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Chern-Simons theory with certain gauge groups is known to be equivalent to a first-order formulation of
three-dimensional Einstein gravity with a cosmological constant, where both are purely topological. Here,
we extend this correspondence to theories with dynamical degrees of freedom. As an example, we show
that three-dimensional Yang-Mills theory with gauge group SLð2;RÞ is equivalent to the first-order
formulation of three-dimensional Einstein gravity with no cosmological constant coupled to a background
stress-energy tensor density (which breaks the diffeomorphism symmetry). The local degree of freedom of
three-dimensional Yang-Mills theory corresponds to degenerate “gravitational waves” in which the metric
is degenerate and the spin connection is no longer completely determined by the metric. Turning on a
cosmological constant produces the third-way (for Λ < 0) or the imaginary third-way (for Λ > 0) gauge
theories with a background stress-energy tensor density.
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I. INTRODUCTION AND SUMMARY

Gauge theory and gravity are closely entwined by
holographic duality [1–3] (reviewed in [4–7]) and the
double copy [8–10] (reviewed in [11–15]). On the other
hand, they differ in many ways: amount of symmetry
(diffeomorphism versus Lie-algebra-valued gauge trans-
formations), degrees of freedom (d − 2 versus ðd − 3Þd=2
in d dimensions), etc. In three dimensions, remarkably,
pure gravity (with or without a cosmological constant) is
topological and known to be equivalent (at least perturba-
tively) to a topological gauge theory called Chern-Simons
theory [16,17] (for reviews, see [18–24]); in this case,
neither side has local degrees of freedom.
This paper shows that the above correspondence extends

surprisingly to dynamical theories. On the gauge theory
side, we have ordinary Yang-Mills theory and its defor-
mations, the third-way theory [25] (reviewed in [26]),
which occurs as a subsector of the ABJM theory on a
Romans background, and its imaginary variant, which are
all instances of the family of Manin theories [27]. On the

gravity side, we have three-dimensional Einstein gravity
with a cosmological constant and a background stress-
energy tensor density, much as one may turn on a classical
background source density in Yang-Mills theory. The
background stress-energy tensor density breaks diffeomor-
phism invariance (just as a background Yang-Mills source
breaks gauge invariance); if one allows degenerate metrics,
this causes the spin connection to propagate with three
degrees of freedom, matching those of Yang-Mills theory
with a gauge group of dimension three. Features of gauge
theory correspond to features of gravity according to
Table I.
Our construction does not involve matter (apart from the

background stress-energy tensor density); note that gauge-
theoretic and gravitational minimal couplings to matter
would be very different. Furthermore, our construction is
purely classical and, from the gravitational perspective,
allows the dreibein and spin connection to be degenerate.
Note, it has been argued that one must require the dreibein
to be always invertible [28] and that this invertibility
distinguishes Chern-Simons theory from three-dimensional
gravity nonperturbatively. Moreover, our construction is
perturbative in that we ignore large gauge transformations
and the sum over topologies.
We work with Lorentzian-signature gravity, which has

the effect that the Chern-Simons (and hence Yang-Mills)
gauge groups do not admit positive-definite Killing forms
and hence are not unitary. For unitarity, we may work with
the gauge algebra soð4Þ ¼ suð2Þ ⊕ suð2Þ, which corre-
sponds formally to Euclidean gravity with a positive
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cosmological constant [17,22]. Note that the signature of
the dynamical metric need not be the same as the signature
of the background metric, so that soð4Þ Yang-Mills theory
on a Lorentzian-signature background metric ĝ formally
corresponds to Euclidean gravity with a Lorentzian-sig-
nature background stress-energy tensor density.
The gauge-gravity correspondence described here raises

various possibilities, such as analog gravity [29,30] appli-
cations: condensed-matter realizations of Yang-Mills theory
and other Manin theories may provide a laboratory for
features of gravity involving propagatingdegrees of freedom.
It may also have holographic implications. Chern-

Simons theories on three-dimensional anti–de Sitter space
(AdS3) exhibit an AdS3=CFT2 duality with Wess-Zumino-
Witten models [31,32] (see reviews in [33,34]). In
particular, the asymptotic symmetries of AdS3 realize
the Virasoro symmetry of the Wess-Zumino-Witten model,
and the Bekenstein-Hawking entropy of the Bañados-
Teitelboim-Zanelli (BTZ) black hole corresponds to the
Cardy entropy of two-dimensional conformal field theo-
ries. It is tempting to speculate that aspects of holography
may extend to Yang-Mills theory seen as a gravitational
theory. In the AdS3 case (third-way theory), the global
Spinð2; 2Þ ¼ SLð2;RÞ × SLð2;RÞ isometry of AdS3 is
broken by the masslike Manin term into the diagonal
subgroup SLð2;RÞdiag. This suggests that a holographi-
cally dual two-dimensional theory to the third-way theory,
if one exists, should be such that instead of having left and
right Virasoro symmetries, it should have only one
(diagonal) copy of the Virasoro symmetry. If three-dimen-
sional AdS Einstein gravity is dual to a monster CFT (as
conjectured in [28]), then it may represent a deformation
of that theory.
We use the −þþ metric signature with the Levi-Civita

symbol ϵ012 ¼ −ϵ012. Antisymmetrizations � � �½μ � � �ν� are
always normalized.

II. MANIN THEORIES AS GAUGE THEORIES

AManin pair [35] ðd; gÞ is a Lie algebra d equipped with
an invariant nondegenerate inner product h−;−i and a Lie
subalgebra g ⊂ d whose dimension is half that of d and
such that hx; yi ¼ 0 whenever x; y∈ g. The notion origi-
nates in the theory of integrable systems (see [36] for a
review).
A Manin theory [27] is a three-dimensional field theory

associated to a Manin pair ðd; gÞ that is a deformation of a
Chern-Simons theory valued in d with a masslike term1

S½A� ¼
Z

1

2
khA; dAþ 1

3
½A ∧ A�i þ 1

2
hA; b⋆MAi ð1Þ

where A is a d-valued connection and M∶d → d is a linear
map of mass dimension 1 with kernel and image both equal
to g ⊂ d such that

hMy; zi ¼ hy;Mzi M½x; y� ¼ ½x;My� ð2Þ

for x∈ g and y; z∈ d. The Hodge star b⋆ is taken with
respect to a background (pseudo-)Riemannian metric ĝ.
The masslike term 1

2
hA ∧ b⋆MAi breaks diffeomorphism

symmetry (since it involves the background metric ĝ)
and the part of the gauge symmetry d not contained in
g.2 The background Hodge star structure coefficients are
given by the (1,2)-tensor

ffiffiffiffiffiffiffiffiffiffiffiffiffij det ĝjp
ĝμσϵσνρ. We may regard

it as the densitized symmetric (2,0)-tensor
ffiffiffiffiffiffiffiffiffiffiffiffiffij det ĝjp

ĝμσ,
similar to a stress-energy tensor density.

TABLE I. Correspondence between gauge-theoretic concepts and gravitational concepts.

3D gauge 3D gravity

Chern-Simons Einstein gravityþ Λ
Yang-Mills Einstein gravityþ background
Third way Einstein gravityþ Λ > 0þ background
Imaginary third way Einstein gravityþ Λ < 0þ background
Auxiliary field Ãa

μ Dreibein eaμ
Gauge field Aa

μ Spin connection 1
2
ϵabcωbcμ

Coupling constants gYM; λ Coupling constants MPl;Λ
Background densitized inverse metric

ffiffiffiffiffiffiffiffiffiffiffij det ĝp ðĝ−1Þμν Background stress-energy tensor density Tμν

Gauge symmetry partly broken by masslike term Diffeomorphism symmetry broken by background
Unbroken gauge symmetry Rotation of dreibein index
Vacuum Degenerate metric
Coulomb monopole Degenerate metric with singularity
Pure gauge configuration Minkowski Vacuum
Constant field strength configuration dS/AdS vacuum

1This term, however, does not correspond to the masses of
the propagating degrees of freedom, which are massless.

2This does not affect the consistency of the theory since half of
the fields are rendered auxiliary so that the associated gauge
symmetry is no longer necessary.
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We may choose a linear subspace g̃ inside d such that
d ¼ gþ g̃ and h−;−i identifies g̃ ≅ g�.3 Picking a basis
ftag of g and a corresponding basis ft̃ag of g̃ such that
ht̃a; tbi ¼ δab, we may parametrize the structure constants of
the Manin pair and the operator M as

½ta; tb� ¼ fabctc ½t̃a; t̃b� ¼ f̃abct̃cþ h̃abctc

½ta; t̃b� ¼ f̃bcatc−facbt̃c Mt̃a¼Mabtb: ð3Þ

Then the d-valued gauge field A decomposes as
A ¼ Aata þ Ãat̃a, its respective g- and g̃-valued compo-
nents, in terms of which the action becomes

S½A;Ã� ¼
Z

kÃa ∧Faþ1

2
kf̃abcÃa ∧ Ãb ∧Ac

þ1

6
kh̃abcÃa ∧ Ãb ∧ Ãcþ

1

2
MabÃa ∧ b⋆Ãb; ð4Þ

where we have defined the field strength F ¼ Fata ¼ dAþ
A ∧ A whose components are Fa ¼ dAa þ 1

2
fbcaAb ∧ Ac.

We now specialize to the case of a gravitylike Manin
theory, where we now take the Manin pair to be one of

ðd; gÞ ¼

8><
>:

ðslð2;RÞ ⊕ slð2;RÞ; slð2;RÞdiagÞ
ðT�slð2;RÞ; slð2;RÞÞ
ðslð2;CÞ; slð2;RÞÞ;

ð5Þ

where T�slð2;RÞ means the semidirect sum slð2;RÞ ⋉
slð2;RÞ� with the dual space slð2;RÞ� regarded as an
Abelian Lie algebra and acted upon by slð2;RÞ as the
coadjoint representation. These three cases correspond
respectively to the third-way theory, Yang-Mills theory,
and the imaginary third-way theory according to Table II.
Normalizing the g ≅ slð2;RÞ generators as

½ta; tb� ¼ ϵabcη
cdtd ¼ ϵabctc; ð6Þ

where a; b; c; d∈ f0; 1; 2g are raised and lowered by
ηab ¼ diagð−1; 1; 1Þ, then d andM have the corresponding
structure constants

½ta; tb� ¼ ϵabcη
cdtd ½ta; t̃b� ¼ ηbcϵacdt̃d

½t̃a; t̃b� ¼ 1

4
νϵabctc Mt̃a ¼ μηabtb; ð7Þ

where μ is a constant of mass dimension 1 and

ν ¼

8><
>:

1 if d ¼ slð2;RÞ ⊕ slð2;RÞ
0 if d ¼ T�slð2;RÞ
−1 if d ¼ slð2;CÞ:

ð8Þ

Accordingly, their respective Manin gauge theory actions
are

S½A; Ã� ¼
Z �

kÃa ∧ Fa þ 1

24
νkϵabcÃa ∧ Ãb ∧ Ãc

þ 1

2
μηabÃa ∧ b⋆Ãb

�
: ð9Þ

The field Ã is auxiliary in that its equation of motion

Ãa ¼ kμ−1ηabb⋆
�
Fb þ 1

8
νϵbcdÃc ∧ Ãd

�
ð10Þ

can be recursively substituted as

Ãa ¼
k
μ
ηabb⋆Fbþ k3

8μ3
νϵabcb⋆Fb ∧ b⋆FcþOððk=μÞ4ν2F3Þ

ð11Þ

to produce an action

S½A� ¼
Z

1

2
k2μ−1ηabFa ∧ b⋆Fb þOðk4μ−3F3Þ: ð12Þ

If we define

gYM ¼
ffiffiffiffiffiffi
jμj

p
=k λ ¼ k4jμj−3=2; ð13Þ

then we get

S½A� ¼
Z

sgnðμÞ 1

2g2YM
ηabFa ∧ b⋆FbþOðνλg−3YMF3Þ; ð14Þ

realizing it as a nonlinear correction to Yang-Mills theory.4

In particular, when ν ¼ 0 or when gYM is fixed and λ → 0,
we obtain pure Yang-Mills theory. The corrections are
interesting in that they give rise to local field theories, but
this locality is not manifest without the use of auxiliary
fields (such as Ã); while one can write down the equations
of motion in a manifestly local form [25], the source current

TABLE II. Correspondence between Manin pairs, gauge the-
ories, and sign of the cosmological constant.

Max. symmetric
vacuum Manin pair Manin theory

de Sitter ðslð2;CÞ; slð2;RÞÞ Imaginary third-way
Minkowski ðT�slð2;RÞ; slð2;RÞÞ 3d Yang-Mills
Anti–de Sitter ðslð2;RÞ ⊕ slð2;RÞ;

slð2;RÞdiagÞ
Third-way

3This choice does not affect the physics [27].

4The theory is not unitary for either sign of μ since the Killing
form for slð2;RÞ is indefinite.
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that describes the higher-order self-interactions is only
conserved on shell. Such theories are referred to as
“third-way consistent” [37–39].

III. MANIN THEORIES
AS GRAVITY THEORIES

The Manin theories associated to the Manin pairs (5),
which describe dynamical gauge fields atop a fixed back-
ground metric, admit a reinterpretation as gravitational
theories describing a dynamical metric coupled to a back-
ground matter gauge field.
To make the gravitational interpretation manifest, we let

MPl be an arbitrary mass scale and make the following
identifications. Define the dreibein ea, the metric gμν, the
spin connection ωab, the cosmological constant Λ, and the
stress-energy tensor density Tμν as

ea ¼ kÃa=MPl ð15aÞ

gμν ¼ ηabeaμebν ð15bÞ

ωab ¼ −ϵabcAc ⇔ Aa ¼ 1

2
ϵabcωbc ð15cÞ

Λ ¼ −
1

4
k−2νM2

Pl ð15dÞ

Tμν ¼ k−2μM2
Plðĝ−1Þμν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ĝj

p
: ð15eÞ

Note that Tμν is a tensor density rather than a tensor; it
should be thought of as the stress-energy tensor density of
the background matter.5 With these definitions, the Manin
theory action (9) now takes the gravitational form

S½e;ω� ¼ 1

2
MPl

Z
ϵabc

�
ea ∧ Rbc −

1

3
Λea ∧ eb ∧ ec

�

þ 1

2

Z
d3xTμνηabeaμebν ; ð16Þ

where the Riemann curvature is expressed as the 2-form

Rab ¼ dωab þ ωa
c ∧ ωcb: ð17Þ

The three choices of Manin pair (5), encoded by
ν ¼ 1; 0;−1 in (8), now correspond via (15d) to
Λ < 0;Λ ¼ 0;Λ > 0, respectively. In the original gauge
theory picture given in (9) and (14), the (anti–)de Sitter
cases correspond to the third-way theories of [37–39].
When the cosmological constant is vanishing, ν ¼ 0 ¼ Λ,
the Manin theory (9) reduces to the familiar first-order
formulation of pure Yang-Mills theory with SLð2;RÞ

gauge group and, correspondingly, the higher-order terms
in (14) are switched off.
The equations of motion are

dea þ ωa
b ∧ eb ¼ 0 ð18aÞ

Rab
μν − 2Λea½μe

b
ν� −M−1

Pl ϵμνρT
ρσecσϵabc ¼ 0; ð18bÞ

where the first implies the spin connection be torsion-free
and the second is Einstein’s field equations with a cosmo-
logical constant and a background stress-energy term.
Suppose that eaμ is invertible.6 We now raise and lower

Lorentz indices via gμν. The torsion-free condition (18b)
can be solved to yield the usual definition for the spin
connection

ωab
μ ¼ eν½að∂μeb�ν − ∂νe

b�
μ þ eσjb�ecμ∂σeνcÞ: ð19Þ

As to the second, let us (again using invertibility of the
dreibein) convert all dreibein indices to ordinary vector
indices

Rμνρσ−Λðgμρgνσ−gνρgμσÞ−
ffiffiffiffiffiffiffiffiffiffiffiffijdetgjp
MPl

ϵμντϵρσλTτλ¼0: ð20Þ

All terms now carry four Lorentz indices, which have the
symmetry of the Young tableau ⊞. In three dimensions,
we lose no information contracting the ν and σ indices7 to
obtain

0 ¼ Rμν − 2Λgμν −
M−1

Plffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp ðTμν − TρσgρσgμνÞ: ð21Þ

We can equivalently rewrite this as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ðGμν þ ΛgμνÞ ¼ M−1

Pl Tμν; ð22Þ

where

Gμν ¼ Rμν −
1

2
gμνR ð23Þ

is the usual Einstein tensor.

IV. VACUUM SOLUTIONS

From the gauge-theory perspective, the gauge-theoretic
vacuum configuration is simply one in which all fields
vanish:

5In many ways, the stress-energy tensor density is more
fundamental than the stress-energy tensor—e.g., the definition
−2δSmatter=δgμν is naturally a density.

6This is not an innocuous assumption: for example, a Coulomb
monopole in some Abelian subalgebra uð1Þ ⊂ slð2;RÞ will not
be such that the dreibein is invertible.

7This is the familiar fact that, in three dimensions, the Riemann
tensor is algebraically determined by the Ricci tensor alone.
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Aa
μðxÞ ¼ 0 ¼ Ãa

μðxÞ: ð24Þ

From a gravitational perspective, however, this corresponds
to a degenenerate metric gμν ¼ 0 ¼ ωab

μ .
On the other hand, there exist a family of solutions that

naturally correspond to the notion of a gravitational
vacuum. Suppose that the background metric ĝμν ¼ êaμêaν
satisfies Einstein’s equations with cosmological constant
Λ�—for example, it can be Minkowski, dS or AdS. Take
the dynamical dreibein to be proportional to the back-
ground dreibein

eaμ ¼ αêaμ: ð25Þ

Then it is straightforward to check that this is a solution to
the Manin theory provided that

Λ� ¼ α2Λþ αMPlμ: ð26Þ

In this manner all standard solutions are recovered but with
a shifted cosmological constant.

V. GAUGE/GRAVITATIONAL WAVES

The reader may wonder what happened to the local
degrees of freedom: three-dimensional Yang-Mills theory
with gauge group g has dimðgÞ local degrees of freedom,
while three-dimensional pure Einstein gravity should have
no local degrees of freedom. In fact, the latter statement
depends on whether one is working with the first-order or
second-order formulations of Einstein gravity.
Seen as a gauge theory, Yang-Mills theory on a

Minkowski background ĝμν ¼ ημν has the plane-wave
solution

Aa
μðxÞ ¼ εμCa expðik · xÞ ð27aÞ

Ãa
μðxÞ ¼ kμ−1ϵμνρik½νερ�Ca expðik · xÞ ð27bÞ

for a fixed polarization vector εμ such that k · ε ¼ 0

(with two polarization vectors ε; ε0 gauge-equivalent if
εμ − ε0μ ∝ kμ) and color C∈ slð2;RÞ. Translated into gravi-
tational language, we obtain

ωab
μ ¼ −ϵabcCcεμ expðik · xÞ ð28aÞ

eaμ ¼ k2M−1
Pl μ

−1ϵμ
νρik½νερ�Ca expðik · xÞ: ð28bÞ

That is, the plane waves correspond to degenerate solutions
in which the dynamical metric is noninvertible and the spin
connection remains nonzero. This is possible in the first-
order formalism since the relation (19) between the spin
connection and the dreibein assumes that the dreibein is
invertible; when this fails, the spin connection cannot be
solved in terms of the dreibein. Thus, first-order Einstein

gravity acquires three degrees of freedom in the presence of
a background stress-energy tensor density if one allows
degenerate metrics.

VI. AXISYMMETRIC SOLUTIONS:
COULOMB MONOPOLES AND BLACK HOLES

From the gauge-theoretic point of view, we have sol-
utions that correspond to spherically symmetric Coulomb
monopoles

eaðrÞ¼Qa lnr ωabðrÞ¼ μ−1ϵabcQcr−1⋆dr ð29Þ

where Q∈ slð2;RÞ is a fixed direction and r is the spatial
radial coordinate in a cylindrical coordinate system.
From a gravitational point of view, these correspond to

the degenerate dynamical metrics

gμνðt; r; θÞ ¼

0
B@

0 0 0

0 Q2 ln r 0

0 0 0

1
CA: ð30Þ

These seem very pathological from the gravitational
perspective, but are perfectly well-behaved elementary
solutions from the Yang-Mills point of view.
When solved with an axisymmetric ansatz, the Einstein

field equations for three-dimensional Einstein gravity with
a negative cosmological constant admit the BTZ black
hole solution [40] (reviewed in [41–44]). Let us examine
a static axisymmetric ansatz for our case with a back-
ground stress-energy tensor density (assumed to be also
static and axisymmetric, e.g., for a Minkowski back-
ground). Assuming invertibility of the dreibein, we may
postulate the ansatz

gμνdxμdxν ¼ uðrÞ2dt2 þ vðrÞ−2dr2 þ wðrÞ2dθ2 ð31Þ

for the dynamical metric, whose Einstein tensor density
is then

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
Gtt ¼ −u−1ðvw0Þ0 ð32aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
Grr ¼ v3u0w0 ð32bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
Gθθ ¼ w−1ðu0vÞ0: ð32cÞ

(Here 0 denotes d=dr.) For a flat background stress-energy
tensor density

Tμν ¼ diag
�
−aðrÞ; bðrÞ−1; cðrÞ� ð33Þ

and cosmological constant Λ, we have the equations

−u−1ðvw0Þ0 − Λu−1w=v ¼ −a ð34Þ
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v3u0w0 þ Λuvw ¼ b−1 ð35Þ

w−1ðu0vÞ0 þ Λuw−1=v ¼ c: ð36Þ

Defining f ¼ vw0 and g ¼ u0v, we may solve for v in terms
of u, w, f, g as

v ¼ ðbðfgþ ΛuwÞÞ−1; ð37Þ

so that we obtain the system of first-order ordinary differ-
ential equations

f0 ¼ au − Λbwðfgþ ΛuwÞ ð38aÞ

g0 ¼ cw − Λbuðfgþ ΛuwÞ ð38bÞ

u0 ¼ bgðfgþ ΛuwÞ ð38cÞ

w0 ¼ bfðfgþ ΛuwÞ: ð38dÞ

This is a Hamiltonian system with generalized coordinates
ðf; gÞ, generalized momenta ðu; wÞ, and Hamiltonian

H ¼ 1

2
au2 þ 1

2
cw2 −

1

2
bðfgÞ2 − Λbfguw −

1

2
Λ2bðuwÞ2:

ð39Þ

We can often reparametrize the radial coordinate so as to
have b ¼ 1, in which case the Hamiltonian simplifies to

H ¼ 1

2
au2 þ 1

2
cw2 −

1

2
ðfgþ ΛuwÞ2: ð40Þ

This describes a nonrelativistic particle moving in
two spatial directions with metric diagða−1; c−1Þ and a
momentum-dependent potential V ¼ − 1

2
ðfgþ ΛuwÞ2,

which is unbounded below. A black-holelike apparent
singularity occurs at V ¼ −∞, which is at the top of the
potential hill V. Solutions therefore tend to roll down to
v → ∞ to run into apparent singularities.8 On the other
hand, to have the solution be nonsingular at spatial
infinity for a general Tμν, one may need to tune
parameters so as to end up at the top of the hill.9 Note
that a naïve count of the initial conditions of the system
(38) indicates more parameters than would be expected
from the no-hair theorem.
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