DCD). (5.53)

This implies that the singularities of external states and Feynman diagrams are of the form 1
(𝜆AvA)n

. Furthermore, the kinematic Jacobi

identities hold order by order in 1
𝜆AvA

but they need to be regulated. As before, in total scattering amplitudes, divergent terms from

each diagram will either cancel or combine into Q-exact terms and thus drop out in the end. Nevertheless, it is desirable to drop
the singular terms in each individual diagram, before summing into a Q-exact term, so as to regulate the individual numerators in
a minimal-subtraction-like scheme. To do so, one may worry that Q could change the degree of divergence which, in turn, would
imply that finite terms from each diagram might be needed to construct the ultimate singular Q-exact term. Then, when minimally
subtracting the singular terms in each diagram individually, these finite terms would also need to be dropped. In turn, this would
change the finite part of the numerators and so, spoil CK duality. However, this cannot happen since the operator Q will not affect
the degree of singularity near 𝜆AvA = 0 as it is independent of v. Consequently, the terms in the numerators that must be discarded
may be restricted to singular terms only. To be explicit, we split each Feynman diagram, 𝛾i, into three terms,

𝛾i = 𝛾0i + 𝛾Q,finitei + 𝛾Q,singulari , (5.54a)

where the finite and singular terms, 𝛾Q,finitei and 𝛾Q,singulari , contribute to the Q-exact part of the total amplitude integrand

I = I0 +QΛ, (5.54b)

where

QΛ =
∑
i

(
𝛾Q,finitei + 𝛾Q,singulari

)
. (5.54c)

Since, as mention above, Q preserves the degree of singularity near 𝜆AvA = 0, both sums
∑

i 𝛾
Q,finite
i and

∑
i 𝛾

Q,singular
i are separately

Q-exact. This implies that we can drop 𝛾Q,singulari in each diagram separately, while preserving the total scattering amplitude. Since CK
duality holds order by order in 1

(𝜆AvA)n
, the resulting ‘minimally-subtracted’ numerators obey the kinematic Jacobi identities.

In summary, we can truncate away the singular terms in the numerators without losing kinematic Jacobi identities, akin tominimal
subtraction in dimensional regularisation. The minimally subtracted numerators provide a CK-dual parametrisation of the scattering
amplitudes with finite numerators.
Therefore, we have established all-order tree-level CK duality for ten-dimensional supersymmetric Yang–Mills theory. By dimen-

sional reduction and embedding non-maximally supersymmetric Yang–Mills tree diagrams into maximal ones (cf. [156]), this estab-
lishes tree-level CK-duality for all pure Yang–Mills theories with arbitrary amounts of supersymmetry in any dimension.
Finally, let us remark that had we used the usual, covariant operator (5.43), our argument would not have worked. In this case, the

ultraviolet divergences arise at the tip of the cone 𝜆A𝜆̄A = 0 in pure spinor space, but Q does change the degree of singularity near
𝜆A𝜆̄A = 0 due to the derivative with respect to 𝜆̄A. This leads to a potential mixing of singularities, and therefore CK duality is not
guaranteed order by order. In this case, there is no subtraction scheme as for the 𝖻-operator in the Y -formalism.
Double Copy: The BV■-algebra obtained above can be double-copied using our formalism in a straightforwardmanner. We choose

to work with the evident cocommutative Hopf algebra ℌ𝕄10 to control the momentum dependence. Correspondingly, we use the
restricted tensor product

𝔅̂ :=𝔅psSYM ⊗ℌ𝕄10 𝔅psSYM. (5.55)

Upon factorising the pure spinor space for supersymmetric Yang–Mills theory as

ℳ10d=1 :=𝕄10|16 ×ℳps
10d=1, (5.56)

we find that the graded vector space underlying 𝔅̂ is simply

𝒞∞(𝕄10|32 ×ℳps
10d=1 ×ℳps

10d=1), (5.57)

Fortschr. Phys. 2024, 2300270 2300270 (41 of 55) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

and we note that both the odd superspace coordinates 𝜃 as well as all the auxiliary coordinates 𝜆A, 𝜆̄A, and d𝜆̄A get doubled. In this
larger space, we now have to consider the kernel of 𝖻̂− = 𝖻⊗ 𝗂𝖽 − 𝗂𝖽⊗ 𝖻,

ker(𝖻̂−) =
{
f ∈ 𝒞∞

(
𝕄10|32 ×ℳps

10d=1 ×ℳps
10d=1

) |||| (𝖻⊗ 𝗂𝖽)f = (𝗂𝖽⊗ 𝖻)f
}
, (5.58)

which underlies the restricted kinematic Lie algebra 𝔎𝔦𝔫0(𝔅̂). This turns out to be a metric dg Lie algebra, and the resulting action
principle reads as

S := ∫ Ω10d=1 ∧𝕄10|16 Ω10d=1⟨Ψ, (Q ⊗ 𝗂𝖽 + 𝗂𝖽⊗Q)Ψ + 1
3
[Ψ,Ψ]⟩

𝔎𝔦𝔫0(𝔅̂)
, (5.59)

whereΩ10d=1 ∧𝕄10 Ω10d=1 denotes the evident integral on the space (5.57) (where we have again removed the infinite volume factor
from the additional integral over the second copy of𝕄10, cf. the discussion in 4.2).
We regard our cubic double-copied action (5.59) as a rather exciting new result in the pure spinor formulation of supergravity. In

eleven dimensions, the currently available action contains quartic terms in the pure spinor field,[157,158] see also [159] and reference
therein for more recent work using integral forms. In ten dimension, a pure spinor formulation of the vertex operators of closed
superstrings was given in [160], cf. also [161]. These are precisely the double copy without the restriction to ker(𝖻̂−) (which would
amount to imposing the section condition), and hence the field content is initially too large. In [160], a different solution to this
problem has been proposed, but this does not allow for the direct link between world-sheet ghost number and target-space ghost
number that we observe in our prescription; also, it would lead to a non-cubic action. Hence, to our knowledge, (5.59) presents
the first cubic form of a pure spinor action for ten-dimensional supergravity. Further study of this action is certainly warranted, in
particular regarding the link to the pure spinor formulations of open and closed string, but this has to be left to future work.

5.7. Pure Spinor Formulation of M2-Brane Models

Pure Spinor Space: The Bagger–Lambert–Gustavsson (BLG) M2-brane model[162,163] can also be formulated as a Chern–Simons–
matter theory on pure spinor spaces.[78]

Here, we start from the space

ℳ̂3d=8 :=𝕄3|16 × (ℝ2|1 ⊗ 10dMW), (5.60)

where 𝕄3|16 is the three-dimensional  = 8 Minkowski superspace and 10dMW again the space of Majorana–Weyl spinors in ten-
dimensional, but now with indices reflecting the branching 𝖲𝗉𝗂𝗇(1, 9) → 𝖲𝗉𝗂𝗇(1, 2) × 𝖲𝗉𝗂𝗇(7). Explicitly,ℝ2|1 ⊗ 10dMW is coordinatised
by (𝜆𝛼i, 𝜆̄𝛼i, d𝜆̄𝛼i) with 𝛼 = 0,… 2 and i = 1,… , 8, transforming in the 2⊗ 8, 2⊗ 8̄, and 2⊗ 8̄ of 𝖲𝗉𝗂𝗇(1, 2) × 𝖲𝗉𝗂𝗇(7). Note that indices
in the 2 are raised and lowered as usual with 𝜀𝛼𝛽 and its inverse. Also, the R-symmetry group is enlarged from 𝖲𝗉𝗂𝗇(7) to 𝖲𝗉𝗂𝗇(8), and
we use indices m, n = 1,… , 8 for the vector representation 8v of 𝖲𝗉𝗂𝗇(8).
The pure spinor spaceℳ3d=8 is then the quadric in ℳ̂3d=8 with the following relations:

𝜆𝛼i𝛾𝜇𝛼𝛽𝜆
𝛽
i = 𝜆̄𝛼i𝛾𝜇𝛼𝛽 𝜆̄

𝛽
i = 𝜆̄𝛼i𝛾𝜇𝛼𝛽d𝜆̄

𝛽
i = 0, (5.61)

where 𝛾𝜇𝛼𝛽 are the generators of the Clifford algebra of 𝖲𝗉𝗂𝗇(1, 2).
Together with the supersymmetric covariant derivatives Di𝛼 which satisfy the relations

{Di𝛼 , Dj𝛽} = 𝛾𝜇𝛼𝛽𝛿ij
𝜕
𝜕x𝜇

, (5.62)

we have a natural vector field Q on ℳ̂3d=8,

Q := 𝜆𝛼iD𝛼i + d𝜆̄𝛼i
𝜕

𝜕𝜆̄𝛼i
, (5.63)

which descends to a differential on functions onℳ3d=8.
Again, there is a family of operators 𝖻 satisfying50

𝖻2 = 0 and Q𝖻 + 𝖻Q = □, (5.64)

50 albeit the covariant form has not been constructed so far
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Table 3. Properties of three-dimensional coordinates and operators.

𝖲𝖫(2,ℝ) × 𝖲𝗉𝗂𝗇(8) Mass dimension Graßmann degree Ghost number

x (3, 8v) −1 0 0

𝜃 (2, 8s) − 1
2

1 0

𝜆 (2, 8s) − 1
2

0 1

𝜆̄ (2, 8c)
1
2

0 −1

d𝜆̄ (2, 8c)
1
2

1 0

D (2, 8s)
1
2

1 0

Q (1, 1) 0 1 1

𝖻 (1, 1) 2 1 −1

and we choose to work again with the evident operator arising in the Y -formalism,

𝖻 := −
v𝛼i𝛾

𝜇 𝛼𝛽𝛿ijD𝛽j

2𝜆𝛼iv𝛼i

𝜕
𝜕x𝜇

, (5.65)

where v is a reference pure spinor v with v𝛼i𝛾
𝜇 𝛼𝛽𝛿ijv𝛽j = 0. A short computation verifies (5.64).

We have summarised the properties of the above objects in Table 3.
Gauge Algebra: Recall that the BLG model has an underlying metric 3-Lie algebra in the sense of [118]. Such a 3-Lie algebra can

be seen as a Lie algebra with an orthogonal representation.[164] In the case of the BLG model, the Lie algebra is 𝔤 = 𝔰u(2)⊕ 𝔰u(2) and
the orthogonal representation is Euclidean ℝ4. Concretely, we can identify 𝔤 ≅ V ∧ V with V :=ℝ4, and with respect to the standard
basis 𝖾k, k = 1,… , 4 on ℝ4, we have a ternary bracket

[𝖾k1 , 𝖾k2 , 𝖾k3 ]V := 𝜀k1k2k3k4𝖾k4 (5.66)

with 𝜀k1k2k3k4 the Levi-Civita symbol, and the metric

⟨𝖾k1 , 𝖾k2⟩V := 𝛿k1k2 (5.67)

with 𝛿k1k2 the Kronecker symbol. These define a metric Lie algebra 𝔤 by the relations

(𝖾k1 ∧ 𝖾k2 )▻𝖾k3 = [𝖾k1 , 𝖾k2 , 𝖾k3 ]V ,⟨𝖾k1 ∧ 𝖾k2 , 𝖾k3 ∧ 𝖾k4⟩𝔤 = ⟨𝖾k3 , [𝖾k1 , 𝖾k2 , 𝖾k4 ]V⟩
V
,

(5.68)

and we find 𝔤 ≅ 𝔰u(2)⊕ 𝔰u(2) as a Lie algebra with an indefinite metric of signature (+,+,+,−,−,−).
Field Content and Action: For the BLGmodel, the formalism presented in [78] uses two fields. Firstly, there is a scalar superfieldΨ

onℳ3d=8 of mass dimension 0, Graßmann degree 1, and ghost number 1 taking values in the metric Lie algebra 𝔤, which encodes
the gauge sector.
The matter sector is a bit more subtle. There is a (trivial) 𝖲𝗉𝗂𝗇(8)-bundle over ℳ3d=8, and we can consider the associated vector

bundle E for the vector representation 8v. From its sheaf of sections, we construct the quotient sheaf51

ℰℳ3d=8
:=Γ(E)∕E, (5.69)

where E is the ideal generated by 𝜆
𝛼i𝛾mij 𝜗

j
𝛼 where 𝜗

j
𝛼 is an arbitrary function of ghost degree −1 and 𝛾mij are the 𝖲𝗉𝗂𝗇(8)-factor of the

Clifford algebra generators for 𝖲𝗉𝗂𝗇(1, 2) × 𝖲𝗉𝗂𝗇(8). The matter fields Φm are now elements of ℰℳ3d=8
with values in V . Operationally,

we can regard them as sections of E (with values in V) subject to the identification

Φm ∼ Φm + 𝜆𝛼i𝛾mij 𝜗
j
𝛼. (5.70)

We note that there is a natural pairing on ℰℳ3d=8
given by

gmnΦmΦn with gmn := 𝜆𝛼i𝛾mn ij𝜆
j
𝛼. (5.71)

51 Note that the sections can have singularities in ℝ2|1 ⊗ 10dMW.
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The pure spinor superspaceℳ3d=8 comes with a natural dimensionless volume formΩ3d=8,
[78] and we can formulate the action

S3d=8 := ∫ Ω3d=8

{⟨Ψ, QΨ + 1
3
[Ψ,Ψ]⟩

𝔤
+ gmn⟨Φm,QΦn + ΨΦn⟩V}

. (5.72)

BV■-Algebra and -Module Structure: Our remaining constructions can now follow fully analogous to the case of supersymmetric
Yang–Mills theory, except for the fact that we are dealing with a BV■-algebra module. The BV■-algebra itself is given by

𝔅psM2 := (𝒞∞(ℳ3d=8), Q,− ⋅ −, 𝖻) (5.73)

with− ⋅ − the pointwise product and the Y -formalism 𝖻-operator (5.65), which is evidently of second order. The relevant module VpsM2

is given by

VpsM2 := (ℰ3d=8, Q,− ⋅ −, 𝖻), (5.74)

where the actions of Q and 𝖻 are the evident ones, induced by the operators (5.63) and (5.65) on ℰ3d=8, respectively, and − ⋅ − is
again the pointwise product. The fact that VpsM2 is a module over 𝔅psM2 is self-evident.
The BV■-algebra and -module structure (𝔅psM2, VpsM2) guarantees CK duality on the field theories currents.[38] Moreover, the same

arguments as for supersymmetric Yang–Mills theories lift this CK duality to the tree-level amplitudes. Singularities in the integrand
are either IR-type singularities, which can be regulated in an evident form, or they are of the form 1

𝜆𝛼iv𝛼i
, and then, because of our

use of the Y -formalism 𝖻-operator, there is a minimal subtraction scheme allowing us to extract finite CK-dual numerators for the
tree-level amplitudes of the M2-brane model.
While the pure-spinor-based proof of CK duality of the tree-level amplitudes of supersymmetric Yang–Mills theory was an alternative

proof, this proof for tree-level CK duality in BLG models is the first; only partial results were available in the literature previously, cf.
[32, 119–121]. The relation of our notion of CK duality, the conventional one for gauge–matter theory, and the quartic CK duality of
[119–121] is explained in [38].
Double Copy: The BV■-algebra and -module structure (𝔅psM2, VpsM2) can now be straightforwardly double-copied, following our

general formalism specialised to the evident cocommutative Hopf algebra ℌ𝕄3 . The restricted tensor product leads again to a BV■-
algebra and -module with

𝔅̂ :=𝔅psSYM ⊗ℌ𝕄3 𝔅psSYM and V̂ :=VpsSYM ⊗ VpsSYM, (5.75)

and using the factorisations

ℳ3d=8 :=ℝ3|16 ×ℳps
3d=8 and ℰ3d=8 :=ℰ3d ⊗ℰps

3d=8, (5.76)

we find that the graded vector spaces underlying 𝔅̂ and V̂ read as

𝒞∞
(
ℝ3|16 ×ℳps

3d=8 ×ℳps
3d=8

)
and ℰ3d ⊗ℰps

3d=8 ⊗ℰps
3d=8. (5.77)

As expected both the odd superspace coordinates 𝜃 as well as all the pure spinor auxiliary coordinates 𝜆A, 𝜆̄A, and d𝜆̄A get doubled.
This larger space carries an action of the operator 𝖻̂−,

ker(𝖻̂−) =
{
f ∈ 𝒞∞

(
ℝ3|16 ×ℳps

3d=8 ×ℳps
3d=8

)
⊕ℰ3d

|||| (𝖻⊗ 𝗂𝖽)f = (𝗂𝖽⊗ 𝖻)
}
, (5.78)

to which the kinematic Lie algebra of 𝔅̂ can be truncated. The result is another cubic action of the form (5.59), which we would expect
to describe  = 16 supergravity in three dimensions, cf. [119, 165]. Studying the resulting action in detail is, however, beyond the
scope of this paper, and we leave it to future work.
Comment on the ABJ(M)Models: Both the Aharony–Bergman–Jafferis–Maldacena (ABJM)model[166] and the Aharony–Bergman–

Jafferis (ABJ) model[167] can also be formulated in the pure spinor formalism of [78]. The pure spinor superspace with m, n = 1,… , 4
for these theories is obtained from the pure spinor space of the BLGmodel,ℳ3d=8, by truncating the R-symmetry 𝖲𝗉𝗂𝗇(8) to 𝖲𝗉𝗂𝗇(6).
It not difficult to adjust the action principal for the BLG model to this situation.
There is, however, a technical complication compared to the BLGmodel: the representation space V in the underlying BV■-module

is complex, as explained in [38], and therefore there is no suitable symplectic metric on the underlying vector space. While this is not
a fundamental issue for discussing CK duality, it significantly complicates all constructions. We therefore refrain from giving the
details here; the BV■-algebra and -module structure can be found in our paper.[38]
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Appendix A: Restricted Tensor Product of Modules Over Bialgebras

Throughout this section, we use the Sweedler notation (3.22), and we fix a bialgebra ℌ over a field 𝕂 of arbitrary characteristic; see
Definition 3.15. Furthermore, we view 𝕂 as the canonical ℌ-module in which ℌ acts via the counit 𝜖 : ℌ → 𝕂.

Definition A.1. Let V and W be ℌ-modules. We call the subset

V ⊗ℌ W :=
⋂
𝜒∈ℌ

ker
(
(𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒)▻

)
(A.1)

of V ⊗W the restricted tensor product of V and W.

The restricted tensor product forms an ℌ-module under the following condition.

Definition A.2. A bialgebra ℌ is restrictedly tensorable if the left ideal of the unital associative algebra ℌ⊗ℌ generated by the subset

Γ := {𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ∣ 𝜒 ∈ ℌ} (A.2)

is also a two-sided ideal.

Lemma A.3. Let ℌ be a restrictedly tensorable bialgebra, and let V and W be ℌ-modules. The restricted tensor product V ⊗ℌ W is an
ℌ-submodule of V ⊗W.

Proof. It suffices to see that, for arbitrary u ∈ V ⊗ℌ W and 𝜒1,𝜒2 ∈ ℌ, we have

(𝜒1 ⊗ 𝟙 − 𝟙⊗ 𝜒1)Δ(𝜒2)u = 0. (A.3)

Restricted tensorability implies that (𝜒1 ⊗ 𝟙 − 𝟙⊗ 𝜒1)Δ(𝜒2) is an element in the two-sided ideal left- and right-generated by Γ, and we
can write this element as

(𝜒1 ⊗ 𝟙 − 𝟙⊗ 𝜒1)Δ(𝜒2) =
N∑
i=1

Xi(𝜒1,i ⊗ 𝟙 − 𝟙⊗ 𝜒1,i) (A.4)

for some finite N and X (1),… , X (N) ∈ ℌ⊗ℌ and 𝜒1,1,… ,𝜒1,N ∈ ℌ. It is now clear that the latter element of ℌ⊗ℌ annihilates all
u ∈ V ⊗ℌ W. □

Examples of restrictedly tensorable bialgebras important to the discussion of CK duality and the double copy are primitively gener-
ated bialgebras. These are all bialgebras generated by a set of differential operators labelling momenta, together with their coproducts,
a typical situation in a physical theory.
Recall that an element 𝜒 in a bialgebra is primitive if Δ(𝜒) = 𝜒 ⊗ 𝟙 + 𝟙⊗ 𝜒 , and a bialgebra is primitively generated if it is generated

as a unital associative algebra by its set of primitive elements; over a field of characteristic zero, it is a standard fact that a primitively
generated Hopf algebra is isomorphic to the universal enveloping algebra of the Lie algebra of its primitive elements.

Lemma A.4. Every primitively generated bialgebra ℌ is restrictedly tensorable.

Proof. It suffices to show that, for every 𝜒 ,𝜙 ∈ ℌ, we have

(𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒)Δ(𝜙) ∈ ℑ, (A.5)

where ℑ is the left ideal generated by the subset {𝜓 ⊗ 𝟙 − 𝟙⊗𝜓|𝜓 ∈ ℌ}. This is evidently equivalent to showing that

[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙)] ∈ ℑ, (A.6)

since Δ(𝜙)(𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒) ∈ ℑ.
By the assumption of primitive-generatedness, we may assume that 𝜙 is a linear combination of products of primitive elements.

We proceed by induction. First, the base case: suppose that 𝜙 is primitive. Then it is immediate that

[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙)] = [𝜒 ,𝜙]⊗ 𝟙 − 𝟙⊗ [𝜒 ,𝜙] ∈ ℑ. (A.7)

Next, suppose that we have shown (A.6) in the case where 𝜙 is a linear combination of products of at most n − 1 primitive elements.
Now, suppose that 𝜙 = 𝜙1𝜙2 with 𝜙1 primitive and 𝜙2 a linear combination of at most n − 1 primitive elements. Let

[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙1)] = 𝜒 ′ ⊗ 𝟙 − 𝟙⊗ 𝜒 ′. (A.8)
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Then

[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙)] = [𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙1)Δ(𝜙2)]

= [𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙1)]Δ(𝜙2) + Δ(𝜙1)[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙2)]

= (𝜒 ′ ⊗ 𝟙 − 𝟙⊗ 𝜒 ′)Δ(𝜙2) + Δ(𝜙1)[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙2)]

= [𝜒 ′ ⊗ 𝟙 − 𝟙⊗ 𝜒 ′,Δ(𝜙2)] + Δ(𝜙2)(𝜒
′ ⊗ 𝟙 − 𝟙⊗ 𝜒 ′) + Δ(𝜙1)[𝜒 ⊗ 𝟙 − 𝟙⊗ 𝜒 ,Δ(𝜙2)], (A.9)

and now all three terms manifestly belong to the left ideal ℑ. □

The restricted tensor product is not, in general, symmetric nor associative up to isomorphism. Our construction generalises the
familiar concept of the module of invariants.

Proposition A.5. For anyℌ-module V, the restricted tensor product V ⊗ℌ 𝕂 is canonically isomorphic to Vℌ :=
⋂

𝜒∈ℌ ker(𝜒 − 𝜖(𝜒)), which
is called themodule of invariants.52

Proof. It is simply a matter of unwinding the definition (A.1) to see that V ⊗ℌ 𝕂 ⊆ V ⊗ 𝕂 ≅ V is given by Vℌ. □

Thus, the restricted tensor product⊗ℌ is, in some sense, the dual of the tensor product⊗ℌ over the Hopf algebraℌ: V ⊗ℌ W is a
submodule of V ⊗W, whereas V ⊗ℌ W is a quotient of V ⊗W.

Proposition A.6. Suppose that V and W areℌ-modules equipped withℌ-linear maps f : V⊗n → V and g :W⊗n → W. Then, the ℌ-linear
map f ⊗ g : (V ⊗W)⊗n → V ⊗W restricts to an ℌ-linear map f ⊗ℌ g : (V ⊗ℌ W)⊗n → V ⊗ℌ W.

Proof. For clarity of exposition, we spell out the proof only for n = 2; the other cases generalise straightforwardly. Given u(1)1,2 ⊗ u(2)1,2 ∈
V ⊗W, then

(f ⊗ g)
(
u(1)1 ⊗ u(2)1 , u(1)2 ⊗ u(2)2

)
= f

(
u(1)1 , u(1)2

)
⊗ g

(
u(2)1 , u(2)2

)
. (A.10)

Suppose now that u(1)i ⊗ u(2)i ∈ V ⊗ℌ W ⊆ V ⊗W for i = 1, 2 and let 𝜒 ∈ ℌ. Then,(
𝜒 f

(
u(1)1 , u(1)2

))
⊗ g

(
u(2)1 , u(2)2

)
= f

(
𝜒 (1)u(1)1 ,𝜒 (2)u(1)2

)
⊗ g

(
u(2)1 , u(2)2

)
= (f ⊗ g)

(
𝜒 (1)u(1)1 ⊗ u(2)1 ,𝜒 (2)u(1)2 ⊗ u(2)2

)
= (f ⊗ g)

(
u(1)1 ⊗ 𝜒 (1)u(2)1 , u(1)2 ⊗ 𝜒 (2)u(2)2

)
= f

(
u(1)1 , u(1)2

)
⊗ g

(
𝜒 (1)u(2)1 ,𝜒 (2)u(2)2

)
= f

(
u(1)1 , u(1)2

)
⊗

(
𝜒g

(
u(2)1 , u(2)2

))
,

(A.11)

where in the second and fourth steps we have used (A.10), and in third step the assumption 𝜒 (i)u(1)i ⊗ u(2)i = u(1)i ⊗ 𝜒 (i)u(2)i for i = 1, 2.
Hence, f ⊗ g : (V ⊗W)2 → V ⊗W in (A.10) restricts to a map f ⊗ℌ g : (V ⊗ℌ W)2 → V ⊗ℌ W. □

This proposition now implies that given two ℌ-algebras, that is, ℌ-modules V equipped with ℌ-linear n-ary algebraic operations
V⊗n → V , their restricted tensor naturally inherits a corresponding algebra structure.

Appendix B: Analytical Settings via Convolutions

As briefly remarked in the introduction, in the case where the Hopf algebra is commutative, to construct the double copy, instead of
working with the restricted tensor product ⊗ℌ of Appendix A, we can instead work with a tensor product ⊗ℌ over the commutative
Hopf algebra, which corresponds to the convolutional double copy of [45–48]. This approach runs into analytical difficulties because
plane wave states cannot be convolved (or, equivalently, delta functions in momentum space cannot be squared). One can circumvent
this either by compactifying space–time as in Section B.1 or by complicating the notion of Hopf algebras as in Section B.2.

52 Compare this to the well-known result that the module of coinvariants Vℌ is given by Vℌ ≅ V ⊗ℌ 𝕂.
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B.1. Analytical Setting via Compactification

In this section, we provide a proof of the statement that compactifying space-time provides an analytical setting using the tensor
product over the Hopf algebra. In the following, the metric signature is irrelevant. We compactify 𝕄d to 𝕄d∕Λℤd; without loss of
generality, we may work with units where Λ = 1.
Let𝒮 be the subspace of𝒞∞(𝕄d∕ℤd,ℂ) consisting of finite linear combinations of plane waves, i.e. smooth functions whose Fourier

series’ supports are finite sets. This is dense inside L2(𝕄d∕ℤd,ℂ) in the L2-norm topology as well as inside𝒞∞(𝕄d∕ℤd,ℂ) in the Fréchet
topology, since Fourier series of smooth functions converge pointwise and hence, uniformly.

Proposition B.1. As modules over ℌ𝕄d of differential operators with constant coefficients discussed in Example 3.17, we have

𝒮 ⊗ℂ[𝜕𝜇 ] 𝒮 ≅ 𝒮 (B.1a)

by means of the convolution

f = f (1) ⊗ f (2) → f (1) ⋆ f (2) (B.1b)

for all f ∈ 𝒮 ⊗ℂ[𝜕𝜇 ] 𝒮.

Proof. Let us first show injectivity of (B.1b). Suppose that f, g, h ∈ 𝒮. We wish to show that

f ⊗ (g ⋆ h) = (f ⋆ g)⊗ h (B.2)

in the tensor product 𝒮 ⊗ℂ[𝜕𝜇 ] 𝒮. If this holds, then from f1 ⋆ g1 = f2 ⋆ g2, we get f1 ⊗ g1 = f1 ⊗ (g1 ⋆ id𝒞) = (f1 ⋆ g1)⊗ id𝒞 = (f2 ⋆

g2)⊗ id𝒞 = f2 ⊗ g2, that is injectivity of (B.1b). To verify (B.2), let K := supp(f̂ ) ∪ supp(ĝ) ∪ supp(ĥ) ⊆ ℤd be the union of the supports
of the Fourier transforms f̂ , ĝ, and ĥ of all three functions f , g, and h; let 𝛿K ∈ 𝒮 be an approximation of the Dirac comb on K, namely

𝛿K (x) :=
∑
k∈K

eik⋅x. (B.3)

It is a convolutional idempotent, that is, 𝛿K ⋆ 𝛿K = 𝛿K . By multivariate polynomial interpolation in Fourier space, we can find (not
necessarily unique) differential operators Df , Dg, Dh ∈ ℂ[𝜕1,… , 𝜕d] such that f = Df 𝛿K , g = Dg𝛿K , and h = Dh𝛿K . Then it is clear that,
inside 𝒮 ⊗ℂ[𝜕𝜇 ] 𝒮, we have

f ⊗ (g ⋆ h) = Df 𝛿K ⊗ (Dg𝛿K ⋆ Dh𝛿K )

= Df 𝛿K ⊗ DgDh𝛿K

= Df Dg𝛿K ⊗Dh𝛿K

= (Df 𝛿K ⋆ Dg𝛿K )⊗Dh𝛿K

= (f ⋆ g)⊗ h.

(B.4)

Having shown injectivity of (B.1b), surjectivity is now straightforward: for any f ∈ 𝒮 we have f = f ⋆ 𝛿supp(f̂ ). □

B.2. Analytical Setting via Generalisations of Hopf Algebras

In this section, we provide an analytical setting for the double copy using the tensor product over the Hopf algebra where compacti-
fication of space-time is not needed, at the cost of having to work with an algebra of pseudo-differential operators that does not form
a Hopf algebra any more.53

The physical metric signature is irrelevant for the following analytical considerations, but for analytical considerations it is conve-
nient to use an auxiliary positive-definite metric on space-time ℝd. We emphasise that this does not really pertain to the physics but
is only used in the course of the mathematical proofs.

53 We thank an anonymous user on MathOverflow for their help.
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Since we are going beyond the usual setting of Hopf algebras, we spell out precisely what we achieve.

Definition B.2. A convenient analytical setting consists of

(i) a function space 𝒞 ⊆ 𝒞∞(ℝd,ℂ) and
(ii) a space of (pseudo-)differential operators𝒟 ⊆ ℂ[[𝜕1,… , 𝜕d]]

such that

(i) 𝒞 is closed under pointwise products; thus, it forms a non-unital commutative associative algebra;
(ii) 𝒟 is closed under composition and contains 1; thus it forms a unital commutative ring;
(iii) 𝒟 contains ℝ[𝜕𝜇 ] = ℌℝd as a subring;
(iv) 𝒟𝒞 ⊆ 𝒞; thus, 𝒞 is a module over𝒟;
(v) an analytic Leibniz rule holds in the sense that, for D =

∑
I∈ℕd cI𝜕I ∈ 𝒟 and f, g ∈ 𝒞, we have

D(f ⋅ g) =
∑

I,I′∈ℕd

(
I + I′

I

)
cI+I′ (𝜕If ) ⋅ (𝜕I′g) (B.5)

in the topology of pointwise convergence on some neighbourhood of the origin in Fourier space;
(vi) 𝒞 ⊗𝒟 𝒞 = 𝒞;
(vii) 𝒞 is dense inside 𝒞∞(ℝd,ℂ) with respect to the Fréchet space topology (i.e. topology of uniform convergence on compact sets).

Lemma B.3. If f ∈ 𝒞0 is holomorphic on ℝd
𝜖 and |f (x + iy)| ≤ Ce−𝛿‖x‖, then f̂ is holomorphic on ℝd

𝛿 and |f̂ (𝜉 + i𝜂)| ≤ C′e−𝜖′‖𝜉‖∕(𝛿 − ‖𝜂‖)d
for some constant C′. In particular, f̂ ∈ 𝒞0 also; thus, the Fourier transform is an involution of 𝒞0.

We further define the following tube domain of the real hyperplane:

ℝd
𝜖 := {x + iy | x, y ∈ ℝd and ‖y‖ < 𝜖} ⊆ ℂd. (B.6)

Define 𝒞0 to be the space of functions f : ℝd → ℂ such that there exist 𝜖, 𝛿 > 0 such that f extends analytically to ℝd
𝜖 with

|f (x + iy)| = 𝒪(e−𝛿‖x‖). (B.7)

Define 𝒞 as

𝒞 := {f ∈ 𝒞∞(ℝd,ℂ) | 𝜕If ∈ 𝒞0}, (B.8)

i.e. the space of functions whose arbitrary-order derivatives lie in 𝒞0.

Proof. To check holomorphicity of f̂ on ℝd
𝜖 , it suffices to check that the integral

f̂ (𝜉 + i𝜂) = ∫ℝd
ddx f (x) e−i(𝜉+i𝜂)⋅x (B.9)

converges as long as ‖𝜂‖ < 𝛿 so that we can take derivatives under the integral sign. But this is clear since |f (x)| = 𝒪(e−𝛿‖x‖).
Furthermore, for arbitrary y ∈ ℝd with ‖y‖ < 𝜖, we can use Cauchy’s integral theorem axis-by-axis to obtain the estimate

|f̂ (𝜉 + i𝜂)| = ||||∫ℝd

ddx f (x) e−i(𝜉+i𝜂)⋅x
||||

=
||||∫ℝd

ddx f (x + iy) e−i(𝜉+i𝜂)⋅(x+iy)
||||

≤ ∫ℝd

ddx Ce−(𝛿−‖𝜂‖)‖x‖e𝜉⋅y

≤ C′

(𝛿 − ‖𝜂‖)d e𝜉⋅y,
(B.10)

where C′ is a constant depending on d only. By choosing y = −𝜖′𝜉∕‖𝜉‖ for arbitrary 0 < 𝜖′ < 𝜖, we obtain |f̂ (𝜉 + i𝜂)| ≤ C′e−𝜖′‖𝜉‖∕(𝛿 −‖𝜂‖)d. Taking the limit 𝜖′ → 𝜖, we obtain |f̂ (𝜉 + i𝜂) ≤ C′e−𝜖′‖𝜉‖∕(𝛿 − ‖𝜂‖)d. □
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Lemma B.4. 𝒞 forms a non-unital subalgebra of 𝒞∞(ℝd,ℂ).

Proof. It is clear that𝒞 is closed under sums and scalarmultiplication. The only non-trivial thing to prove is closure under pointwise
product. Let f, g ∈ 𝒞. Then

𝜕I(f ⋅ g) =
∑

I′ ,I′′∈ℕd

I′+I′′=I

(
I
I′

)
(𝜕I′ f )(𝜕I′′g) ∈ 𝒞0. (B.11)

Hence f ⋅ g ∈ 𝒞0. □

Now, define 𝒟0 to be the space of pseudo-differential operators of the form p(𝜕) where p ∈ 𝒫0, where 𝒫0 is the class of functions
p : ℝd → ℂ such that there exists an 𝜖 > 0 such that p extends analytically to ℝd

𝜖 and that, on this tube domain, for every 𝛿 > 0, there
exists a C𝛿 > 0 such that

|p(x + iy)| ≤ C𝛿e
𝛿‖x‖. (B.12)

Define the ring𝒟 as

𝒟 :=

{
n∑
i=1

piqi
||||| n ∈ ℕ, p1,… , pn ∈ 𝒟0, q1,… , qn ∈ ℌℝd

}
, (B.13)

that is, the ring of pseudo-differential operators generated by𝒟0 and ℌℝd = ℝ[𝜕1,… , 𝜕d].

Lemma B.5. 𝒞0 is a𝒟0-module.

Proof. Let f ∈ 𝒞0 and D = p(𝜕) with p ∈ 𝒫0. Then f̂ is analytic on ℝd
𝜖 and |f̂ (𝜉 + i𝜂)| ≤ Ce−𝛿‖𝜉‖ for some C, 𝜖, 𝛿 > 0. Similarly, p is

analytic on ℝd
𝜖′ .

Then, in Fourier space, the pointwise product f̂ p is analytic on ℝd
min{𝜖,𝜖′} and |f̂ p| = 𝒪(e−𝛿′‖𝜉‖) for any 𝛿′ < 𝛿. So f̂ p ∈ 𝒞0, and hence

Df ∈ 𝒞0. □

Lemma B.6. 𝒞 is a𝒟-module.

Proof. It is clear that 𝒞 is closed under the action of ℝ[𝜕1,… , 𝜕d] by construction. It remains to show that 𝒞 is a𝒟0-module.
Let f ∈ 𝒞 and D ∈ 𝒟0 and I ∈ ℕd. It suffices to show that 𝜕IDf ∈ 𝒞0. But since 𝜕If ∈ 𝒞0, so 𝜕IDf = D(𝜕If ) ∈ 𝒞0 (using

Lemma B.5). □

Lemma B.7. 𝒞 ⋆𝒞 = 𝒞, where ⋆ denotes convolution.

Proof. It is clear that 𝒞0 ⋅ 𝒞0 ⊆ 𝒞0. Since the Fourier transform is bijective on 𝒞0, thus 𝒞0 ⋆𝒞0 ⊆ 𝒞0.
Now, suppose that f, g ∈ 𝒞. Then f ⋆ g ∈ 𝒞0, and for any multi-index I ∈ ℕd, we have 𝜕I(f ⋆ g) = (𝜕If ) ⋆ g ⊂ 𝒞0. Hence f ⋆ g ∈ 𝒞.

Thus 𝒞 ⋆𝒞 ⊆ 𝒞.
It remains to show that 𝒞 ⋆𝒞 ⊇ 𝒞. Given any f ∈ 𝒞, then we have

f ∕u𝜖 ⋅ u𝜖 = f, (B.14a)

where

u𝜖(x + iy) = 1∏d
i=1 cosh(𝜖(xi + iyi)) + i

. (B.14b)

Now, clearly u𝜖 ∈ 𝒞0, so the same holds for the Fourier transform û𝜖 ∈ 𝒞0. Furthermore, for any polynomial q, clearly pu𝜖 ∈ 𝒞0 as
well. Hence û𝜖 ∈ 𝒞. Similarly, if |f | ≤ Ce−𝛿‖x‖, then 𝜖 < 𝛿 ensures that pf ∕u𝜖 ∈ 𝒞0 for any polynomial p; hence f̂ ∕u𝜖 ∈ 𝒞0. Thus,
f̂ = û𝜖 ⋆ f̂ ∕u𝜖 , so that 𝒞 ⋆𝒞 ⊇ 𝒞. □

Theorem B.8. (𝒞,𝒟) is a convenient analytical setting.

Proof. The numbering follows Definition B.2.
(i) is clear by construction. (ii) is also clear by construction, since composition amounts to pointwise products in Fourier space. (iii)

is also clear by construction.
(iv) was shown in Lemma B.6. (v) is clear by analyticity in Fourier space. As for (vi): it is clear that𝒞 is a submodule of𝒟 considered

as a module over itself (since 𝒞 ⊆ 𝒞0 ⊆ 𝒫0). So 𝒞 ⊗𝒟 𝒞 ⊆ 𝒞. Lemma B.7 then implies that 𝒞 ⊗𝒟 𝒞 = 𝒞.
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(vii) It is clear that smooth functions with compact support are dense inside 𝒞∞(ℝd,ℂ) (e.g., multiply by bump functions 𝜓m
supported at [−m − 1, m + 1]) that are 1 on [−m,m]). Suppose that f is smoothwith compact support. Then f is the limit of convolutions
f ⋆ 𝜓m where 𝜓m =

∏d
i=1me

−𝜋m2z2
i is a family of analytic functions with exponential falloff approximating the Dirac delta. □

Symmetric Monoidal Category: Since 𝒟 is no longer a Hopf algebra, the category of arbitrary modules over 𝒟 no longer has a
well defined tensor product (i.e. does not form a symmetric monoidal category); in particular, double copy of arbitrary 𝒟-modules
is not guaranteed to work. Instead, we single out a particular subcategory of the category of all 𝒟-modules that is closed under the
tensor product.
Consider the category Mod𝒟,nice whose objects are 𝖣-modules of the form

K⨁
i=1

ni
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝒞 ⊗ℝ 𝒞 ⊗ℝ ⋯⊗ℝ 𝒞, (B.15)

where ni ∈ ℕ and K is a non-negative integer or∞. These all have a canonical action of𝒟 on them by virtue of the ‘infinitary Leibniz
rule’ defining an ‘infinitary coproduct’.
Consider the full subcategory of the category of chain complexes of 𝖣-modules consisting of those whose degreewise components

all belong to Mod𝖣,nice. This forms a symmetric monoidal category equipped with ⊗ℝ. In particular, we can define operads over
this category.

Appendix C: Proofs by Direct Computation

In this section, we collect mostly straightforward computational proofs omitted from the body of the paper.

Proposition 2.2. It is clear, cf. for example, the review in [29, Section 6], that 𝔤⊗ ℭ is a dg Lie algebra, and that R⊗ V is a dg vector space
with an action 𝔤⊗ ℭ ↷ R⊗ V. It is also well-known that a Lie algebra and a representation can be packaged into a Lie algebra with Lie
bracket the semi-direct product. This extends to the differential graded setting. It remains to show that the given inner product is indeed cyclic,
i.e.

⟨𝓁1,𝜇2(𝓁2,𝓁3)⟩𝔏 = (−1)|𝓁1| |𝓁2|+|𝓁1| |𝓁3|+|𝓁2| |𝓁3|⟨𝓁3,𝜇2(𝓁1,𝓁2)⟩𝔏. (C.1)

This is well-known to be the case for 𝓁1,𝓁2,𝓁3 ∈ 𝔤⊗ ℭ. For 𝓁1,𝓁2,𝓁3 ∈ R⊗ V, both sides of the relation are trivial, and for 𝓁1 ∈ 𝔤⊗ ℭ,
𝓁2,𝓁3 ∈ R⊗ V (as well as cyclic permutations), cyclicity is ensured by (2.20). Because of the lack of pairing between R⊗ V and 𝔤⊗ ℭ, both
sides of the identity also vanish for 𝓁1 ∈ R⊗ V and 𝓁2,𝓁3 ∈ 𝔤⊗ ℭ.

Proposition 3.12. By direct computation, from Definition 3.4 and Equations (3.19) and (3.13), we have

[𝜙1[1],𝜙2[1]]𝔎▻𝔙v[1] = (−1)|𝜙1|{𝜙1,𝜙2}𝔅[1]▻𝔙v[1]

= (−1)|𝜙2|+1{{𝜙1,𝜙2}𝔅, v}V [1]

= (−1)|𝜙1|+|𝜙2|({𝜙1, {𝜙2, v}V}V − (−1)(|𝜙1|+1)(|𝜙2|+1){𝜙2, {𝜙1, v}V}V
)
[1]

= 𝜙1[1]▻𝔙(𝜙2[1]▻𝔙v[1]) − (−1)(|𝜙1|+1)(|𝜙2|+1)𝜙2[1]▻𝔙(𝜙1[1]▻𝔙v[1]) (C.2)

for all 𝜙1,𝜙2 ∈ 𝔅 and v ∈ V, hence (𝔙,▻𝔙) is a graded (left) module over the kinematic Lie algebra (𝔎, [−,−]𝔎).

Proposition 3.25. Using the definition (3.1) of the derived bracket and the associativity 𝗆2(𝗆2(𝜙1,𝜙2),𝜙3) = 𝗆2(𝜙1,𝗆2(𝜙2,𝜙3)) for all
𝜙1,2,3 ∈ 𝔅 of 𝗆2, it is easy to see that (3.35) is, in fact, equivalent to (3.33).
To establish the shifted Jacobi identity (3.2b), we follow [168, Proposition 1.2]. In particular, set

𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2,𝜙3) := {𝜙1,𝗆2(𝜙2,𝜙3)} −𝗆2({𝜙1,𝜙2},𝜙3) − (−1)(|𝜙1|+1)|𝜙2|𝗆2(𝜙2, {𝜙1,𝜙3}),

𝖩𝖺𝖼(𝜙1,𝜙2,𝜙3) := {𝜙1, {𝜙2,𝜙3}} − (−1)|𝜙1|+1{{𝜙1,𝜙2},𝜙3} − (−1)(|𝜙1|+1)(|𝜙2|+1){𝜙2, {𝜙1,𝜙3}},
(C.3)

which we call the Poissonator and the Jacobiator, respectively. Then,

𝖩𝖺𝖼(𝜙1,𝜙2,𝜙3) − {𝜙1, {𝜙2,𝜙3}} = −(−1)|𝜙1|+1 [
𝖻(𝗆2({𝜙1,𝜙2},𝜙3)) −𝗆2(𝖻({𝜙1,𝜙2}),𝜙3) − (−1)|𝜙1|+|𝜙2|+1𝗆2({𝜙1,𝜙2}, 𝖻𝜙3)

]
− (−1)(|𝜙1|+1)(|𝜙2|+1) [𝖻(𝗆2(𝜙2, {𝜙1,𝜙3})) −𝗆2(𝖻𝜙2, {𝜙1,𝜙3}) − (−1)|𝜙2|𝗆2(𝜙2, 𝖻({𝜙1,𝜙3}))

]
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= (−1)|𝜙1|+1𝖻(𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2,𝜙3) − {𝜙1,𝗆2(𝜙2,𝜙3)}
)
− (−1)|𝜙1|+1

×
[
𝗆2({𝖻𝜙1,𝜙2},𝜙3) + (−1)|𝜙1|𝗆2({𝜙1, 𝖻𝜙2},𝜙3) − (−1)|𝜙1|+|𝜙2|+1𝗆2({𝜙1,𝜙2}, 𝖻𝜙3)

]
+ (−1)(|𝜙1|+1)(|𝜙2|+1) [𝗆2(𝖻𝜙2, {𝜙1,𝜙3}) − (−1)|𝜙2|𝗆2(𝜙2, {𝖻𝜙1,𝜙3}) − (−1)|𝜙1|+|𝜙2|𝗆2(𝜙2, {𝜙1, 𝖻𝜙3})

]
= (−1)|𝜙1|+1𝖻(𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2,𝜙3) − {𝜙1,𝗆2(𝜙2,𝜙3)}

)
+ (−1)|𝜙1|+1[𝖯𝗈𝗂𝗌𝗌(𝖻𝜙1,𝜙2,𝜙3) − {𝖻𝜙1,𝗆2(𝜙2,𝜙3)}

]
−

[
𝖯𝗈𝗂𝗌𝗌(𝜙1, 𝖻𝜙2,𝜙3) − {𝜙1,𝗆2(𝖻𝜙2,𝜙3)}

]
− (−1)|𝜙2|[𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2, 𝖻𝜙3) − {𝜙1,𝗆2(𝜙2, 𝖻𝜙3)}

]
= (−1)|𝜙1|+1 [

𝖻(𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2,𝜙3)) + 𝖯𝗈𝗂𝗌𝗌(𝖻𝜙1,𝜙2,𝜙3) + (−1)|𝜙1|𝖯𝗈𝗂𝗌𝗌(𝜙1, 𝖻𝜙2,𝜙3)

+ (−1)|𝜙1|+|𝜙2|𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2, 𝖻𝜙3)
]
− {𝜙1, {𝜙2,𝜙3}}, (C.4)

where we have repeatedly made use of the definition (3.1) of the derived bracket and the fact that 𝖻 is a derivation for the derived bracket as
shown in Proposition 3.6. Hence,

𝖩𝖺𝖼(𝜙1,𝜙2,𝜙3) = (−1)|𝜙1|+1 [
𝖻(𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2,𝜙3)) + 𝖯𝗈𝗂𝗌𝗌(𝖻𝜙1,𝜙2,𝜙3) + (−1)|𝜙1|𝖯𝗈𝗂𝗌𝗌(𝜙1, 𝖻𝜙2,𝜙3) + (−1)|𝜙1|+|𝜙2|𝖯𝗈𝗂𝗌𝗌(𝜙1,𝜙2, 𝖻𝜙3)

]
. (C.5)

So the shifted Poisson identity (3.35) implies the shifted Jacobi identity (3.2b).

Proposition 3.32. To show that𝔐𝔬𝔡0(V) := (ker𝖻V )[1] is a module over the dg Lie algebra𝔎𝔦𝔫0(𝔅) := (ker𝖻𝔅)[1], it suffices to show for every
𝜙 ∈ ker𝖻𝔅 and v ∈ ker𝖻V that 𝜙[1]▻𝔙v[1] = (−1)|𝜙|{𝜙, v}V [1] is an element of (ker𝖻V )[1], i.e. 𝖻V{𝜙, v}V = 0:

𝖻V{𝜙, v}V = 𝖻V
(
𝖻V (𝜙▻𝔙v) − (𝖻𝔅𝜙)▻𝔙v − (−1)|𝜙|𝜙▻𝔙(𝖻Vv)

)
= 𝖻2V (𝜙▻𝔙v)

= 0.
(C.6)

Cyclicity in the Tensor Product of BV■-Algebras: Consider the tensor product of two BV■-algebras 𝔅L and 𝔅R as defined in (4.5).
We now verify the properties of the metric. Firstly, we have

⟨𝜙2L ⊗𝜙2R,𝜙1L ⊗𝜙1R⟩ = (−1)|𝜙2R||𝜙1L|+nR(|𝜙1L|+|𝜙2L|)⟨𝜙2L,𝜙1L⟩L⟨𝜙2R,𝜙1R⟩R
= (−1)(|𝜙1L|+|𝜙1R|)(|𝜙2L|+|𝜙2R|)+|𝜙1R||𝜙2L|+nR(|𝜙1L|+|𝜙2L|)⟨𝜙1L,𝜙2L⟩L⟨𝜙1R,𝜙2R⟩R
= (−1)(|𝜙1L|+|𝜙1R|)(|𝜙2L|+|𝜙2R|)⟨𝜙1L ⊗𝜙1R,𝜙2L ⊗𝜙2R⟩ (C.7)

for all 𝜙1L,𝜙2L ∈ 𝔅L and 𝜙1R,𝜙2R ∈ 𝔅R, establishing graded symmetry. Next, we verify the axioms (3.4b). In particular, using the
definition of 𝖽̂ from (4.5), we find

⟨𝖽̂(𝜙1L ⊗𝜙1R),𝜙2L ⊗𝜙2R⟩ = ⟨𝖽L𝜙1L ⊗𝜙1R,𝜙2L ⊗𝜙2R⟩ + (−1)|𝜙1L|⟨𝜙1L ⊗ 𝖽R𝜙1R,𝜙2L ⊗𝜙2R⟩
= (−1)|𝜙1R||𝜙2L|+nR(|𝜙1L|+|𝜙2L|+1)⟨𝖽L𝜙1L,𝜙2L⟩L⟨𝜙1R,𝜙2R⟩R

+ (−1)|𝜙1L|+(|𝜙1R|+1)|𝜙2L|+nR(|𝜙1L|+|𝜙2L|)⟨𝜙1L,𝜙2L⟩L⟨𝖽R𝜙1R,𝜙2R⟩R
= −(−1)|𝜙1L|+|𝜙1R||𝜙2L|+nR(|𝜙1L|+|𝜙2L|+1)⟨𝜙1L, 𝖽L𝜙2L⟩L⟨𝜙1R,𝜙2R⟩R

− (−1)|𝜙1L|+|𝜙1R|+(|𝜙1R|+1)|𝜙2L|+nR(|𝜙1L|+|𝜙2L|)⟨𝜙1L,𝜙2L⟩L⟨𝜙1R, 𝖽R𝜙2R⟩R
= −(−1)|𝜙1L|+|𝜙1R|⟨𝜙1L ⊗𝜙1R, 𝖽L𝜙2L ⊗𝜙2R⟩ − (−1)|𝜙1L|+|𝜙1R|+|𝜙2L|⟨𝜙1L ⊗𝜙1R,𝜙2L ⊗ 𝖽R𝜙2R⟩
= −(−1)|𝜙1L|+|𝜙1R|⟨𝜙1L ⊗𝜙1R, 𝖽̂(𝜙2L ⊗𝜙2R)⟩ (C.8)

again for all 𝜙1L,𝜙2L ∈ 𝔅L and 𝜙1R,𝜙2R ∈ 𝔅R, which verifies the first relation in (3.4b). A similar calculation for 𝖻̂ establishes the last
relation in (3.4b). It remains to verify the second relation in (3.4b). Using the definition of 𝗆2 from (4.5), we find

⟨𝗆̂2(𝜙1L ⊗𝜙1R,𝜙2L ⊗𝜙2R),𝜙3L ⊗𝜙3R⟩ = (−1)|𝜙1R||𝜙2L|⟨𝗆2L(𝜙1L,𝜙2L)⊗𝗆2R(𝜙1R,𝜙2R),𝜙3L ⊗𝜙3R⟩
= (−1)|𝜙1R||𝜙2L|+(|𝜙1R|+|𝜙2R|)|𝜙3L|+nR(|𝜙1L|+|𝜙2L|+|𝜙3L|)⟨𝗆2L(𝜙1L,𝜙2L),𝜙3L⟩L⟨𝗆2R(𝜙1R,𝜙2R),𝜙3R⟩R
= (−1)|𝜙1R||𝜙2L|+(|𝜙1R|+|𝜙2R|)|𝜙3L|+|𝜙1L||𝜙2L|+|𝜙1R||𝜙2R|+nR(|𝜙1L|+|𝜙2L|+|𝜙3L|)

× ⟨𝜙2L,𝗆2L(𝜙1L,𝜙3L)⟩L⟨𝜙2R,𝗆2R(𝜙1R,𝜙3R)⟩R
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= (−1)(|𝜙1L|+|𝜙1R|)(|𝜙2L|+|𝜙2R|)+|𝜙1R||𝜙3L|⟨𝜙2L ⊗𝜙2R,𝗆2L(𝜙1L,𝜙3L)⊗𝗆2R(𝜙1R,𝜙3R)⟩
= (−1)(|𝜙1L|+|𝜙1R|)(|𝜙2L|+|𝜙2R|)⟨𝜙2L ⊗𝜙2R, 𝗆̂2(𝜙1L ⊗𝜙1R,𝜙3L ⊗𝜙3R)⟩. (C.9)
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