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Abstract
Conventional deepbrain stimulation (DBS) formovementdisorders is awell-established clinical
treatment.Over the last fewdecades, over 200,000people have been treatedbyDBSworldwide for several
neurological conditions, includingParkinson’s disease andEssential Tremor.DBS involves implanting
electrodes intodisorder-specific targets in the brain and applying an electric current.Although the
hardwarehas developed in recent years, the clinically used stimulationpatternhas remained as a regular
frequency squarepulse.Recent studies have suggested that phase-locking, coordinated reset or irregular
patternsmaybe as ormore effective at desynchronising thepathological neural activity. Such studies have
shownefficacyusingdetailedneuronmodels orhighly simplifiednetworks and consideredone frequency
band.Wepreviously described apopulation levelmodelwhich generates oscillatory activity in both the
beta band (20Hz) and the tremorband (4Hz).Hereweuse thismodel to look at the impact of applying
regular, irregular andphasedependent bursts of stimulation, and showhow this influences both tremor-
andbeta-bandactivity.We found that bursts are as ormore effective at suppressing thepathological
oscillations compared to continuousDBS. Importantly however, at higher amplitudeswe found that the
stimulusdrove thenetwork activity, as seenpreviously. Strikingly, this suppressionwasmost apparent for
the tremorbandoscillations,withbeta bandpathological activity beingmore resistant to theburst
stimulation compared to continuous, conventionalDBS. Furthermore, our simulations showed that
phase-lockedbursts of stimulationdidnot conveymuch improvementon regular bursts of oscillation.
Using a genetic algorithmoptimisation approach tofind thebest stimulationparameters for regular,
irregular andphase-lockedbursts,we confirmed that tremorbandoscillations couldbemore readily
suppressed.Our results allowexplorationof stimulationmechanisms at thenetwork level to formulate
testable predictions regardingparameter settings inDBS.

Abbreviations

DBS Deep brain stimulation

VIM Ventral intermediate
nucleus

STN Subthalamic nucleus

GPe Globus Pallidus externa

GPi Globus Pallidus interna

ET Essential tremor

PD Parkinson’s disease

Zj(x) The proportion of cells
firing in population j for a

given level of population
activity x(t).

τi Time constant of the
change over time in the
proportion of cellsfiring
in a population j.

Ee and Ii Represents the number of
active neurons in an exci-
tatory (e) or inhibitory (i)
population.

wn The strength of the con-
nection between two
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populations, where n= 1,
2K 11.

ext A constant ascending
external input to theDCN
population.

be, bi, θe, θi Constants definedby
Wilson andCowan (1972).

ke and ki Themaximumvalues of
the response functions for
excitatory and inhibitory
populations.

1. Introduction

Movement disorders such as Parkinson’s disease (PD)
and essential tremor (ET) affect up to 6%of people over
the age of 60 (Louis and Ferreira 2010, Tysnes and
Storstein 2017) and impact significantly on family
members, carers and the health service. One well-
established surgical treatment is deep brain stimulation
(DBS)whichhas treated over 200,000peopleworldwide
over the last few decades for several neurological
conditions including PD and ET (Vedam-Mai et al
2021). The procedure involves implanting electrodes
into disorder-specific targets in the brain and applying
electrical stimulation (Benabid et al 1987). For many
years, the electrodes consisted of four cylindrical
contacts, but more recently this design has been
evolving to include electrodes with varying numbers of
contacts and varying shapes of contacts, through which
the stimulation can be applied (Potel et al 2022). This
has allowed for more flexibility, and the exploration of
more complex stimulationprotocols.

Conversely, since its inception the stimulation
pattern used for DBS has consisted of a regular square
wave, with specific parameters that can be varied: fre-
quency, pulse width and amplitude (Kuncel and
Grill 2004). This affords the clinician some degree of
flexibility, and yet there is a narrow window within
which to vary these parameters. This is due to the opti-
mal clinical effect being obtained with specific fre-
quencies, a reluctance to use high energy parameters
to conserve battery life, and the need to avoid inducing
side effects (Yousif et al 2012). However, in recent
years there has been a focus on investigating novel sti-
mulation patterns which achieve clinical improve-
ment in symptoms andminimise energy consumption
and side effects (Koeglsperger et al 2019; Daria Bogdan
et al 2020). The mechanism of action of DBS remains
unclear and a topic of discussion in the literature.
Given the similar outcome achieved by DBS as by
lesioning, DBS has been referred to a functional lesion
and discussion often centres on whether DBS simply
excites or inhibits neuronal activity. More recently, it
is thought that DBS triggers a variety of mechanisms
through which functional improvements are seen in
patients (Kringelbach et al 2007), from immediate

effects such as depolarisation of neuronal membranes,
to long term effects such as neural repair (Pei et al
2024). One hypothesis is that pathological oscillatory
activity is desynchronised by the applied stimulation
(Rubin and Terman 2004, McIntyre and Hahn 2010,
Yousif et al 2017, 2020). The origin for such pathologi-
cal activity is not fully understood, though previous
work has shown the importance of the connection
between the cortex and subthalamic nucleus (Litvak
et al 2011) and more recently the globus pallidus
(Crompe et al 2020). Recently, it has been suggested
that changes in synaptic connectivity within popula-
tions occur as a result of plasticity mechanisms, which
may also lead to pathological activity in Parkinson’s
disease (Chu et al 2015, 2017,Madadi Asl et al 2022).

Recent computational modelling studies have sug-
gested that phase-locking, coordinated reset (Popo-
vych et al 2006, Hauptmann and Tass 2007, Tass et al
2012) or irregular patterns may be as or more effective
at desynchronising the pathological neural activity.
Conversely, an early study showed that irregularity in
the DBS stimulus did not improve desynchronization
of a basal ganglia network (Dorval et al 2010), however
they used irregular single pulses. Similarly, Summer-
son et al (2015) looked at the impact of irregularity
added to single pulses and showed that this did not
change the overall firing rate in networks but did
change the entropy. More recently, studies have con-
sidered temporally irregular bursts of stimuli (Santos-
Valencia et al 2019), and shown that in a model of epi-
lepsy this slows seizure onset. Furthermore, Duchet
et al (2021) showed that rather than irregular bursts,
phase-locked bursts can improve desynchronization
in network models of tremor. These and other studies
have mainly focussed on detailed biophysical models
or highly simplified networks and considered how the
stimuli desynchronise the pathological activity in a
single frequency range (Brocker et al 2013, Holt et al
2016, Toth and Wilson 2022). Furthermore, the con-
verse has also been shown, i.e. that stimuli trains with
bursts do not confer any improvement in suppression
of symptoms over regular stimulation (Birdno et al
2012). More recent work suggests that when synaptic
plasticity mechanisms come into play, the impact of
burst and regular stimulation are more similar
(Madadi et al 2023).

In this study we investigate how such non-conven-
tional burst stimulation impact the dynamics of our
previously presented, anatomically realistic network
model. This model generates oscillatory activity in
both the beta frequency band (20 Hz), which has been
linked to Parkinson’s disease, and oscillations in the
tremor frequency range (4 Hz). We used this model to
explore the parameter space and separated regions
with the dynamics associated with these different fre-
quencies, also describing how the network transi-
tioned between the different oscillatory states and how
DBS changed the two types of pathological oscilla-
tions. In this study, we use this same model to look at
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the impact of applying regular, irregular and phase
dependent burst stimulation on this network beha-
viour. We show how, with the use of an optimisation
approach using genetic algorithm, we can find para-
meters to define novel stimulation paradigms which
suppress the different pathological activity at the net-
work level.

2.Materials andmethods

We used our population representation of the thala-
mocortical basal ganglia-cerebellar network (Merri-
son-Hort et al 2013, Yousif et al 2017, 2020), which
includes: a cortical population, a cerebellar popula-
tion, two thalamic populations, plus a basal ganglia
part including the subthalamic nucleus (STN), the
external part of the globus pallidus (GPe) and the
internal part of the globus pallidus (GPi) (figure 1(A)).
The network includes known connections between
the populations, such as the cortical drive to the STN,
the hyper-direct pathway, and an inhibitory output
from the basal ganglia to the thalamus. The network
receives a constant ascending drive via the cerebellar
population to the thalamus. As shown in a recent
review of the ‘Cortico-Basal Ganglia-Cerebellar Net-
work’ (Milardi et al 2019) our knowledge of the
connections between these structures is constantly
being updated due to new research, beyond the
traditional image of the direct and indirect pathways.
Our model includes many of these structures and
known connections and focusses on combining the
simple STN-GPe recurrent network, with a thalamo-
cortical network and including the cerebellar input.
Although, as with all models, it is a simplification of
the full biological picture, it captures these important
pathways and the hyper-direct pathway thought to be
central to voluntary movement (Nambu, Tokuno and
Takada 2002).

The Wilson-Cowan approach was used to model
the network (Wilson and Cowan 1972), which assumes
that neurons within a population are in close spatial
proximity, ignores spatial interactions and only repre-
sents temporal dynamics. The activity of each

population is represented by the proportion of cells
which are firing action potentials per unit time. As pre-
sented previously, the network consists of an excitatory
cortical population (Cx below), two thalamic popula-
tions, the excitatory ventral intermediate (VIM)
nucleus and the inhibitory reticular nucleus (nRT), an
excitatory population of deep cerebellar nuclei neurons
(DCN), an excitatory population representing the STN,
and two inhibitory populations representing the GPe
and the GPi. The network structure can be seen in
figure 1(A). Hence, the model consists of seven first-
order coupled differential equations, shownbelow:
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Here, the functions Ee (e = Cx, VIM, DCN or STN)
and Ii (i= nRT, GPe or GPi) represent the number of
active neurons in the relevant excitatory or inhibitory
population at a given time. The strength of the
connection between two populations is given by a
weight parameter wn, where n = 1, 2K 11. The value
of this weight represents the product of the average

Figure 1. (A)The network structure of themodel. The network consists of seven neuronal populations, the cortex, the VIMnucleus of
the thalamus, the reticular nucleus of the thalamus (nRT), the subthalamic nucleus (STN), the internal and external parts of the globus
pallidus (GPi andGPe respectively) and the deep cerebellar nulclei (DCN). Excitatory connections are represented by pointed arrows
with solid lines and inhibitory connections by rounded arrowswith dashed lines. The network can oscillate at 4Hz in the tremor range
(B) and at 20Hz in the beta (C) frequency band, and the oscillatory STNpopulation activity is shownhere.
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number of contacts per cell and the average postsynap-
tic current induced in the postsynaptic cell by a
presynaptic action potential. Note that in equation (4),
which represents the DCN population, the activity is
independent of the dynamics of the other populations,
and only provides an input into the VIM population.
Therefore, in this model, the DCN population will
tend to a stationary value and not oscillate. Further-
more, the DCN receives a constant input representing
an ascending external input (ext) which drives the
network. All weight parameters, and the value of the
‘ext’ parameter, are given in table 1. We used two sets
of weights, one which resulted in the network oscillat-
ing with a frequency in the tremor band (figure 1(B))
and one set which resulted in beta band frequency
oscillations (figure 1(C)). These weights were defined
in our previous study (Yousif et al 2020).

The functions Ze(x) and Zi(x) represent the pro-
portion of cells firing in an excitatory (e) or inhibitory
(i) population for a given level of average membrane
potential activity x(t). Previously these functions were
derived by assuming that the population has a dis-
tribution of neural thresholds and that all cells in the
population have the same average level of membrane
potential activity (Wilson and Cowan 1972). Another
approach can be to assume that the neurons within a
population have the same threshold but varying num-
bers of afferent synapses. Either approach results in
response functions that are monotonically increasing
sigmoid functions, as shownhere:

( )

( )
( ( )) ( )

8

Z x
b x b

1

1 exp

1

1 exp
p

p p p pq q
=
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-

+

where p represents e or i, bp and θp are constants, and x
is the level of input activity. We use the parameters
given byWilson and Cowan: θe= 1.3, be= 4, θi= 2.0,
and bi = 3.7. The maximum values of these response
functions are given by the parameters ke and ki, where
ke= 0.9945 and ki= 0.9994. The parameters τe and τi
represent the time constant of the change over time in

the proportion of non-refractory cells which are firing
in a population, in response to the change over time in
the average membrane potential activity of the cells.
This is typically set to be equal to the membrane time
constant of the cells in the population, and normally in
the range 10–20 ms (Denham and Borisyuk 2000).
Here, all time constants were set to 10 ms and
unchanged for all simulations as in our previouswork.

2.1.DBS input
We simulated regular DBS of the network via the
application of a high frequency input to the GPe, STN
or thalamus by modelling a simple square pulse. An
example square pulse is shown in figure 2 inset. In this
example, the frequency is set at 10 Hz, therefore the
period of the function will be 100ms. The square pulse
has a value of one for half of the period i.e. 50 ms, and
zero for the other half. For the square pulses used in
this study, we kept the frequency set to 100 Hz, which
is a therapeutic value used for DBS (Kuncel and
Grill 2004), and varied the amplitude of the square
pulse to between one and 10 arbitrary units (a.u.).

This change results in an additional term in the
equation for the stimulated population, for example,
the STN equation changed as follows:

( )
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For bursts of stimulation, we used the same square
wave as above, but used onset times and durations to
limit the square wave into bursts (figure 2). We used
three different inter-burst frequencies, and each had
an associated duration, as summarised in table 2. To
make our regular bursts irregular, we added random
noise to the onset time of each burst, resulting in the
same number of bursts, but occurring randomly
(figure 2). The noise was added as pseudorandom
values between zero and one to the burst onset times
and drawn from the standard uniform distribution via
the Matlab function ‘rand’. For phase-locked bursts,
first the peak times of the network oscillations were
found.We then ran five different simulations, with the
bursts of stimulation being applied coincident with
the peaks of the oscillations, the peaks plus or minus
half of the cycle time period and the peaks plus or
minus a quarter of the time period.

2.2. Numerical details and analysis
As in our previous study, all simulations were run in
Matlab via custom written scripts. We used ‘ode23tb’
to numerically integrate the set of differential
equations. We simulated the network for 1.1 s using a
time step of 0.1 ms. We found that the length of the
simulation did not affect the network activity, as the
frequency and range of the activity was unchanged if
the simulation lasted 1 s or 10 s. We discarded the first
0.1 s to allow the network to settle. We tested network
activity with all populations starting at zero activity

Table 1.The 11 connectionweights as shown in equations (1)
to (7) are given here for the two oscillatory pathological states
explored in themanuscript. The set of parameters for achieving
the healthy state, which served as our baseline for the
optimisation is also given in the table.

Weight Healthy state Tremor band Beta band

w1 20 20 20

w2 5 12 5

w3 8 8 8

w4 25 9 20

w5 15 15 15

w6 5 5 5

w7 19 5 5

w8 5 5 5

w9 15 15 15

w10 20 20 20

w11 20 20 20

ext 3.42 3.42 3.42
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and with random activity, but this did not affect the
frequency of the network activity. Therefore, we ran all
simulations with zero initial conditions for consis-
tency across, as the phase locked stimuli require
known oscillation peak times. As we showed in our
previous work (Yousif et al 2020), the pathological
tremor band and beta band activity was seen in all
populations, except the DCN. Therefore, in this study
we show the STN activity to demonstrate the impact of
stimulation on the network. To quantify the impact of
the stimuli on the network, we measured the range,
defined as the maximum minus the minimum of the
STN activity over the entire simulation time, discard-
ing the first 0.1 ms. Therefore, if the population
activity is constant the range would be equal to zero,
but if the activity is oscillatory, the range would equal
the amplitude of the oscillation.

2.3.Optimisation of stimulation parameters
To ensure that we found parameters to abolish the
unwanted oscillations, we used a genetic algorithm to

optimise the stimulus parameters (Li et al 2021).
Genetic algorithms are an optimisation approach
which allow the parameter space to be searched and an
objective function to be minimised by changing a
population of solutions to a problem. We followed an
approach presented by Li et al (2021), using the ‘ga’
function in MATLAB. This function allows the para-
meters of interest to be limited by a minimum and a
maximum. We estimated the optimal values for the
amplitude, frequency, and pulse duration parameters.
The first two were constrained by the typical range of
these parameters used clinically (table 3) and the pulse
duration based on our initial simulations with the
model. The noise parameter, which shifted the onset
of the irregular bursts, was set as pseudorandom values
between zero and double the pulse duration. The
objective function was the cross-correlation between
the Fourier transform of the network activity and the
network activity in the gamma band which we
previously proposed represents healthy network beha-
viour (Yousif et al 2020). We set the initial tolerance to

Figure 2.Regular and irregular bursts used for stimulation of the network. For the regular bursts of stimulation, three different inter-
burst frequencies were used: 5Hz, 10Hz and 20Hz. Therefore, for 5Hz (10Hz, 20Hz) bursts, the stimulus consisted of 100ms (50ms,
25ms) of square pulse stimulation and 100ms (50ms, 25ms) of no stimulation. To simulate irregular bursts, we added randomnoise
to the onset time of each burst. An example square pulse is shown in the inset. This square pulse is similar for all the simulations
regardless of inter-burst frequency and regularity. The square pulse is at amplitude, here 1 a.u. for half of the time period and at 0 a.u.
for the other half of the time period. The vertical axis shows the stimulation amplitude for all plots and the horizontal axis shows time
in all plots.

Table 2.The parameters used for the different burst stimulation. The burst stimulation is delivered as a regular train of bursts with a specified
burst frequency and burst duration.We also apply irregular trains of bursts, which are the same as the regular bursts butwith randomnoise
added to the onset times of the bursts. The table also shows the range used for this added noise. Finally, we simulated phase-locked
stimulation. The table shows thefive phase shifts we used, 0 shift, or stimulation bursts delivered at the same time as the peak of the
oscillation,±½cycle or bursts delivered at± half the period away from the peaks of the oscillation and±¼cycle or bursts delivered at
± quarter of the period away from the peaks of the oscillation.

Type Inter-burst frequency Pulse duration Noise range Phase shift

Regular and irregular 5Hz 100ms 0–200ms n/a

Regular and irregular 10Hz 50ms 0–100ms n/a

Regular and irregular 20Hz 25ms 0–50ms n/a

Phase locked 4Hz 100ms n/a At peak,±½cycle,±¼cycle

Phase locked 20Hz 25ms n/a At peak,±½cycle,±¼cycle

5
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Table 3.The parameters used for the genetic algorithm. The table shows theminimumandmaximumof the three parameters that were used for the objective function and the noise for the irregular bursts was calculated as twice the pulse
duration.

Type Maximumgenerations Tolerance Amplitude Frequency Pulse duration Noise

Regular
Standard: 1× 10−3 Standard: 0.5–5 a.u. Standard: 100–200Hz

n/a

Irregular Standard: 128
Additional: 1× 10−9 Additional: 0.5–15 a.u. Additional: 100–300Hz

10–300ms 0—twice the pulse duration

Phase-locked No noise, bursts locked to peak
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0.001 and themaximumnumber of generations was to
128, but we also explored the impact of changing these
options when we did not obtain good suppression of
oscillatory activity with the standard set of parameters.

3. Results

3.1. Tremor band suppression
We first examined the impact of regular burst DBS and
irregular burst DBS on the tremor band activity in the
model. We stimulated the model using regular bursts
with 100Hzwithin burst frequency and 5Hz inter-burst
frequency. Interestingly, we found suppression of the
tremor band network activity at amplitudes greater than
3 a.u. with regular bursts (figure 3(A)). However, as the
amplitude of stimulation increased, the network activity
wasdrivenby the stimulation and increases in amplitude.
This predicts that for intermittent or burst type stimula-
tion, low amplitudes may be preferred. Interestingly,
adding noise to the onset times of the bursts to create
irregular bursting stimulation (figure 3(B)), did not
improve suppressionof the oscillatory activity.

Increasing the inter-burst frequency to 10 Hz, also
achieved suppression of the tremor band network activ-
ity. Figure 4 shows that this suppression could be
achieved with amplitudes greater than 2 a.u., and there-
fore better suppression was achieved. Once again,
increasing the amplitude of the stimulation lead to the
network being driven by the high frequency stimulus.
However, unlike the 5Hz bursts, the addition of the irre-
gularity in the burst onsets appears to confer some

improvement in suppression, as not all bursts drive the
network response. This appears to occur when the bursts
arrive close to one another. Finally,we appliedburstswith
a frequency of 20 Hz, and the results were similar to the
5 and10Hzburst stimulation.Wequantifiedour simula-
tions using the range of the STN activity, and the results
are shown in figure 5. Comparing the impact of regular
DBS in figure 5(A) to regular burst stimulation at differ-
ent frequencies and amplitudes on tremor band activity
(dotted lines) in figure 5(B) clearly indicates that regular
bursts reduce the amplitude of the STN oscillation at 2
and3a.u. but this effect vanishes at higher amplitudes.

Finally, we considered applying the burst stimula-
tion in a phase locked manner. Bursts were applied at
the peak of the network activity, at ± ½ a cycle and at
±¼a cycle. when oscillatingwith the tremor band fre-
quency, the impact of the phase-locked bursts was
similar to the regular bursts when the stimulation pre-
ceded the peak of oscillation (figure 5).

3.2. Beta band suppression
Next, we applied burst DBS and irregular burst DBS
on the network when in the beta band range. Using
regular bursts with a 100 Hz frequency and a 5 Hz
inter-burst frequency. In this case, we found limited
suppression of the beta band network activity at
amplitudes greater than 4 a.u., with regular bursts.
However, as the amplitude of stimulation increased,
the network activity became driven by the stimulation
and increased in amplitude. Interestingly, adding
noise to the onset times of the bursts to create irregular
bursting stimulation, did not improve the suppression

Figure 3.The impact of 5Hz bursts on STN activitywhen in tremor band. Plots show the effect of the bursts of stimulation at different
stimulation amplitudes (shown in the different coloured lines) on the STNpopulation activity. (A) Stimulation using regular 5Hz
bursts of 100ms long 100HzDBS, when the networkwas in the tremor band activity. The simulations show that at lower amplitudes
of stimulation, the tremor band activity is suppressed. However, at 4 a.u. and above the network activity becomes driven by the
stimulating frequency and the amplitude of the oscillations increases to the unstimulated level. (B): Adding irregularity to the bursts
does not improve suppression of the underlying tremor bandnetwork activity. The vertical axis shows the STN activity in both plots
and the horizontal axis shows time in both plots.
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achieved by stimulation. Increasing the inter-burst
frequency to 10Hz, also achieved only partial suppres-
sion of the network activity, but only during the bursts
of stimulation. Most interestingly, when we applied
regular bursts with a frequency of 20 Hz, there is
almost no change to the beta band activity. When
irregularity is added to the onset of the burst stimula-
tion, some suppression is seen, though once again the
beta activity is not completely suppressed. The quanti-
fication of our simulations can be seen in figure 5. This
time, comparing the impact of burst stimulation at
different frequencies and amplitudes on beta band
activity (dashed lines) in figures 5(B) and (C) to regular
DBS in figure 5(A) shows very little impact of
stimulation on the amplitude of the STN oscillation.
This contrasts with the regular DBS (figure 5(A))
which does reduce the beta band activity at 4 a.u. and
above. Finally, the phase locked bursts had little effect
on the underlying network activity (figure 5(D)).

3.3. GPe stimulation
In striking contrast to STN stimulation, we also show
the impact of the different stimulation patterns when
applied to the GPe. We quantified this using the same
measure of the range of the STN activity (figure 6).
Comparing the impact of burst stimulation at different
frequencies and amplitudes to regular DBS in
figure 6(A) clearly indicates that most types of the burst
stimulation are ineffective at reducing the amplitude of
the STN oscillations (figures 6(B) and (C)). This is apart
from the phase locked stimulation for stimuli preceding
the peak of the oscillation, but only on when the
network is oscillating in the tremor band (figure 6(D)).

3.4.Optimisation
We ran the genetic algorithm for the regular, irregular
and bursts locked to the peak of the unwanted
oscillations, with the network in the tremor and the
beta band states. Table 4 shows the results for the six
options. In all cases except the regular bursts for the
tremor band activity, the optimisation was run with
the ‘additional’ set of parameters from table 3 as well as
the standard to check if a better fit could be obtained.
With the standard parameters, the optimal frequency
found was greater than the 100 Hz used in our
exploratory simulations, and the amplitude was typi-
cally on the order of 5 a.u. The duration varied from a
minimal 10 ms burst to a much longer 263 ms burst.
The additional parameters were only used for two
cases, regular and irregular bursts in the beta band.

Figure 7 shows the impact of the burst stimulation
on the network activity when the optimised parameters
are used for each condition, compared to the unstimu-
lated cases in each oscillatory state (figures 7(A) and (E)).
Interestingly, the algorithm was able to find an optimal
solution for suppressing tremor band oscillations in all
cases, and the beta band activity in one of the three cases.
The tremor band oscillation appears to be best supres-
sed by regular bursts with parameters of 2.08 a.u. ampl-
itude, 199 Hz frequency and 12 ms duration or 43 Hz
inter-burst frequency (figure 7(B)), which was con-
sistentwith our initial exploration. Tremor band activity
was also well supressed with irregular (figure 7(C)) and
phase locked bursts (figure 7(D)). Once again, we found
that though beta band oscillations were partially sup-
pressed by regular (figure 7(F)) and irregular bursts
(figure 7(G)), this only occurred during the burst itself.

Figure 4. (A) Stimulation using regular 10Hz bursts of 100ms long 100HzDBS, when the networkwas in the tremor band activity.
Similar to figure 3, the simulations show that at lower amplitudes of stimulation, the tremor band activity in the STN is suppressed.
However, at 4 a.u. and above the network activity becomes driven by the stimulating frequency and the amplitude of the oscillations
increases to the unstimulated level. (B)Adding irregularity to the bursts does not improve suppression of the underlying tremor band
network activity. The vertical axis shows the STN activity in both plots and the horizontal axis shows time in both plots.
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Figure 5.Quantification of the effect of traditional and novel stimulation. Plots show the effect of the bursts of stimulation at different
stimulation frequencies, amplitudes and in the two oscillatory states on the STN activity range. The horizontal lines show the
unstimulated level of STN activity for the two bands. (A) Stimulation using traditional 100HzDBS, when the networkwas in either
the tremor band activity or the beta band activity. The simulations shows thatDBS suppresses the activity, and this effect ismost
pronounced at 2 a.u. for the tremor band and 4 a.u. for the beta band. (B)A similar effect can be seenwhen stimulating with regular
bursts (B), irregular bursts (C) or phase locked bursts but only for the tremor band activity. The beta band activity ismore resistant to
the bursting stimulation.

Figure 6.Quantification of the effect of traditional and novel stimulation ofGPe. Plots show the effect of the bursts of stimulation at
different stimulation frequencies, amplitudes and in the two oscillatory states on the STN activity range. The horizontal lines show the
unstimulated level of STN activity for he two bands. (A) Stimulation using traditional 100HzDBS, when the networkwas in either the
tremor band activity or the beta band activity. The simulations shows thatGPeDBS slightly attenuates the STN activity only at higher
amplitudes.When stimulatingwith regular bursts (B), irregular bursts (C) or phase locked (D) bursts a similar effect is seen for a subset
of cases: 20Hz regular bursts and all phase locked conditions when the network is in the tremor band only.
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Remarkably however, the results show that the phase
locking of bursts can be very effective at suppressing the
unwanted oscillations in the beta band when using the
optimised parameters of 5.00 a.u. amplitude, 199 Hz
frequency and 92 ms duration or 5 Hz inter-burst fre-
quency (figure 7(H)).

4.Discussion

We used our previously presented population model
of the thalamocortical basal ganglia-cerebellar net-
work (Yousif et al 2020) to investigate the effects of
bursting deep brain stimulation patterns on dynamics.
Our network represents synchronised activity both in
the tremor band frequency range thought to be
pathological in essential tremor (Deuschl, Bain and
Brin 1998) and in the beta band range, thought
to be elevated in Parkinson’s disease (Little and
Brown 2014). We previously showed the impact of
standard, regular DBS on these two oscillatory states
and found that such DBS could switch the activity
from high-amplitude pathological oscillations to low-
amplitude, high-frequency activity (Yousif et al
2017, 2020). Our model is consistent with previous
rate models of this network (Leblois et al 2006, van
Albada et al 2009), which also probe the generation of
oscillations arising from the dynamics in the basal
ganglia, thalamocortical connections.

In this study, we extended this work to look at reg-
ular bursts of DBS at different amplitudes and fre-
quencies; irregular bursts at different amplitudes and
frequencies; and phase locked bursts at different ampli-
tudes and phase shifts. Previous studies have shown con-
flicting impact of such burst stimulation yet only few
studies have considered the impact on the network
dynamics (e.g. Duchet et al 2020). Interestingly, we
found variable effects of burst stimulation depending on
the network state. When the network was oscillating in
the tremor band, we found that 5 Hz bursts of DBS were
not as effective at suppressing the tremorband compared
to continuous DBS. This was evident as the amplitude
required to fully suppress the tremor band activity was
increased (starting at 3 a.u.) compared to in our previous
study (started at 2 a.u.). However, better suppressionwas

achieved with an inter burst frequency of 10 Hz (∼dou-
ble the tremor), where the amplitude at which suppres-
sion occurred matched the continuous DBS amplitude.
Surprisingly, 20 Hz bursts was sub-optimal compared to
continuous DBS. In all cases, adding irregularity did not
appear to improve the suppression.

These results are in line with previous studies show-
ing that continuous DBS out-performs irregular DBS
(Dorval et al 2010; Oza et al 2018). On the other hand,
this is in contrast with other research which show that
adding irregularity can achieve good desynchroniza-
tion, some of which have also shown experimental
proof (Zeitler and Tass 2018, Khaledi-Nasab, Kromer
and Tass 2021a, 2021b, Pfeifer et al 2021). Such differ-
ences could be due to the simplicity of the model pre-
sented here. However, as we have discussed in our
previouswork, this simplicity is intrinsic when consider
the dynamics of the network in absence of detailed phy-
siological properties. In our model, we found that
phase-locked stimulation offers no improvement on
tremor band suppression compared to either con-
tinuous DBS or 10 Hz bursts of DBS. This could be an
effect related to the frequency of bursts, rather than the
relationship of the bursts to the pathological network
activity, as in the phase locked scheme, the network was
stimulated by 4 Hz inter-burst frequency. Importantly,
we further observed that as the amplitude of stimula-
tion increases, the network activity becomes driven by
the stimulus. This could represent a limitation of the
model, but we should also consider amplitude depend-
encewhen investigating the use of bursts ofDBSpulses.

A study by Brocker et al (2013) trialled non-regular
DBS in patients with Parkinson’s, and its effect on
both motor performance and the beta band. Interest-
ingly, in this paper the authors discuss that random
DBS in patients with ET is less effective at dampening
their tremor as ‘long gaps in the stimulation train
allow pathological activity to propagate through the
stimulated nucleus’.We observed a similar result, with
the oscillations in the beta band more than with those
in the tremor band. Brocker et al (2013) showed that in
PD, irregular stimulation did improve the partici-
pants’ ability in a motor task of finger tapping. Their
computational model further showed that such irre-
gular DBS dampened beta synchrony. However, it is

Table 4.Results from the optimisation. The table shows the parameters identified by the algorithm for suppression of the
tremor and beta band oscillations by regular bursts, irregular bursts and bursts phase-locked to the peak of the pathological
oscillation. In cases where the additional optimisationswere attempted both sets of parameters are shown.

Mode Burst type Options Amplitude (a.u.) Frequency (Hz) Pulse duration (ms)

Tremor Regular Standard 2.08 199 12

Beta Regular Standard 5.00 197 53

Additional 11.5 279 217

Tremor Irregular Standard 4.49 187 10

Beta Irregular Standard 4.97 200 201

Additional 9.34 296 298

Tremor Phase-locked to peak Standard 5.00 192 263

Beta Phase-locked to peak Standard 4.97 199 92
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important to note that in their study the model was a
detailed biophysical model, and as such the applied
DBS (standard or temporally non-regular) could
impact on a variety of neural processes, from ion chan-
nels, to synapses to networks. In our study, we are con-
sidering the effect on one aspect of each disease, i.e.
that the brain exhibits oscillations at the tremor/beta
band and proposing that clinical improvement is
achieved by disrupting such oscillations.

We initially found that in all cases, the beta band
network activity was not well suppressed, neither with
regular bursts, randomly applied bursts, nor phase-
locked bursts. This is striking as the beta band has been
suggested to act as a marker for specific symptoms of
Parkinson’s disease. Furthermore, our previous study
showed that the beta band activity was well-suppressed
by continuous DBS, although it did require a higher
amplitude. Interestingly, in a previous study of phase-
locked stimulation the authors also showed the impact
of phase locked stimulation on Wilson-Cowan models
fitted to patients’ tremor data (Duchet et al 2020). These
results may indicate that the tremor band activity may
act as a better marker for pathological activity and
improvement with stimulation. Although new work
shows that STN DBS can interrupt beta oscillations in
the basal ganglia, though in more detailed model
(Adam et al 2022). We also found that GPe stimulation
did not perform as well as STN stimulation, which

could be in contrast with new study about GP being a
hub for oscillations (Crompe et al 2020). However,
future work could consider the role of targeting differ-
ent regions for different symptoms of disease which are
better suppressedby specific burst stimuli.

We went on to perform optimisation of the burst
parameters via a genetic algorithm. We allowed the
algorithm to find the amplitude, frequency, and dura-
tion (which determined both inter-burst frequency
and duration of the burst) of the stimulus. The algo-
rithm found an optimal set of parameters for suppres-
sing the tremor band activity via regular, irregular and
phase locked bursts of stimulation. Interestingly, the
algorithm found a set of parameters for the phase
locked bursts which suppressed the beta band activity,
but the regular or irregular bursts could only partially
suppress the beta band activity. Interestingly, tremor
band activity was best suppressed by regular bursts
with a high inter-burst frequency and beta band activ-
ity was best suppressed by phase-locked bursts with a
low inter-burst frequency. This approach was key to
showing that such bursts of DBS can suppress both
kinds of pathological activity in our network, however,
this comeswith some limitations.

Furthermore, clinical studies such as Kuncel et al
(2007), show that amplitude and frequency of DBS are
intimately correlated with tremor suppression in par-
ticipants with ET. They found that at low frequency

Figure 7.Optimisation results using the generic algorithm,which found an optimal solution for suppressing tremor (A) and beta band
(E) oscillations using all stimulation types. In each plot, the impact of the optimal stimulation parameters for each type, as identified by
the genetic algorithm, is applied to the pathological network and the resulting activity is shown. The left column shows the
pathological activity with no stimulation in the two activity bands for reference. The tremor band is shown in the top row, and it
appears that this activity is well supressed by regular (B), irregular (C) and phase locked (D) bursts. The beta band is shown in the
bottom row, and is only partially supressed by regular (F) and irregular (G) bursts, but completely supressed by phase-locked bursts
(H). The reappearance of oscillations when the network is oscillating in the beta band during regular and irregular burst stimulation,
occurs when there is no burst being applied. Note in all cases the results using the standard parameters are shown for direct
comparison.
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DBS had a worsening effect on tremor as the DBS
amplitude increased. But at high frequency, there
was tremor suppression as the amplitude of DBS
increased. This is in line with our results for the tremor
band oscillations, but not for the beta band. However,
in our study while we varied amplitude and frequency
in the optimisation algorithm, future work could
explore broader ranges to encompass lower frequency
bursts of DBS in line with the Kuncel et al study. Inter-
estingly, adaptive DBS approaches which typically use
beta power in the STN as a control signal and switches
DBS on and off as a threshold is crossed, resembles
irregular bursts of DBS (for example Piña-Fuentes et al
2020). Compared to our results, this may indicate that
longer irregular bursts of DBS would bemore effective
at suppressing beta. Our optimisation results would
support this as the optimal burst durations for sup-
pressing betawere longer than for tremor band oscilla-
tions. Strikingly, a very recent clinical trial of adaptive
DBS suggests that beta may not in fact be the optimal
marker for use as a control signal, but that gamma
band oscillations may better encode high/low dopa-
mine states (Oehrn et al 2024). This suggests that more
understanding of the role of different oscillatory bands
with respect to symptoms is needed, and particularly
may be necessary in a case-by-case basis.

The permitted range of the parameters could be
extended further, to allow the algorithmmore possibi-
lity of finding the best fit. Furthermore, the burst dura-
tion and inter-burst frequency could be uncoupled
into two independent parameters whichwould further
allow more exploration of the parameter space.
Finally, the model used here is a population approach,
which allows exploration of the dynamics of the net-
work structure. The simplicity of this approach, com-
pared to detailed biophysical models incorporating
morphological details and multiple ion channels and
to simplified biophysical models such as the integrate
and fire model, is intentional as our aim is to consider
the dynamics of the network without reliance on phy-
siological properties. While our model cannot explore
all possible mechanisms of DBS such as neuroprotec-
tion (Herrington et al 2016), one important concept of
DBS as an informational lesion was introduced 20
years ago (Grill, Snyder and Miocinovic 2004). Here,
Parkinsonian symptoms are thought to be generated
by pathological information being transmitted
through the basal ganglia, and DBS acts as an informa-
tional lesion, allowing this transmission to be blocked.
This theory has gained traction in recent years (Dorval
et al 2010, McConnell et al 2012, Anderson et al 2015)
and most recently, an experimental study of DBS in
mouse hippocampus has shown evidence for stimula-
tion induced membrane potential depolarisation and
entrainment at stimulation frequency (Lowet et al
2022). Such results are consistent with our modelling
results, which show how regular and now bursts of
DBS can change network dynamics and future work

could address the limitations of our approach, by
making links to single neuronmodels.

5. Conclusion

In conclusion, our study shows that in a network based
computational model, bursts of DBS may provide as
good suppression of synchronised activity, as contin-
uous DBS does. In practice, such bursts of activity
would provide an improvement for patients as the
energy consumption would be decreased, and therefore
internal pulse generators would require less charging
and surgical replacements. However, we must consider
the impact of amplitude as we found an effect of the
higher amplitude bursts driving network activity, which
was not apparentwith continuousDBS.
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