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Cardiogenic shock (CS) carries a 30–50% in-hospital mortality rate, with little improvement in outcomes in the last decade. Challenges
in improving outcomes are closely linked to the frequent late presentation or diagnosis of CS where the ‘point of no return’ has often
passed, leading to haemodynamic dysregulation, progressive myocardial depression, hypotension, and a downward spiral of hypoperfusion,
organ dysfunction and decreasing myocardial function, driven by inflammation and metabolic derangements. Novel therapeutic interventions
may have varying efficacy depending on the type and stage of shock in which they are applied. Biomarkers that aid prediction and early
detection of CS, provide early signs of organ dysfunction and define prognosis could help optimize management. Temporal change in such
biomarkers, particularly in response to pharmacological interventions and/or mechanical circulatory support, can guide management and
predict outcome. Several novel biomarkers enhance the prediction of mortality in CS, compared to conventional parameters such as lactate,
with some, such as adrenomedullin and circulating dipeptidyl peptidase 3, also able to predict the development of CS. Some biomarkers
reflect systemic inflammation (e.g. interleukin-6, angiopoietin 2, fibroblast growth factor 23 and suppressor of tumorigenicity 2) and are not
specific to CS, yet inform on the activation of important pathways involved in the downward shock spiral. Other biomarkers signal end-organ
hypoperfusion and could guide targeted interventions, while some may serve as novel therapeutic targets. We critically review current and
novel biomarkers that guide prediction, detection, and prognostication in CS. Future use of biomarkers may help improve management in
these high-risk patients.
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Graphical Abstract

A summary of current and novel biomarkers and their potential stages of release in cardiogenic shock. The diagram illustrates the proposed release of
the biomarkers during the different stages of cardiogenic shock: progression from cardiac dysfunction/stress, through to inflammation and end-organ
dysfunction. It is believed that a self-propagating spiral of events follows as a result of hypoperfusion, ischaemia and inflammation, leading to end-organ
dysfunction. ADM, adrenomedullin; Ang-2, angiopoietin-2; ALDOB, aldolase B; B2MG, beta-2-microglobulin; BNP, brain natriuretic peptide; cDPP3,
circulating dipeptidyl peptidase 3; FGF-23, fibroblast growth factor 23; Gal-3, galectin 3; GDF-15, growth differentiation factor 15; I-FABP, intestinal
fatty acid binding protein; IC1, C1 inhibitor protein; IL-6, interleukin-6; KIM-1, kidney injury molecule-1; L-FABP, liver fatty acid binding protein;
P-NGAL, plasma neutrophil gelatinase-associated lipocalin; P-PENK, plasma proenkephalin; proANP, pro-atrial natriuretic peptide; sST2, soluble
suppressor of tumorigenicity 2; suPAR, soluble urokinase-type plasminogen activator receptor.
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Introduction
Cardiogenic shock (CS) remains a major cause of morbidity and
mortality in patients with acute coronary syndrome (ACS) and
acute heart failure (HF).1 Traditionally defined as ineffective cardiac
output due to primary cardiac dysfunction, resulting in inadequate
end-organ perfusion, the Society for Cardiovascular Angiography
and Interventions (SCAI) has more recently delineated different
gradations of CS.2,3

The high mortality rate associated with CS has not improved
significantly over the last few decades.4,5 In-hospital mortality
remains at 30–50%, and of those patients surviving until discharge,
about 48% are readmitted and 15% die within a year.4,6 Treatment
options are limited, and plagued by a failure of treatments to disrupt
the complex downward spiral, once CS sets in.3,7

The pathophysiological mechanisms underlying the shock spiral
are incompletely understood, although dysfunctional regulatory
pathways are likely involved. Endothelial responses that are
initially protective become harmful. Vasoconstriction, initiated ..
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. by activation of the sympathetic nervous system, is eventually
reversed by β-adrenergic receptor downregulation and inflam-
mation, due to activation of nucleotide-binding oligomerization
domain-like receptor protein 3 inflammasome and interleukins (IL),
leading to inappropriate vasodilatation. Expression of inducible
nitric oxide synthase results in an increase in levels of nitric
oxide and reactive oxygen species, leading to the production of
cytotoxic products.8 This results in negative ionotropic effects,
suppression of mitochondrial function, inflammation and reduced
catecholamine responses, ultimately leading to vasodilatation.9

Biomarkers have emerged as indicators of poor outcome and
potential novel therapeutic targets. In order to incorporate novel
biomarkers into early identification, monitoring, prognostication
and treatment of patients with CS, it is necessary to understand
their origins, the biological pathways and interactions, and their
time course in CS. Previous efforts to summarize biomarkers in CS
have been brief, often lacking detailed exploration of all biomarkers,
their pathophysiological mechanisms, and comparative diagnostic
usefulness.10–12 Furthermore, an overview of the usefulness of
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these biomarkers in the context of mechanical circulatory support
(MCS) is not described. Here, we aim to bridge this gap by sum-
marizing current and novel biomarkers, discussing their merits and
limitations, and identifying potential future avenues for research.

Currently available biomarkers
Biomarkers are frequently incorporated into clinical scores for the
risk stratification of patients with CS. Over 30 risk scores are
currently available and incorporate a number of plasma biomark-
ers, including pH, lactate, creatinine, liver function tests, brain
natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic
peptide (NT-proBNP).13,14 All these markers are associated with
increased mortality in Yes CS (Table 1). Many also feature in the
SCAI risk stratification system, designed to predict CS outcomes
and aid inter-hospital communication.2

Lactate and pH are markers of tissue hypoperfusion resulting
from anaerobic respiration and eventually tissue acidosis. Although
lactate is highly predictive of in-hospital mortality and readily
available as a point-of-care test, it is not specific for CS, being
also elevated as a consequence of impaired clearance, as seen in
liver dysfunction and chronic kidney disease (CKD), drug inter-
actions (e.g. metformin), or as a consequence of administration
of high-dose catecholamines.69 Lactate clearance may be a better
predictor of mortality than circulating lactate level, especially in
patients on MCS.17,69,70 Other studies indicated that an 8-h lactate
is superior to lactate clearance for the prediction of 30-day mor-
tality in CS.18,19 The optimal time to measure lactate to predict
prognosis remains unclear, especially as a single 8-h value likely
reflects lactate clearance. The prognostic value of lactate may
decline over time, and is potentially affected by ionotropic and
renal replacement therapies.19,71 Despite these limitations, lactate
is used routinely in the assessment of CS.

Both BNP and NT-proBNP are elevated in CS, due to increased
left ventricular (LV) filling pressures and are highly predictive of
hospitalization and mortality.72,73 Despite being included in several
risk scores, the evidence supporting the usefulness of BNP in
CS is mixed. Indeed, in the Interagency Registry for Mechanically
Assisted Circulatory Support (INTERMACS), a large registry
of patients with end-stage and acute HF treated with LV assist
device (LVAD) support, BNP was elevated, but did not correlate
with mortality or major adverse cardiovascular events (MACE).45

Both BNP and NT-proBNP levels are affected by renal clearance,
accounting for some of the observed variability.66 Importantly,
in a head-to-head comparison, adrenomedullin (ADM), IL-6 and
procalcitonin (PCT) all outperformed BNP in predicting CS
mortality.38,46,74

In a prospective study of 273 patients with CS, half of whom
had ACS, elevated troponin levels, reflecting greater myocyte loss,
were a better predictor of 30-day mortality than NT-proBNP,34

and are associated with unsuccessful weaning from veno-arterial
extracorporeal membrane oxygenation (V-A ECMO).34,61,75

The systemic inflammation that ensues in CS leads to an increase
in white cell count and cytokine release.76 In patients with coronary
artery disease, raised PCT levels are associated with MACE, and ..
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.. are a better predictor of all-cause mortality in CS than C-reactive
protein (CRP).38,76,77 Inflammation and stress can result in hypergly-
caemia.78 While diabetes in itself is a risk factor for CS, impaired
fasting glucose and raised random glucose levels are adverse
markers only in patients without a prior history of diabetes.28,29

Current biomarkers are widely available and in use, but are
non-specific and have limitations, namely low sensitivity and speci-
ficity (Table 1).

Novel biomarkers
A number of novel biomarkers, reflecting the dysfunction of
different organ systems, are released into the circulation during
the various phases of CS (Graphical Abstract). The physiological or
pathological mechanisms through which novel biomarkers reflect
the development of or influence the outcome of CS are not fully
understood, although some have tried to shed light on this.79 Some
biomarkers are released as a result of cellular injury (Figure 1),
while others are released as part of the inflammatory response
that ensues (Figure 2). Most of the biomarkers discussed below are
measurable in blood plasma, unless stated otherwise, and are sum-
marized in Table 2. All these novel biomarkers can guide prognosis,
but some also predict the onset of CS and mortality, while others
forecast end-organ dysfunction. As CS progresses and necessitates
MCS, certain biomarkers have been shown to predict recovery,
complications of, and ease of weaning from MCS (Figure 3).

Novel biomarkers predicting
onset of cardiogenic shock
Adrenomedullin
Adrenomedullin (ADM), originally isolated from the adrenal
medulla, is expressed by all tissues, including endothelial and
smooth muscle cells and fibroblasts.140 ADM is a vasoactive
peptide produced from a multistep proteolytic cleavage of
prepro-ADM. This process also generates adrenotensin and
a pro-ADM N-terminal 20 peptide (PAMP), which themselves
are vasoactive (PAMP exerts vasodilatory effects, whereas
adrenotensin is vasoconstrictive).141 Myocardial stunning and
ischaemia lead to increased LV filling pressures, triggering a neu-
rohumoral response involving catecholamines, aldosterone and
angiotensin II, that all further stimulate ADM production.71,142 The
inflammatory response that ensues (involving IL-1 and tumour
necrosis factor-α) further stimulates ADM production.143

Besides being a powerful predictor of adverse outcome in
patients with ACS and acute HF, ADM outperforms troponin, BNP
and CRP in predicting 30-day mortality.142,144

However, in a recent substudy of the STRONG-HF trial enrolling
1005 patients, both ADM and NT-proBNP showed similar area
under the curve (AUC) for predicting 180-day all-cause mortality
or HF rehospitalization.145 In patients hospitalized with suspected
ST-elevation myocardial infarction (STEMI), the non-biologically
active precursor, mid-regional pro-ADM (MR-proADM), was
independently predictive of CS, with an AUC of 0.82.84 Biologically
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Figure 1 Summary of molecules released as a consequence of cellular damage in cardiogenic shock and their potential downstream effects
in the circulation. Tissue injury occurs as a consequence of ischaemia and results in the release of molecules that have been associated with
poor prognosis in cardiogenic shock. They have differing roles in the circulation, however we only have a limited understanding of their effects,
especially in cardiogenic shock. cDPP3 has emerged as an important prognostic molecule in cardiogenic shock recently, and in a mouse model,
it has a direct negative effect on the myocardium and kidneys. ALDOB, aldolase B; cDPP3, circulating dipeptidyl peptidase 3; GI, gastrointestinal;
I-FABP, intestinal fatty acid binding protein; IL-6, interleukin-6; KIM-1, kidney injury molecule-1; L-FABP, liver fatty acid binding protein; MMP-9,
matrix metalloproteinase-9; NGAL, plasma neutrophil gelatinase-associated lipocalin.

active ADM showed increasing prognostic value from 48 h
post-diagnosis and beyond, with AUC 0.71 at 48 h and 0.80 at
5–10 days.71 It has been used to predict 30-day, 90-day and 1-year
mortality in ACS patients with CS, and improves the prediction
of CS when added to risk scores such as the Observatoire
Régional Breton sur l’Infarctus (ORBI) or CardShock.71,46,146 ADM
correlates with haemodynamic indices including reduced cardiac
index, mean arterial pressure, central venous pressure, and sys-
tolic pulmonary artery pressure, alongside markers of end-organ
dysfunction.71 Furthermore, high ADM levels at or beyond 48 h
correlate with persistently impaired LV function and decreased
vasopressor responsiveness in sepsis.71,147,148

Circulating dipeptidyl peptidase 3
Dipeptidyl peptidase 3 (DPP3) is a ubiquitously expressed enzyme,
digesting several oligopeptides including angiotensins, enkephalins
and endorphins.149 Upon cell death, this zinc-dependent metal-
lopeptidase is released into the circulation, where elevated levels
have been measured in cardiogenic, septic and haemorrhagic
shock.150 ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.. Elevated circulating DPP3 (cDPP3) levels are associated with

increased mortality in CS and are predictive of the development of
in-hospital CS.87,151 Addition of cDPP3 level to the ORBI risk score
improved the discrimination and reclassification value for develop-
ing in-hospital CS (net reclassification improvement [NRI] 0.255,
p= 0.01).87 Furthermore, the addition of cDPP3 to the GRACE
2.0 score improved discrimination and reclassification of 30-day
and 1-year mortality with NRI 0.125 and 0.347, respectively.87

In a substudy comparing noradrenaline and adrenaline support
in 57 patients with CS, cDPP3 correlated with reduced cardiac
index, lower estimated glomerular filtration rate (eGFR) and a
higher Simplified Acute Physiology Score II.151 Similarly, in a small
prospective study of 15 patients, high cDPP3 levels correlated with
pulmonary hypertension, reduced stroke volume and the need for
mechanical ventilation.152

In a large, prospective, multicentre cohort study of 4787 patients
with ACS, cDPP3 on admission was predictive of the development
of CS, and was superior to conventional markers such as tro-
ponin and NT-proBNP.87,153,154 In a subgroup of 12 patients who
underwent cardiac magnetic resonance imaging, cDPP3 level was
associated with infarct size.87 Persistently elevated cDPP3 levels

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Summary of molecules released in response to inflammation in cardiogenic shock which act potentially in a proinflammatory
and anti-inflammatory fashion. Injury and hypoxia lead to inflammation that results in the release of a variety of molecules. Traditionally
these have been associated with worsening hypoperfusion, ischaemia and end-organ dysfunction. However, many molecules are likely to
have differing effects depending on their target tissue and concentration, and while some are part of the immune system activation and
lead to chemotaxis, fibrosis, and apoptosis, others act in a cardioprotective manner trying to promote healing, stabilization and limit
inflammation. ADM, adrenomedullin; Ang-2, angiopoietin-2; B2MG, beta-2 microglobulin; CO, cardiac output; CRP, C-reactive protein;
FGF-23, fibroblast growth factor 23; Gal-3, galectin 3; GDF-15, growth differentiation factor 15; HR, heart rate; IC1, C1 inhibitor protein;
IL-6, interleukin-6; IL-33, interleukin-33; MMP-9, matrix metalloproteinase-9; NGAL, plasma neutrophil gelatinase-associated lipocalin; NRI,
net reclassification improvement; PASP, pulmonary artery systolic pressure; sST2, soluble suppressor of tumorigenicity 2; suPAR, soluble
urokinase-type plasminogen activator receptor.

were associated with a roughly 10-fold increased 30-day mortality,
and remained independently predictive after adjustment for estab-
lished risk factors.87 Thus, cDDP3 holds promise as a marker of
both CS onset and severity, although validation of these early find-
ings is required.

Novel biomarkers predicting
mortality in cardiogenic shock
Markers of hypoperfusion
Intestinal fatty acid binding protein

Found in small bowel enterocytes, intestinal fatty acid binding
protein (I-FABP) is released during intestinal hypoperfusion or ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. congestion.155 In patients with CS or acute HF, elevated I-FABP
levels on admission were associated with 30-day mortality.101 In
acute HF, the addition of I-FABP to a prediction model for mortality
that included age and NT-proBNP, significantly improved its accu-
racy.101,156 However, I-FABP is a non-specific marker elevated in all
forms of shock, where it is also associated with 28-day mortality.157

Markers of inflammation
Angiopoietin-2

Angiopoietin-2 (Ang-2) is released from endothelial cells in
response to cytokines, which subsequently leads to impaired
endothelial integrity. It is involved in the systemic inflamma-
tory response and regulates vascular tone, as well as capillary

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Biomarkers in cardiogenic shock 9

Figure 3 Summary of the biomarkers in patients on mechanical circulatory support (MCS) predicting mortality, seen to change on MCS, and
biomarkers which predict successful weaning from MCS. A selection of biomarkers has been investigated in the context of MCS and while
some predict mortality, others are seen to change in response to therapy and some may be useful in predicting the ability to wean MCS. Gal-3,
galectin 3; IL-6, interleukin-6; sST2, soluble suppressor of tumorigenicity 2.

permeability.158,159 In sepsis, Ang-2 levels not only discriminate
between sepsis and septic shock, but also correlate with mean
arterial pressure, creatinine, PCT and the Sequential Organ Failure
Assessment score.160 In chronic HF patients, a stepwise increase in
Ang-2 was observed with worsening New York Heart Association
class, 6-min walk test and peak oxygen consumption, but did not
correlate with LV function.161 Moreover, elevated Ang-2 levels are
associated with increased cardiovascular mortality in the general
population.162

In the Intra-Aortic Balloon Pump (IABP)-SHOCK II trial, Ang-2
levels were predictive of 30-day and 1-year all-cause mortality,
independent of IABP therapy.80 The prognostic value of Ang-2
levels increased as levels rose from day 1 to day 3 in patients who
died within 30 days of admission. Furthermore, Ang-2 levels cor-
related with cardiac power index, a strong predictor of mortality
in CS.80,163

Interleukin-6

Interleukin-6 is released during systemic inflammation and, besides
its effect on vessels, has negative effects on the myocardium.164 In a
subanalysis of 183 patients in the CardShock study, IL-6 was found
to be a reliable and early marker of 30-day all-cause mortality in
ACS complicated by CS, with one of the highest AUCs among a
range of biomarkers including NT-proBNP and PCT. While IL-6 is
associated with clinical and biochemical signs of hypoperfusion, it
lacks specificity for CS.38,39 ..
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. Fibroblast growth factor 23

Fibroblast growth factor 23 (FGF-23) was first discovered in
osteoblasts and osteocytes and is involved in the regulation of
phosphate levels.165 Interestingly, FGF-23 is predictive of MACE
in both CKD and elderly patients.166,167 In vivo and in vitro studies
show adverse effects of FGF-23 on the myocardium, with elevated
FGF-23 levels linked to adverse events in chronic HF.168 In CS, a rise
in FGF-23 levels is associated with increased 28-day mortality.114

However, whether elevation in FGF-23 levels reflects reduced
filtration or excess myocardial production, remains unclear.169,170

Furthermore, whether FGF-23 plays an active role in this process
or is simply a bystander marker, is also unclear.

Soluble suppressor of tumorigenicity 2

Suppressor of tumorigenicity 2 (ST2) is a member of the IL-1
receptor family. In inflammation, IL-33 signals via the ST2 pathway
and provides myocardial protection.171 Soluble ST2 (sST2) acts
as a decoy receptor blocking signalling and is associated with
pro-fibrotic cardiac remodelling and adverse outcomes in chronic
HF.172 sST2 is elevated on day 1 after acute myocardial infarction
and is inversely correlated with LV systolic function.173 Combining
sST2 and NT-proBNP was predictive of 30-day all-cause mortality
and improved the prediction of outcome when added to the Card-
Shock score.174 Small studies in CS found that prediction of mor-
tality increases with time from onset of CS (Table 2). Together, sST2

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.



10 V. Galusko et al.

and bicarbonate levels predicted the requirement for renal replace-
ment therapy after initiation of extracorporeal membrane oxygena-
tion (ECMO).175 However, sST2 is not cardio-specific, with higher
levels present in sepsis, compared to those in CS or STEMI.176

Soluble urokinase-type plasminogen activator receptor

Soluble urokinase-type plasminogen activator receptor (suPAR) is
a cleavage product of the urokinase-type plasminogen activator
receptor (uPAR) that is involved in inflammation, fibrinolysis, apop-
tosis, tissue remodelling, cell adhesion and migration, and may play
a part in the formation of metastases.177,178 Once cleaved into
suPAR, it remains stable and is actively involved in inflammatory
chemotaxis.179 Levels increase as part of systemic inflammation,
in infection, cancer and cardiovascular disease, and are associated
with increased mortality.104,180

In a subset of 161 patients from the CardShock study, mainly
with ACS, suPAR was independently predictive of a nearly six-fold
increase in 90-day all-cause mortality, with the addition of 12-h
suPAR levels to the CardShock risk score significantly improving
mortality prediction.103 SuPAR levels in CS are lower than in sepsis,
indicating a potential use for this marker in differentiating these
two conditions. SuPAR levels correlated with markers of end-organ
dysfunction such as creatinine, eGFR, NT-proBNP and CRP.103

Predictors of acute kidney injury
As the number of organs affected by CS increases, the mortality
rate also increases.68,181 Hypoperfusion and/or congestion lead to
progressive multi-organ failure, as reflected by a rise in biomarkers
of renal and liver dysfunction. Approximately a third of patients
with CS develop acute kidney injury (AKI), which is associated with
a poor prognosis.68 The most frequently used marker of AKI is
creatinine, which is utilized in risk assessment systems such as the
IABP-SHOCK II score.20,182 More sensitive markers of AKI such
as Ang-2, cystatin C, kidney injury molecule-1 (KIM-1), neutrophil
gelatinase-associated lipocalin (NGAL) and proenkephalin (PENK),
have been evaluated in CS (see below). However, their prognostic
utility has shown conflicting results across the studies.117,183

Angiopoietin-2

In the IABP-SHOCK II substudy, Ang-2 measured on admission was
an independent predictor of AKI in patients with CS. However,
Ang-2 levels were not associated with cystatin C levels, suggesting
that Ang-2 elevation does not relate to reduced renal clearance.80

Kidney injury molecule-1

Kidney injury molecule-1 is a transmembrane glycoprotein
expressed in kidneys and other organs. It is upregulated in the
proximal renal tubules during ischaemia-reperfusion injury.184,185

A meta-analysis demonstrated that urinary KIM-1 exhibits good
sensitivity and specificity for the prediction of AKI,186 especially
following cardiopulmonary bypass.187 Although KIM-1 was shown
to be highly predictive of long-term decline in renal function in
healthy individuals, in the setting of CS, it does not offer additional
prognostic information beyond creatinine alone.33,188 ..
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.. Neutrophil gelatinase-associated lipocalin

Neutrophil gelatinase-associated lipocalin is a molecule secreted
by neutrophils and renal tubular epithelial cells. It is one of the
earlier markers of AKI, with plasma levels rising within 2 to 6 h
after renal insult.189,190 Collectively, the evidence regarding the
predictive utility of markers such as cystatin C and NGAL in ACS
and CS is conflicting.117,183

Proenkephalin

Proenkephalin is a stable marker of the endogenous opioid sys-
tem that has cardio-depressive effects.191 High levels correlate with
advanced HF, deteriorating renal function and mortality.191 PENK
levels correlate well with eGFR and unlike NGAL, are not influ-
enced by inflammation and predict the need for renal replacement
therapy in sepsis.192,193 In CS, both NGAL and PENK were inde-
pendently associated with AKI and strongly predictive of 90-day
mortality.117

Combining biomarkers in cardiogenic
shock
In a study of 2002 patients with STEMI, 225 of whom developed
CS, four proteins were identified as early, independent predictors
of CS. These included copeptin, MR-proADM, pro-atrial natri-
uretic peptide and sST2, and as their individual levels increased, so
did the risk of CS.84 The addition of all four markers to the ORBI
score significantly improved the prediction of evolving CS, with an
AUC of 0.85.

Cardiogenic shock 4 proteins

A recent quantitative study identified 51 proteins that are elevated
in CS following STEMI, among which the four best predictors of
90-day all-cause mortality were liver-type fatty acid-binding protein
(L-FABP), beta-2-microglobulin (B2MG), fructose-bisphosphate
aldolase B (ALDOB), and SerpinG1 (IC1). These four proteins
were thus termed ‘cardiogenic shock 4 proteins’ (CS4P).120 CS4P
was validated in the CardShock cohort, and found to be predictive
of 90-day all-cause mortality with an AUC of 0.83.21 Using the
CS4P with the CardShock risk score showed a marked benefit in
patient reclassification over the CardShock score alone, with a
NRI of 0.49 (p= 0.02). Using the CS4P with the IABP-SHOCK II
risk score also showed a marked benefit in patient reclassification
over the IABP-SHOCK II risk score alone, with a NRI of 0.57
(p= 0.032).120 The success of these four proteins may lie in the
combination of organ systems that they represent.120

Liver dysfunction is associated with increased all-cause mortal-
ity.181 L-FABP, a soluble protein found in hepatocytes and, to a
lesser extent, in kidneys, intestine and lung,194,195 plays a protective
role, binding and controlling potentially cytotoxic metabolites.196 It
is upregulated in response to tissue injury and is not CS-specific.120

When measured within 24 h of CS admission, L-FABP substantially
improves the prediction of death, over clinical risk scores.120

ALDOB is another marker of liver damage.120

© 2025 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Beta-2-microglobulin, elevated in coronary artery disease, is a
marker of future MACE, but has not been evaluated specifically in
CS.198 Levels increase in response to kidney injury, which in turn is
associated with increased CS mortality.68,199

Increased levels of IC1, part of the complement pathway
of inflammation,200 correlate with increased 30-day mortality in
patients with CS,201 while inhibition of IC1 in STEMI patients may
provide myocardial protection from reperfusion injury.202

Cystatin C, lactate, interleukin-6 and NT-proBNP

In patients with CS due to STEMI who were recruited to the
Culprit Lesion Only PCI Versus Multivessel PCI in Cardiogenic
Shock (CULPRIT-SHOCK) trial,203 integration of four out of
58 investigated proteins into a clinical risk model (CLIP score)
allowed for highly accurate prediction of 30-day all-cause mortality
with an AUC of 0.83, a finding which the authors subsequently
validated in the IABP-SHOCK II cohort.119 These proteins
were cystatin C, lactate, IL-6 and NT-proBNP. The CLIP score
outperformed the IABP-SHOCK II score in predicting 30-day
mortality.

This four-component risk score incorporates cystatin C, which
appears to be superior to creatinine in predicting AKI and mortal-
ity in ACS, HF, and during critical illness.204–206 Given its relatively
short half-life, cystatin C levels change earlier than creatinine, pro-
viding a theoretical basis for its superiority as a marker. Further-
more, cystatin C was an independent predictor of MACE in patients
with ACS, even without AKI, an effect likely mediated through
its relationship with inflammation and atherosclerosis.207–209 How-
ever, in the IABP-SHOCK II trial, creatinine predicted mortality
more reliably than cystatin C, NGAL, KIM-1, or eGFR.33 There is
no consensus on which marker is best.

A recent study comparing the performance of the CLIP score
in CS, septic shock, haemorrhagic shock, respiratory failure and all
intensive care admissions, found that the score predicted 30-day
all-cause mortality similarly well in all these settings.210

Importance of biomarker
dynamics
Temporal changes in biomarker levels can improve risk assessment.
Amongst patients with elevated cDPP3, those in whom cDPP3 lev-
els had decreased at 24 h showed a lower risk of refractory CS and
death compared to those with persistently elevated cDPP3 level.151

Likewise, ADM and lactate normalized in surviving patients, while
persistent elevations were predictive of adverse outcome. Inter-
estingly, the prognostic usefulness of lactate to predict mortality
decreased from baseline (0 h) to 5–10 days, while that of ADM
increased over the same period of time.71

In patients with CS, IL-6 is the predominant cytokine present
in plasma. Following initiation of MCS, levels of IL-6 declined
in survivors, but continued to rise in non-survivors.211 Similar
trends were seen with sST2 in patients receiving LVAD support for
end-stage CS. In a small study with serial sST2 measurements, sST2
levels were elevated just before LVAD implantation and decreased ..
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.. substantially during MCS support, normalizing by 6 months.212

Another very small study showed that persistent elevation of sST2
following LVAD implantation was associated with higher 1-year
mortality.213

Use of biomarkers to predict
complications on mechanical
circulatory support
A major limitation of MCS is the high rate of vascular and bleeding
complications. In a meta-analysis of 1866 patients on ECMO, major
or significant bleeding occurred in 41%, lower limb ischaemia in
17% and stroke in 6%.214 While patients on microaxial LVAD
support also experience high complication rates, these are lower
than with ECMO.215

As blood flows through the tubing of MCS, the contact path-
way of coagulation is activated, and coupled with inflammation,
significantly increases the risk of thrombosis, necessitating anti-
coagulation.216 Additionally, MCS exposes blood to high shear
stress, resulting in conformational change in von Willebrand
factor. This leads to cleavage of high molecular weight multimers
into smaller complexes with reduced haemostatic potential,
resulting in acquired von Willebrand syndrome.217,218 There are
no formal guidelines on the optimal assessment of anticoagula-
tion in patients on MCS, though some frameworks have been
proposed.216

Several markers have been evaluated as predictors of bleed-
ing in CS patients. Growth differentiation factor 15 (GDF-15) is
a transforming growth factor-β that is upregulated in a number
of conditions including cardiovascular disease. Levels are thought
to rise as a consequence of tissue ischaemia and inflammation.219

In animals, GDF-15 inhibits platelet integrin activation, prevents
thrombosis and may serve as a marker of bleeding.220,221 In patients
with coronary artery disease, GDF-15 predicts bleeding risk in a
dose-dependent manner, including on antiplatelet agents and anti-
coagulation.131,220,222, In a prospective study of patients with CS
attributable to ACS who were randomized to treatment with or
without IABP as a pre-specified substudy of the IABP-SHOCK II
trial, elevated GDF-15 levels during percutaneous coronary inter-
vention were predictive of 30-day all-cause mortality, even after
adjusting for other known predictors such as lactate.93 Adding
GDF-15 to the CardShock risk score improved the risk stratifi-
cation of CS (NRI 0.18, p= 0.003).223 However, there is a lack of
data supporting the use of GDF-15 as a marker of bleeding risk
during MCS.

The inflammatory cytokine Ang-2, stored in the Weibel–Palade
bodies of endothelial cells, is released in response to stimuli such
as thrombin and hypoxia.159 In patients with CS, baseline Ang-2
levels were not predictive of 30-day mortality, but levels were
generally observed to decline following the initiation of MCS. Fur-
thermore, persistently elevated levels were predictive of adverse
outcomes.224 In patients with acute myocardial infarction compli-
cated by CS, Ang-2 levels were associated with the development
of AKI, bleeding complications, and/or the need for blood transfu-
sion, and unaffected by IABP support.80 In other settings, however,
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Ang-2 levels have been related to the occurrence of thrombotic
events.225,226

Galectin 3 (Gal-3) is a galactoside-binding protein involved in
cell–cell and cell–matrix interactions, and implicated in atheroscle-
rosis, myocardial fibrosis and HF. In a small study of patients with
ACS-related CS, low Gal-3 levels were associated with increased
30-day mortality.90 In a murine model, Gal-3 was a marker of
platelet hyperactivity and thrombus formation, and Gal-3 inhibition
achieved a potent antithrombotic effect without excessive bleed-
ing.227 In patients with severe chronic HF, Gal-3 levels fell after
LVAD implantation or heart transplantation, and persistently ele-
vated levels were associated with increased mortality.228

In summary, while biomarkers are predictive of adverse out-
comes in patients on MCS, specific markers of excess bleeding and
thrombosis risk in CS patients are lacking.

Biomarkers as treatment targets
in cardiogenic shock
Several monoclonal antibodies are being explored for
immunomodulatory treatment of septic shock.229 As a sys-
temic inflammatory response is involved in both septic shock
and CS, there may be some treatments that benefit both
conditions.

Tocilizumab is an IL-6 targeting monoclonal antibody used in the
treatment of rheumatoid arthritis and, more recently, severe acute
respiratory syndrome coronavirus 2 infection.230 In patients pre-
senting with out-of-hospital cardiac arrest (33% as a consequence
of STEMI), treatment with tocilizumab resulted in a reduction of
systemic inflammation and a rapid fall in myocardial injury markers
in a third of patients at 6–12 h.231 Its efficacy in preventing CS is
currently being evaluated in patients with ACS at high risk of CS, in
the ongoing double-blind, randomized controlled DOBERMANN
trial.232

Complement activation plays an important role in the patho-
physiology of shock and systemic inflammation. C1 esterase
regulates the complement pathway, plasma kallikrein-kinin and
coagulation systems, and elevated levels of C1-esterase are
associated with poor prognosis in CS.120 In a small, randomized,
double-blind trial in which 80 patients with STEMI undergoing
emergency coronary artery bypass grafting were randomized to a
C1-esterase inhibitor or placebo, complement pathway inhibition
was associated with shorter intubation time, shorter hospital stay,
and reduced need for inotropic support.202 However, another
small study showed no effect of C1 esterase inhibition on mor-
tality in patients undergoing emergency coronary artery bypass
grafting for ACS.233 Notably however, C1 esterase inhibition was
associated with reduced troponin levels.233

Circulating DPP3 is not only a useful biomarker in CS, but is also
involved in myocardial depression. In mice, intravenous infusion of
DPP3 immediately resulted in reduced myocardial contractility and
impaired renal perfusion.234 While procizumab, a cDPP3-antibody,
almost completely normalized cardiac function and renal perfusion
in a murine model of isoproterenol-induced HF, it has not yet been
tested in humans.234 ..
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.. Limitations of current data
Research into the pathophysiology, risk stratification and manage-
ment of CS faces several challenges. Firstly, heterogeneity in the
definition of CS is a significant limitation. Most trials and guide-
lines define CS as a systolic blood pressure (SBP) ≤90 mmHg for
>30 min or the need for vasopressors/inotropes to maintain SBP
>90 mmHg.235 However, CS can also present with normotension,
with a similar poor prognosis to hypotensive CS. Unfortunately, the
former group is usually excluded from trials.236,237 Recently, a con-
sensus document from the Shock Academic Research Consortium
aimed to standardize definitions and research into CS, although
multiple, frequent changes in definition may lead to confusion.2,238

Secondly, CS is a condition with diverse aetiologies, including
ischaemia, primary pump failure, valvular disease, arrhythmias or
following bypass surgery. While some trials focused on a single
aetiology of CS (predominantly ACS), many have grouped various
aetiologies together. Although similar vicious cycles of maladaptive
responses lead to further deterioration in cardiac output and
ischaemia, differing pathophysiological causes may likely require
different treatments, with variable response rates.

A significant limitation of most biomarkers is that they are
non-specific, and seem to identify a ‘sick’ patient with high mortal-
ity, rather than a specific CS cohort, with specific risks. Accordingly,
the elevation of circulating levels of most biomarkers in CS is con-
sidered to be an epiphenomenon and not pathologically causal.
Some molecules (e.g. cDPP3 and IL-6) may represent potential bio-
targets to modulate cardiovascular outcomes.

The effect of distinct treatment decisions based on biomarkers,
such as mechanical offloading, inotropic requirements or haemofil-
tration, has not been well characterized thus far. Furthermore,
most of the available data on biomarkers in CS stem from a
number of small studies and a few larger interventional trials. The
larger studies were designed to assess the effect of interventions
such as IABP in CS, and not specifically to examine biomarkers.
Six biomarkers (see Table 2) and two scores (CS4P and CLIP
score) have undergone some external validation for the predic-
tion of mortality. These are often in heterogeneous populations
using different cut-off values compared to those in the derivation
cohorts. Further, more rigorous external validation is needed
before these are integrated into protocols and used in clinical
practice.

Furthermore, the findings from these studies are still limited
to the populations in which they were conducted. There were
no differences in sST2 levels between men and women with
CS receiving LVAD support, while none of the other studies
reported gender differences specifically.212 Local demographics,
ethnicity, and clinical practices may influence the usefulness of the
biomarkers and require further validation. Additionally, patients
from specific demographics or with certain beliefs may have been
excluded from these studies, further limiting the generalizability of
the biomarkers.

Most of the novel biomarkers discussed herein are not widely
available, require testing in specialized laboratories, and even then,
the results are not available in a timely manner. CS is a time-critical
condition, meaning that many of these markers are impractical for
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Table 3 Ongoing observational and interventional trials investigating the levels of biomarkers in patients with
cardiogenic shock

Name of trial NCT Patient population Country Start-end date
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cardiogenic Shock Integrated PHenotyping
for Event Reduction (CIPHER)

NCT04323371 Patients with acute
decompensated heart
failure, complicated by CS

Italy 2020–2025

ECMOsorb Trial - Impact of a VA-ECMO in
Combination With CytoSorb in Critically
Ill Patients With Cardiogenic Shock
(ECMOsorb)

NCT05027529 CS of any cause and
indication for VA-ECMO

Germany 2021–2024

Normoxemic Versus Hyperoxemic
Extracorporeal Oxygenation in Patients
Supported by Veino-arterial ECMO for
Cardiogenic Shock (ECMOxy)

NCT04990349 Patient supported by
VA-ECMO for CS

France 2022–2024

Genomic Determinants of Outcome in
Cardiogenic Shock (Goldilocs)

NCT05728359 CS secondary to AMI or
myocarditis

UK 2022–2025

Role of Candidate Proteins in Capillary
Leakage During Acute Circulatory Failure

NCT05586282 Circulatory shocks (including
septic shock and CS)

France 2022–2026

Influence of Enteral Microbiome on
Mortality of Patients With Cardiogenic
Shock

NCT06006754 CS of all aetiology Germany 2023–2024

PRecision Ecmo in CardIogenic Shock
Evaluation (PRECISE)

NCT05748860 Patients who will be
commenced on VA-ECMO
(for CS or ECPR)

Australia and
New Zealand

2023–2026

AMI, acute myocardial infarction; CS, cardiogenic shock; ECMO, extracorporeal membrane oxygenation; ECPR, extracorporeal cardiopulmonary resuscitation; VA-ECMO,
veno-arterial extracorporeal membrane oxygenation.

practical clinical use. Biomarkers that can be tested at the bedside
would facilitate the rapid decision-making required in CS patients.

Cost-effectiveness is another crucial consideration when choos-
ing tests for patients with CS. The usefulness of biomarkers will
be determined not only by their sensitivity and specificity for pre-
dicting outcomes, but also by their added value (net reclassifi-
cation) compared to current biomarkers and risk scores, taking
into account the frequency of measurements and the availability of
tests (including turnaround times/near-patient options) compared
to more readily available biomarkers such as creatinine and lac-
tate. Furthermore, determining the optimal timing and frequency
of measurements to best guide prognosis and cost-effectiveness
requires further study for all biomarkers.

These limitations indicate that we have not yet reached the point
of establishing thresholds and timings that would allow for the
incorporation of these new biomarkers into clinical use. Further
research is therefore needed before any of the novel markers can
be incorporated into routine use to help predict the onset of or
the outcome of CS.

Future directions
Given the high mortality and morbidity of CS and the failure
of many new treatment strategies, there is a significant need to
improve outcomes. Important first steps are to standardize the
definition of CS used in studies, to define the underlying aetiology
leading to CS, as well as the shock stage at which a potential marker ..
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. is assessed. Indeed, many interventions may be effective in early

(i.e. SCAI stages A-C), but not in fully developed CS (i.e. SCAI
stages D-E).

Some novel biomarkers may have the potential to predict the
onset of CS before it progresses to more severe stages. Identifying
this risk early can facilitate prompt intervention, such as more
invasive haemodynamic monitoring, and enable the use of early,
targeted treatments. It also allows for thorough assessment and
planning of escalation strategies.

New biomarkers that detect early end-organ hypoperfusion,
before routinely available blood markers indicate organ damage,
could help guide interventions to optimize haemodynamic support
or escalate to MCS early. Bleeding and thrombotic complications
are common in CS, especially in patients on MCS. Biomarkers
could also help guide anticoagulation levels and predict thrombotic
or bleeding events. Minimizing these complications may improve
survival, particularly in patients on MCS.

However, to use the biomarkers for decision-making, we first
need large prospective studies to evaluate biomarker trends in CS.
Furthermore, research will be needed to transition the biomarker
use from bench to bedside, to guide interventions and to deter-
mine whether these changes have meaningful effects on clinical
outcomes.

Most studies have focused on relatively short-term outcomes
(see Table 2). Patients discharged from the hospital often suffer
from significant morbidity and remain at increased mortality risk,
which can lead to rehospitalization.6 Biomarkers that predict
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morbidity and readmission could be useful for enabling closer
follow-up of patients post-discharge, to achieve the best long-term
outcomes, whether that is active treatment or discussions around
best supportive management.

Several studies, both observational and interventional, are in
progress or planned, to evaluate existing and identify new biomark-
ers (Table 3). The ideal biomarker should be readily available for
widespread use, ideally at the point-of-care, and give results in
a suitably rapid manner to influence care. New combinations of
biomarkers need to be examined to determine whether they per-
form better than individual markers alone.

Some biomarkers represent promising therapeutic targets. Many
trials are currently searching for new targets in CS (Table 3). Mul-
tiple cytokines are generated during CS, and one strategy being
explored involves removing these from the circulation using filtra-
tion with ECMO, although some cytokines may have protective
functions in CS (Figure 2).239 Treatments targeting biomarkers at
earlier stages of CS or pre-shock, are needed to define the ‘sweet
spot’ for personalized therapeutic interventions. Future clinical tri-
als should also explore a biomarker-tailored treatment approach.
For example, patients with high levels of IL-6 may be prone to
a mixed distributive-inflammatory phenotype of CS, which could
respond to an anti-inflammatory treatment. In this regard, treat-
ment of CS with the anti-IL-6 monoclonal antibody tocilizumab or
the cDPP3 inhibitor procizumab, appear particularly promising.

Beyond proteomics
Working out the molecular signature of CS is not limited to focus-
ing on proteomics.79,240 Since activation of transcription precedes
protein formation, genomics and transcriptomics may also play
an important role. This approach could allow the early detection
of pathological processes, such as signatures of inflammation or
AKI, enabling early implementation of treatment.241 Upregulation
of certain RNAs is associated with renal and brain protection from
hypoxia which may be another potential therapeutic avenue to
explore.242,243 Additionally, it could provide insights into genetic
susceptibility, including to developing complications, with implica-
tions for management.244

Furthermore, with the rise of ultra-rapid genome sequencing,
genomics may play a role in facilitating targeted treatments.245 In
the future, artificial intelligence may be able to integrate multiple
variables and assist with the personalization of treatment in CS.246

Conclusion
A number of novel biomarkers enhance mortality prediction in CS
compared to conventional markers such as lactate, with some, such
as ADM and cDPP3 able even to predict the development of CS.
Temporal changes in biomarkers may guide prognostication par-
ticularly well. Many biomarkers reflect end-organ hypoperfusion
or systemic inflammation, and are therefore not specific to CS.
While some constitute potential therapeutic targets, the limita-
tions of current biomarkers include lack of widespread availability,
slow turnaround times, lack of specificity and limited prospective ..
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.. validation. This highlights the significant unmet need in CS and pro-
vides clinicians with an overview of current and novel biomarkers,
thereby stimulating future research into and validation of these
biomarkers. Future studies assessing novel biomarkers to predict
the onset and prognosis in CS, assess the impact of interventions
and act as therapeutic targets could enhance the outcome in this
very high-risk cohort.
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