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Abstract

As part of the B-fields In Star-forming Region Observations survey, we present James Clerk Maxwell Telescope
(JCMT) 850 μm polarimetric observations toward the Orion integral-shaped filament (ISF) that covers three portions
known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears
as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multiscale analysis
shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in
OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to
small scales but shows some deviations at small scales. Histograms of relative orientations between the magnetic field
and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a
distribution with a predominant peak at 90o for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both
appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-
2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a
leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and
nonthermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing
evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds.

Unified Astronomy Thesaurus concepts: Star formation (1569); Interstellar magnetic fields (845); Interstellar
clouds (834); Polarimetry (1278)

1. Introduction

During the star formation process, the dynamics and physical
states of the molecular clouds are influenced by various physical
mechanisms, especially self-gravity, turbulence, and magnetic
field (B-field; C. F. McKee & E. C. Ostriker 2007). It has long
been a subject of intense debate as to which force is playing a
dominant role in regulating the cloud collapse and fragmentation
(M.-M. Mac Low & R. S. Klessen 2004; T. C. Mouschovias
et al. 2006; R. M. Crutcher 2012). Regarding the B-field, either
the “strong-field models” that support a defining role played by
the B-field (e.g., T. C. Mouschovias et al. 2006) or the “weak-
field models” that pay more attention to turbulence (e.g.,
M.-M. Mac Low & R. S. Klessen 2004) cannot sufficiently
explain all the observations toward star formation regions. The
relative importance of turbulence and the B-field as well as their
interactions with self-gravity in star formation remain to be
explored in more case studies (H.-B. Li 2021). More reasonable
scenarios may need to consider the essential roles of both
processes, which have been explored in simulations (R. M. Cru-
tcher 2012; P. Hennebelle & S. Inutsuka 2019).

Dense molecular filaments are important sites for star
formation, with molecular gas accumulating and then frag-
menting into star-forming cores due to gravitational instability
(P. André et al. 2014; A. Hacar et al. 2023; J. E. Pineda et al.
2023). Observations have shown that B-fields appear to be
perpendicular to high-density filaments, while they appear to be
parallel to low-density elongated clouds or striations (e.g.,
N. L. J. Cox et al. 2016). Magnetic fields may also play a
central role in shaping the fragmentation and physical states of
filaments (e.g., Y.-W. Tang et al. 2019; D. Arzoumanian et al.
2021). More observations and dedicated studies are needed to
reveal the relative importance of B-fields compared to other
processes and to decipher how B-fields influence the gas
dynamics during filament formation and fragmentation.

Situated at the head of the Orion A giant molecular cloud, the
integral-shaped filament (ISF) is a well-known nearby star-
forming filament (D. Johnstone & J. Bally 1999; J. Bally 2008)
containing several portions, of which the more extensively
studied are OMC-1, OMC-2, and OMC-3. Several studies
present B-field results of the whole ISF (e.g., M. Houde et al.
2004; B. C. Matthews et al. 2009) or its portions OMC-1 (e.g.,
D. Ward-Thompson et al. 2017; D. T. Chuss et al. 2019;

H. Ajeddig et al. 2022), OMC-2/3 (F. Poidevin et al. 2010;
P. S. Li et al. 2022; N. Zielinski & S. Wolf 2022), and OMC-4
(P. S. Li et al. 2022). With active massive star formation, the B-
field in OMC-1 has been detected with a large-scale hourglass
morphology associated with two molecular clumps, namely,
Orion BN/KL and South (e.g., D. A. Schleuning 1998; K. Pattle
et al. 2017; D. Ward-Thompson et al. 2017). The B-field
orientations in OMC-2 exhibit more variations compared to the
other portions of the ISF (e.g., F. Poidevin et al. 2010). As for
OMC-3, observations have revealed a more ordered B-field (e.g.,
B. C. Matthews et al. 2001). Therefore, being the nearest
filamentary molecular cloud (393 pc; J. E. Großschedl et al.
2018) forming both massive and intermediate-to-low-mass stars,
the OMC-1/2/3 region shows hints of varying B-field properties
along the ISF, and a more comprehensive investigation is
expected to provide new insights into the role of B-fields in
filament dynamics and star formation. In this current work, as
part of the B-fields In Star-forming Region Observations
(BISTRO; D. Ward-Thompson et al. 2017; P. Bastien 2020),
we use the James Clerk Maxwell Telescope (JCMT) to make
submillimeter polarimetric observations of the ISF. The BISTRO
team has previously observed the ISF (K. Pattle et al. 2017;
D. Ward-Thompson et al. 2017). However, those observations
were focused only on OMC-1. In this Letter, we have more than
doubled the area studied to also include OMC-2 and 3. The aim
is to set those earlier observations in the context of their
environment and to understand the bigger picture of the role of
magnetic fields in Orion A.

2. Observations

The observations of polarized dust emission (project ID:
M17BL011, M20AL018) covering OMC-1, 2, and 3 in the
Orion ISF were performed using POL-2 (P. Friberg et al. 2016)
together with SCUBA-2 (W. S. Holland et al. 2013) on the
JCMT. Some observations (project ID: M15BEC02) toward
OMC-1 South were taken during the POL-2 commissioning
stage. All the data were obtained using the POL-2 DAISY
mode (P. Friberg et al. 2016).
The reduction of raw data involves three primary steps and

uses two packages, SMURF and KAPPA (T. Jenness et al.
2013; M. J. Currie & D. S. Berry 2014), in the Starlink package
(M. J. Currie et al. 2014). With an effective beam size of
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14.″1 (∼0.027 pc at 393 pc) at 850 μm (J. T. Dempsey et al.
2013), we produced a synthesized map of Stokes parameters
using a pixel size of 4″. We perform the absolute flux
calibration with the flux conversion factor (FCF) estimated by
adopting different recommended FCF values (S. Mairs et al.
2021) weighted with the observation time. In our work, FCFs
were set to 695 Jy beam−1 pW−1 for OMC-1 and
668 Jy beam−1 pW−1 for OMC-2 and 3.

By using three models including background, source, and
residual components, we smoothed the polarization maps to
revise some obviously inaccurate measurements due to the un-
certainty. With the calibrated Stokes parameters, the polarized
intensities (PIs), polarization degrees (P), and angles (θP) at
different positions can be calculated using the following
equations:

( )⎜ ⎟
⎛
⎝

⎞
⎠

q= + = = -Q U P
I

U

Q
PI ,

PI
, and 0.5 tan . 1P

2 2 1

Since both positive and negative Q and U values contribute
to a positive PI value, a modified asymptotic estimator
(S. Plaszczynski et al. 2014) is employed to debias the results
to avoid the overestimation of PI.

Using these equations, the parameters and their uncertainties
are determined to produce a catalog of polarization half-
vectors. The polarization vectors with P/σP < 3 or σP > 5%
are removed in our analysis, where σP is the uncertainty of
polarization degree. All the selected polarization vectors, with
their lengths proportional to the polarization degrees and
plotted in an interval of 8″, are shown in Figure 1(a).

3. Results

3.1. Magnetic Field Morphology

Assuming aligned dust grains regulated by B-fields based on
the radiation alignment theory (A. Lazarian 2007), the polariza-
tion angles of thermal dust emission enable one to infer the
orientation of the B-field projected on the plane of the sky (PoS).
Figures 1(b)–(d) show the statistics of B-field orientation
distributions of the three clouds. It is clear that the B-fields in
OMC-1 are mostly aligned along a northwest–southeast orienta-
tion with a position angle (PA) of about 120o, while the B-fields
in OMC-3 are predominantly aligned along a northeast–south-
west orientation with a PA of about 45o. On the other hand, the
B-field orientations in OMC-2 have a broad distribution between
50o and 130o and another group between 0o and 30o, indicating a
relatively more random distribution. In Figure 1(e), we present
the half-vectors rotated by 90o in an interval of 20″ representing
the corresponding B-field orientations across the filament.

OMC-1. Overall, the B-field appears to be perpendicular to
the main axis of the cloud/filament. OMC-1 is associated with
the Orion Nebula Cluster (ONC) and contains a high
concentration of gas at a high temperature of >100 K (e.g.,
D. Li et al. 2020). The maximum 850 μm brightness of OMC-1
is approximately 9 × 105 mJy beam−1 and is associated with
the hot, high-mass star-forming clumps of Orion BN/KL.
Moreover, as one approaches the location of Orion BN/KL, the
hourglass pattern of the B-field becomes more prominent. This
pinched morphology in the central cloud of OMC-1 indicates a
strong interaction between gravity and the B-field, showcasing
the effects of the B-field in high-mass star-forming regions.
Figure 1 also shows B-field lines that are aligned parallel with
the orientation of the cloud extension in the northeastern

subfilament of OMC-1, suggesting a gas accumulation process
that is guided by the B-field surrounding the filament.
OMC-2. Our dust polarization map of OMC-2 is a marked

improvement over previous observations, such as the SCUPOL
results (F. Poidevin et al. 2010). As a site for intermediate-to-
low-mass star formation, OMC-2 seems to have relatively
chaotic B-field structures compared to the other two clouds.
From Figure 1(e), the B-field lines seem to converge toward
denser areas in the central parts of OMC-2, where gravitational
contraction is likely taking place. In contrast, a subfilament to the
west of the main filament is overall perpendicular to the B-field.
OMC-3. OMC-3 appears to be a filamentary cloud extending

from southeast to northwest. The POL-2 observations reveal a
nearly uniform B-field in the northern backbone of OMC-3.
However, the OMC-3 South, which is suspected to be a “second
filament” as noted by F. Poidevin et al. (2010), has disorderly B-
field directions that are similar to the complicated structures of
OMC-2. In the main body of OMC-3 north, the B-field
orientations are orthogonal to the filament direction. In brief,
OMC-3 exhibits very ordered to even uniform B-field structures.

3.2. Multiscale View of B-field Geometries in Orion ISF

We utilized the 353 GHz polarization observations made
with the High Frequency Instrument on Planck to infer the
large-scale B-field (Planck Collaboration et al. 2015). The
Stokes I, Q, and U maps, which were corrected for the
contamination from the cosmic microwave background and
cosmic infrared background, were used to generate the large-
scale polarization map at a resolution of 5′. Figure 2(a) displays
the large-scale B-field maps around the Orion A region. The B-
field is roughly perpendicular to the ISF. Moreover, the field
structure appears slightly pinched toward the filament.
In addition, we check the optical starlight polarization

observations to further explore the large-scale B-field in relatively
low-density regions (F. Poidevin et al. 2011). To limit our
analysis to sources within the Orion cloud, we only consider
starlight detections that fall within the region of our JCMT
observations and have a distance of 360–500 pc based on Gaia
parallax measurements (S. Rezaei et al. 2020; C. A. L. Bailer-Jo-
nes et al. 2021; Gaia Collaboration et al. 2021). The B-fields
derived from 61 detections are shown in Figure 2(b). The
majority of the B-field half-vectors have a west–east or northeast–
southwest orientation, in general consistent with the Planck
results. Given that the optical polarization data are presumably
tracing the B-field threading the ISM around the ISF or that in the
foreground toward the ISF, the B-field structure shows a small
deviation compared to that seen in the Planck map.
The TADPOL survey (C. L. H. Hull et al. 2014) mapped the

B-fields toward several selected sources in the ISF, including
Orion KL in OMC-1, FIR 3 and FIR 4 in OMC-2, and MMS 5
and MMS 6 in OMC-3, at an angular resolution of 2¢¢.5
(0.005 pc) using the Combined Array for Research in
Millimeter-wave Astronomy (CARMA). From Figures 2(c)–
(e), for OMC-1, the orientation of the small-scale B-field
revealed by CARMA largely follows that of the intermediate-
scale B-field seen by the JCMT POL-2, though a small fraction
of the CARMA B-field half-vectors are offset from parallel to
even perpendicular to the JCMT B-field half-vectors; for OMC-
2, the small-scale B-field is apparently decoupled from that on
the intermediate scale, and there is no obvious correlation
between the orientations of the B-fields on the two scales; for
OMC-3, the small-scale and intermediate-scale B-fields both

4

The Astrophysical Journal Letters, 977:L31 (14pp), 2024 December 20 Wu et al.



appear to be uniform with almost the same orientation. There
have been new Atacama Large Millimeter/submillimeter Array
(ALMA) observations of dust polarization toward several
sources in the ISF; however, these observations were made at
subarcsecond resolutions, either probing B-field structures at
too-small scales to be compared with the JCMT data
(P. C. Cortes et al. 2021) or being dominated by self-scattering
and thus unable to probe the B-field structure (S. Takahashi
et al. 2019; Y. Liu et al. 2024).

More quantitatively, we compare the intermediate-scale B-
field probed by JCMT POL-2 with the large-scale B-field
probed by Planck by calculating the difference angle, ΔθB,
between the orientations of the B-fields on the two scales. Since
the Planck map covers an area much larger than what is
covered by the JCMT map, we calculate ΔθB for each half-
vector at 8″ intervals in the JCMT map; the B-field orientation
at the corresponding position in the Planck map is derived by a
weighted average of the B-field orientations at the nearest 4

pixels, where the pixel size of the Planck map is ¢2 and the
weighting is taken as the inverse of the square of the distance
between the pixel center to the position of interest. In
Figure 2(f), the histogram of ΔθB for OMC-1 is clearly
peaking toward 0o, suggesting that the orientation of the
intermediate-scale (0.03 pc) B-field is predominantly parallel
with that of the large-scale (0.6 pc) B-field. For OMC-2, ΔθB
appears to be widely distributed between 0o and 90o, with a
very minor tendency of peaking at 0o, indicating that the B-field
orientation on the intermediate scale has shown strong local
variation and started to decouple from that on the large scale.
For OMC-3, ΔθB are almost all below 35o, indicating that the
intermediate-scale B-field is well aligned with that on the large
scale.
Similarly to ΔθB, we compute the difference angle, δθB,

between the orientations of the B-fields probed by JCMT and
CARMA for each CARMA detection. Again, the B-field
orientation at the corresponding position in the JCMT map is

Figure 1. Panel (a): dust polarization observations of Orion A ISF made with the POL-2 on JCMT. The gray-scale image shows the 850 μm total intensity (Stokes I). Red
vectors are plotted in an interval of 8″, showing the polarization angles with the length proportional to the polarization degree. Black dashed lines mark the divisions
between three clouds, i.e., OMC-1 to the south, OMC-2 in the middle, and OMC-3 to the north. The locations of the 1.3 mm sources identified by R. Chini et al. (1997),
including MMS 1–10 in OMC-3, FIR 1–6 in OMC-2, and the northeastern subfilament and Orion Bar in OMC-1, are marked on the image. Panels (b), (c), and (d) show
the histograms of the PAs of the B-field orientations for OMC-1, OMC-2, and OMC-3, respectively. Panel (e): blue vectors with a uniform arbitrary length are plotted in
an interval of 20″, showing the magnetic field orientations, and are derived by rotating the polarization vectors by 90o. The 850 μm total intensity is shown in black
contours at log10 scale (mJy beam−1), which starts from 2.2 and continues in steps of 0.5. The black dotted line splits the OMC-3 cloud into the North and South parts.
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derived by a weighted average of the B-field orientations at
the nearest 4 pixels, and the weighting is taken as the inverse
of the square of the distance between the pixel center to the
position of interest. In Figure 2(g), the distribution of δθB for
OMC-1 shows a clear peak at 0o–10o and gradually declines

toward 90o; for OMC-2, δθB has a nearly flat distribution,
again indicating that the B-fields on the two scales are
apparently decoupled; for OMC-3, the distribution of δθB
depicts that the B-field orientations almost do not change
across the two scales.

Figure 2. Multiscale B-field orientations in the ISF. Panel (a): the background image displays the 850 μm opacity map obtained from the Herschel and Planck data
(M. Lombardi et al. 2014); purple segments indicate the large-scale B-field orientations inferred from the Planck 353 GHz data. A yellow dotted line marks the galactic
latitude b = 19o. Panel (b): B-field orientations derived from starlight, JCMT POL-2, and CARMA observations. The background image shows the JCMT 850 μm
total intensity map; blue vectors plotted at an interval of 32″ denote the B-field orientations observed by JCMT POL-2, cyan vectors represent the B-field orientations
revealed by starlight polarization observations (F. Poidevin et al. 2011), and red vectors show the averaged B-field orientations obtained by the CARMA TADPOL
survey (C. L. H. Hull et al. 2014). In panels (c), (d), and (e), red vectors indicate the B-field orientations obtained by the CARMA TADPOL survey in selected dense
cores located in OMC-1, OMC-2, and OMC-3, respectively; blue vectors show the B-field orientations derived with the JCMT POL-2 observations; and the CARMA
observations of the total dust emission at 1.3 mm are shown in black contours at log10 scale (mJy beam−1), which starts from −2.0 and continues in steps of 0.5 in
panel (c), starts from −2.0 and continues in steps of 0.2 in panel (d), and starts from −1.0 and continues in steps of 0.3 in panel (e). Panel (f): histograms of the
difference angles between the B-field orientations unveiled by Planck and that by the JCMT POL-2 for OMC-1, OMC-2, and OMC-3. Panel (g): histograms of the
difference angles between the B-field orientations obtained by the JCMT POL-2 and by the CARMA TADPOL survey for OMC-1, OMC-2, and OMC-3.
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3.3. Relations between B-field and Filamentary Structures

To investigate how the B-field orientation is aligned with the
filamentary structures in the ISF, we employed the filfin-
der algorithm (E. W. Koch & E. W. Rosolowsky 2015) to
extract filament skeletons. Figure 3(a) shows the derived
skeletons along the main filament, the branches connected to
the main filament, and some minor structures detached from the
main filament. To quantify the filament orientations, we utilize
the principal component analysis method on 10 adjacent pixels
of the skeletons to determine the PA of the filaments at each
position. We then compute the difference angles between the
filament and B-field orientations. In Figure 3(a), the color scale
of the skeletons visualizes the spatial distribution of the

difference angles. Figures 3((b)–(d)) show the histograms of
the difference angles for OMC-1, OMC-2, and OMC-3,
respectively. Along the filamentary cloud, three drastically
different distributions for the relative orientation between the
B-fields and filaments are seen: a bimodal distribution for
OMC-1, nearly flat distribution for OMC-2, and a distribution
with a predominant single peak at 90o for OMC-3. From the
skeleton color scale representing the difference angles
(Figure 3(a)), we can see that the bimodal distribution in
OMC-1 is due to a combined effect that along the main
filament, the B-field orientation is perpendicular to the filament
axis, while along the relatively low-density branches, the B-
field orientation is parallel to the branch axis; on the other hand,

Figure 3. Panel (a): colored points show locations along the skeleton of each filament where the filament orientation is compared with the B-field orientation, and the
color scale denotes the derived difference angle between the two orientations, as indicated by a color bar on the top; the 850 μm total intensity is shown in contours
with levels at a log10 scale (mJy beam−1), starting from 2.2 and continuing at steps of 0.5. Panels (b), (c), and (d): histograms of the difference angles between the
filament skeleton and B-field orientations for OMC-1, OMC-2, and OMC-3. Panel (e): red vectors plotted at an interval of 12″ show the B-field orientations derived by
the JCMT POL-2, and the gray-scale image shows the N2H

+ (1–0) velocity-integrated emission in OMC-1 and OMC-2 (A. Hacar et al. 2018). Panel (f): same as panel
(e) but for OMC-3, and the N2H

+ data are taken from C. Zhang et al. (2020). Panels (g), (h), and (i) show the histograms of the difference angles between the N2H
+

fibers and POL-2 B-field orientations in OMC-1, OMC-2, and OMC-3, respectively.
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for the distribution of relative orientation in OMC-3, a tail
toward 0o is mostly attributed to OMC-3 South.

Molecular filaments may have complex internal structures,
such as intertwined filamentary bundles or fibers. We identified
the fibers with the filfinder algorithm from N2H

+ maps (see
Appendix A). Figure 3(e) shows a comparison between the B-
field orientations derived from our POL-2 observations and the
fiber structures revealed by the combined ALMA and IRAM
30 m N2H

+ (1–0) observations of OMC-1 and 2 (A. Hacar
et al. 2018). Such a comparison for OMC-3 is shown in
Figure 3(f), where the ALMA N2H

+ (1–0) data were taken
from C. Zhang et al. (2020). We calculate the difference angles
between the fiber and B-field orientations, as shown in
Figures 3(g)–(i). In OMC-1, the fibers tend to be perpendicular
to the B-field; this is not difficult to understand considering the
bimodal distribution for the relative orientation between the B-
field and filaments (Figure 3(b)), and here the fibers traced by
the N2H

+ emission represent the high-density part of the
filaments. In OMC-3, the fibers are clearly perpendicular to the
B-field, consistent with the distribution of relative orientation
between the B-field and filaments. Interestingly, the fibers in
OMC-2 appear to be predominantly parallel to the B-field, in
contrast to the random distribution of relative orientation
between the B-field and filaments.

4. Discussion and Summary

4.1. A Tale of Three: Gravitational, Turbulent, and Magnetic
Interpretations for OMC-1, 2, and 3, Respectively

We have presented JCMT POL-2 dust polarization observa-
tions of a remarkable molecular filament containing OMC-1,
OMC-2, and OMC-3 in the Orion ISF. Combing the POL-2 data
with the Planck and CARMA polarization observations, we
clearly see how the B-fields vary from the large (∼0.6 pc) to
intermediate (∼0.03 pc) and small (∼0.005) scales: for OMC-1,
the B-field retains its mean orientation on all the scales, with
some local variations on intermediate-to-small scales; for OMC-
2, the B-fields on different scales are apparently decoupled,
showing relatively disordered morphology on the intermediate
and small scales; and for OMC-3, the B-field shows a uniform
morphology, and the orientation does not change all the way
from the large to intermediate and small scales. A natural and
straightforward interpretation of such B-field morphologies, in
particular their variation across different scales, is that the B-field
in OMC-1 is channeling the gas accretion from the ambient
medium to the filament, but as the mass continues to grow,
forming massive dense cores within the filament, gravity
overcomes the magnetic force, pulling the B-field into an
hourglass shape (see also K. Pattle et al. 2017; D. Ward-Thom-
pson et al. 2017). The B-field in OMC-2 appears highly twisted
on intermediate and small scales, suggesting that turbulence is
dominating over the B-field; the B-field in OMC-3, especially
OMC-3 North, has a nearly uniform morphology from large to
small scales, indicating that the B-field is strong enough to
dominate the gas dynamics (e.g., E. C. Ostriker et al. 2001).
Below, we test this simple interpretation by comparing the
orientations between the B-fields and the dense gas structures.

Filamentary clouds naturally define an axis to be compared
to the B-field, and such a comparison for ISF again reveals a
trio: bimodal for OMC-1, random for OMC-2, and perpend-
icular for OMC-3 (Figures 3(b)–(d)). It immediately renders
strong support to the above ternary interpretation. The

bimodal distribution for the relative orientation between the
B-field and filaments in OMC-1 is clearly correlated to the gas
density, with the high-density filament skeleton perpendicular
to the B-field and low-density skeletons parallel to the B-field,
consistent with the scenario that the B-field is channeling gas
flows toward the high-density filament (e.g., D. Ward-Thom-
pson et al. 2017; T. G. S. Pillai et al. 2020; P. Girichi-
dis 2021). Such a correlation is strengthened by looking into
the filament internal structures, i.e., the N2H

+
fibers: as the

high-density part of the filament, the fibers are preferentially
perpendicular to the B-field (Figure 3(g)). In OMC-2, the
random distribution is apparently a consequence of the
disordered nature of the B-field structure. Very interestingly,
the fibers in OMC-2 are largely parallel to the B-field
(Figure 3(h)), showing a pattern that is consistent with the
results of simulations of super-Alfvénic turbulence (see, e.g.,
Figures 2 and 3 in P. Padoan et al. 2001), suggesting that
turbulence is dynamically more important than the B-field in
OMC-2. For OMC-3, the B-field is simply perpendicular to
both the filament (Figure 3(d)) and fibers (Figure 3(i)),
indicating that the B-field is strong enough to counteract
gravity and turbulence.

4.2. The B-field Strength Estimates

To further quantify the impact of the B-field on the
dynamical evolution of the filament, it is desirable to estimate
the B-field strength. However, deriving the B-field strength
with the David–Chandrasekhar–Fermi (DCF) method
(L. Davis 1951; S. Chandrasekhar & E. Fermi 1953) or its
variants is subject to large uncertainty and in some cases is not
applicable (J. Liu et al. 2021, 2022a, 2022b; C.-Y. Chen et al.
2022). First, the method requires calculating the polarization
angle dispersion due to turbulent disturbance, or decomposing
the B-field into turbulent and ordered components and
calculating their ratio. This step is not always feasible,
especially when the B-field structure is complicated. Second,
under the assumption of energy equipartition between turbu-
lence and the turbulent B-field, and adopting a gas density and
turbulent velocity dispersion obtained from other observations,
the PoS B-field strength can be derived. It should be noted that
the energy equipartition assumption may not be valid when the
B-field is weak. The estimates of the gas density and turbulent
velocity dispersion often suffer large uncertainties. Never-
theless, the method has been widely used. Several such
estimates for the sources in the ISF exist in the literature, and
the results vary a lot, ranging from 0.3 to 6.6 mG for OMC-1
and from 0.13 to 0.64 mG for OMC-3 (B. C. Matthews et al.
2005; J. P. Vallée & J. D. Fiege 2007; R. H. Hildebrand et al.
2009; M. Houde et al. 2009; F. Poidevin et al. 2013; K. Pattle
et al. 2017; D. T. Chuss et al. 2019; J. A. Guerra et al. 2021;
J. Hwang et al. 2021; P. S. Li et al. 2022; N. Zielinski &
S. Wolf 2022). Here we try with the best effort to estimate the
PoS B-field strengths in the three regions with the new data,
obtaining 0.45, 0.25, and 0.37 mG for OMC-1, 2, and 3,
respectively (see Appendix B).
Given the aforementioned cautions and uncertainties, we

only make a comparative rather than a more detailed
quantitative analysis based on the derived B-field strengths. It
is worth mentioning that OMC-1 has a width about 2 times
greater than OMC-2 and 3 under the same column density
threshold, resulting in a volume density in this region slightly
lower than that in the latter two. But about half of the gas mass
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in OMC-1 is attributed to the central high-density part with a
width of ∼0.06 pc, and within that area, the average volume
density reaches 2.5 × 106 cm−3. Therefore, though the B-field
in OMC-1 is stronger, considering a much greater mass and
central density, it is completely plausible that gravity is
overwhelmingly more important in this region. OMC-2 and 3
have almost the same mass and nonthermal velocity dispersion
(see Appendix B), while the B-field in OMC-3 is stronger than
that in OMC-2; the relative B-field strength of the two regions
is at least compatible with the interpretation that turbulence in
OMC-2 and the B-field in OMC-3 are taking a leading role.

4.3. The Impact of the Magnetic Field on Star Formation

Given the markedly different B-field properties across the
three regions in the ISF, it is of great interest to examine how
the star formation activity is affected. We collect a catalog of
young stellar objects (YSOs), which are classified into class 0,
class I, flat-spectrum, and disk-bearing pre-main-sequence
stars, based on the works of S. T. Megeath et al. (2012), E.
Furlan et al. (2016), and J. E. Großschedl et al. (2019).
Figure 4 shows all the YSOs in OMC-1, 2, and 3 and the
statistics of each type in each of the three regions. The star

Figure 4. Panel (a): distribution of detected YSOs overlaid on the B-field orientation maps. All the YSO candidates and high-mass stars are taken from the literature
(S. T. Megeath et al. 2012; E. Furlan et al. 2016; J. E. Großschedl et al. 2019). Purple vectors at a 20″ interval indicate the B-field orientations observed by the JCMT
POL-2. The class 0, class I, flat-spectrum sources, and pre-main-sequence stars with disks are denoted in green, pink, yellow, and red colors, respectively. For each
YSO type, the confirmed ones that are consistent in different literature are represented by star symbols; newly discovered candidates by J. E. Großschedl et al. (2019)
are indicated with filled circles; controversial candidates, showing inconsistencies in different literature, are marked with filled squares. Panels (b), (c), and (d):
histograms of the four YSO types in OMC-1, OMC-2, and OMC-3, respectively; class 0, class I, flat-spectrum sources, and pre-main-sequence stars with disks are
labeled as “0,” “I,” “F,” and “D,” respectively, with the same colors as in panel (a); filled histograms represent confirmed YSOs, open histograms depict newly
discovered YSOs, and vertical gridded histograms indicate controversial YSOs.
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formation activity in OMC-1 is far more vigorous and
complicated than that in OMC-2 and 3. OMC-1 is the only
region of the three forming high-mass stars, containing
several well-known high-mass protostellar objects. It is
located behind the luminous Trapezium cluster, which is the
central part of the ONC. The collected YSOs in this region are
completely dominated by the disk sources and are heavily
contaminated by the foreground ONC sources (C. J. Lada
et al. 2000; J. Otter et al. 2021). Here we focus on the
comparison between OMC-2 and OMC-3. From Figure 4,
OMC-2 has a higher fraction of disk sources (50/78) than
OMC-3 (20/43), indicating a younger age of the cluster in
OMC-3. The total number of YSOs in OMC-2 is higher than
that in OMC-3. Note that the mass, mean density, and
nonthermal velocity dispersion in the two regions are almost
the same, and the only appreciable difference lies in the B-
field geometries and the relative orientation between the B-
fields and filaments/fibers. Therefore, the differing YSO
populations in the two regions are mostly likely due to the B-
field effect, providing compelling evidence that a dynamically
more important B-field leads to slower (or delayed) and less
efficient star formation in molecular clouds.

To summarize, concerning which mechanism is shaping the
dynamics of molecular clouds on ∼0.01–1 pc scales, each of
the three clouds (OMC-1, 2, and 3 in the Orion ISF) seems to
be telling a different story based on our JCMT POL-2
observations along with the Planck and CARMA data.
Therefore, it is probably an oversimplified interpretation to
claim that either the magnetic field or turbulence is universally
more important in molecular cloud evolution and star
formation. By comparing the YSO populations in OMC-2
and 3, we find evidence that a strong B-field could make star
formation relatively slower and less efficient. Y. Zhang et al.
(2019) carried out MHD simulations of sub-Alfvénic
molecular clouds, focusing on the B-field orientation variation
across various scales. They found that on small (<0.1 pc)
scales, the cores are super-Alfvénic as a consequence of
turbulent energy concentration induced by gravity, and thus
the B-field on small scales exhibits a wide range of deviation
in orientation from that on large scales. If one takes an
average B-field orientation for each of the dense cores in the
CARMA maps (Figures 2(c)–(e)) and compares to the B-field
revealed by Planck, the offset distribution could be to some
extent consistent with the work of Y. Zhang et al. (2019).
However, a detailed comparison shows that the cross-scale
correlation in B-field orientation (Figures 2(f) and (g)) is
distinctly different from region to region, certainly not
random in OMC-1 and 3. The observed relation between the
B-field and filament/fiber orientations and the star formation
activity variation further suggests a tale-of-three interpretation
of the three regions regarding the interplay between gravity,
B-fields, and turbulence.
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Appendix A
Identified Fiber Structures

The fibers within the filament are extracted using the filfinder
algorithm from the N2H

+ (1–0) velocity-integrated emission
maps. Figure 5 shows a comparison between the derived fibers,
the N2H

+ emission, and the total 850 μm emission.
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Appendix B
Details for B-field Strength Calculation

In the DCF assumption, the PoS B-field strength of the
molecular cloud is estimated by interpreting the observed
deviation of polarization angles from a mean polarization angle
distribution as a result of Alfvén waves induced by turbulent
perturbations, i.e.,

( )⎜ ⎟
⎛
⎝

⎞
⎠

s m r
d

=
-

B
B

B
, B1v0 0

0

1

where σv represents the turbulence-induced velocity dispersion
that could approximately equate to the nonthermal velocity
dispersion and ρ denotes the gas mass density. δB/B0 denotes
the turbulent-to-ordered magnetic field ratio.
To obtain the mass density, we modeled the three star-

forming clouds within the Orion A ISF as cylindrical filaments.
We use the column density map at ∼8″ resolution produced by
F. Schuller et al. (2021) to measure the mass of the three
regions, obtaining ∼660, ∼250, and ∼260Me for OMC-1, 2,
and 3. The dimensions of the three regions are measured to be
approximately 0.93 pc × 0.23 pc for OMC-1, 1.0 pc × 0.1 pc

Figure 5. Gray-scale images show the velocity-integrated N2H
+ (1–0) emissions, overlaid with the extracted fibers shown in red lines and the total 850 μm intensity

shown in green contours. The left panel shows the OMC-1 and 2 region, with the N2H
+ data taken from A. Hacar et al. (2018), and the right panel shows OMC-3, with

the N2H
+ data taken from C. Zhang et al. (2020).
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for OMC-2, and 1.0 pc× 0.1 pc for OMC-3. Assuming a
cylinder geometry lying in the PoS, the volume densities are
found to be ∼2.4 × 105, ∼4.5 × 105, and ∼4.7 × 105 cm−3 for
OMC-1, 2, and 3, respectively.

To estimate the velocity dispersion in the ISF, we utilized the
NH3 (1, 1) observation data from the Green Bank Ammonia
Survey (R. K. Friesen et al. 2017) with a resolution of 36″. To
extract the nonthermal velocity dispersion, we subtracted the
thermal components of the observed velocity dispersion with
the temperature map provided by F. Schuller et al. (2021). Our
analysis revealed that the mean nonthermal velocity dispersion
in OMC-1, OMC-2, and OMC-3 is 0.90 km s−1, 0.38 km s−1,
and 0.41 km s−1, respectively.

The turbulent-to-ordered magnetic field ratio δB/B0 is
determined by the dispersion of polarization angles. However,
quantifying the turbulent B-field components could have bias
due to the effects of nonturbulent field structure in dense
clouds. So the angular dispersion function method has been
developed to reduce the bias. Moreover, by considering the
effect of signal integration along the line of sight and within the
beam in the analysis, M. Houde et al. (2009) proposed
the autocorrelation function (ACF) form to precisely derive the
turbulent-to-ordered magnetic field ratios. The angular disper-
sion function could be expressed as

( )

[ ( )] [ ]( )/
d
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where N is the number of turbulent cells probed by the
telescope beam, ΔΦ(l) represents the PA differences of two
vectors at a distance l, a2 signifies the slope of the second-order
term in the Taylor expansion,
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2
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W denotes the beam radius (6¢¢.0 for JCMT 850 μm observa-
tions),D¢ depicts the cloud depth, and δ stands for the turbulent
correlation length.

Setting cloud depths to 0.23 pc, 0.1 pc, and 0.1 pc for OMC-
1, OMC-2, and OMC-3, respectively, we derived the ACF of
the three clouds with the JCMT POL-2 polarization vectors
(2952 vectors in OMC-1, 1118 vectors in OMC-2, 890 vectors

in OMC-3). Equation (B2) is valid when l is not too big
compared to a few times of W (M. Houde et al. 2009). In
addition, we have a polarization map with a finite size, and thus
the number of polarization detections on which the ACF could
be derived at high intensities decreases as l increases, leading to
degrading statistics for the data points on large l. We therefore
limit our fitting to the data points with l < 100″. In Figure 6, the
fitting results revealed that OMC-3 has the smallest δB/B0

value of 0.596, and OMC-2 has the largest δB/B0 value of
0.807, while OMC-1 has a δB/B0 value of 0.770. We also
obtain δ= 4.39, 3.15, and 4.08 mpc for OMC-1, 2, and 3,
respectively, with the fitting. We note that δ cannot be resolved
with a telescope beam of 27 mpc (14″ at a distance of 393 pc).
Such an issue occurs in other works applying the ACF fitting to
dust polarization data (e.g., M. Houde et al. 2009; K. Qiu et al.
2013). Thus, the inferred δ is more like a numerical artifact
from the fitting, and the turbulence correlation scale is still to
be explored. We finally estimated the strength of the PoS
component of the B-field for OMC-1, OMC-2, and OMC-3 as
0.45 mG, 0.25 mG, and 0.37 mG, respectively.
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