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We show that there exists a natural analog of the Yang-Mills equations using the Frölicher-Nijenhuis
bracket betweenvector-valued differential forms. The gauge field is a rank-2 tensor, andwhen one constrains
it to be symmetric, then the system exhibits fractonic behaviors. In the linearized limit, the constrained
equations of motion reduce to those of the covariant fracton model [Phys. Rev. D 106, 125008 (2022), Phys.
Lett. B 833, 137304 (2022), and Notes from the bulk, Ph.D. thesis, Università di Genova, 2024.].
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I. INTRODUCTION AND SUMMARY

In recent years, a new kind of quasiparticle has emerged
from the physics literature: fractons [1–4]. Originating in
lattice models in the context of spin glasses [5] and
quantum information [6,7], fractons have quickly attracted
the interest of a wide variety of physicists from condensed
matter to mathematical physics and have been influential in
gauge theories and other quantum field theories [8–17].
The main characteristic of fracton quasiparticles is immo-
bility, which is also the reason for the name. Indeed a
fracton is defined as a fraction of a mobile quasiparticle,
and in isolation it cannot move at all. Only dipolelike
excitations are free to displace, or, in general have fewer
constraints on their motion [3,4,8,9]. These additional
constraints define other fracton-related quasiparticles such
as lineons and planons, which can move in a one- or two-
dimensional subspace respectively. The restricted-motion
feature, which unites all fracton theories, is shared by many
physical systems and models, and it is one of the reasons
for which fractons are so popular nowadays. For instance
limited mobility, or complete immobility, can be harnessed
for developing quantum memories [6,7], or used as a
mapping/duality to study topological defects in elastic
media [18–25]. It is also a characteristic found in

Carrollian theories, which thus seem to display some
fractonic behavior [26,27]. The other reason for attracting
so much interest is found in the tensorial nature of fractonic
theories. In gauge theory [8,9] these models are indeed
typically described in terms of a rank-2 symmetric tensor
AijðxÞ (with i, j spatial indices), which transforms under
the gauge transformation

δϵAij ¼ ∂i∂jϵ ð1Þ
and shares strong similarities with the electromagnetic
Maxwell theory, of which they represent higher-rank
generalizations. A generalized Gauss law is typically
postulated as

∂i∂jEij ¼ ρ; ð2Þ
where EijðxÞ is a symmetric electric tensor field, implying
dipole moment conservation through

Di ¼
Z

ddxxiρ ¼ −
Z

ddx∂jEij ¼
I

dd−1xð� � �Þ; ð3Þ

that is, the dipole moment cannot change except through a
nonzero flux at the boundary. This encodes the immobility
of the fractonic charge ρðxÞ [3,4] since, if a single charge
were to move, it would change the total dipole moment of
the system. The tensorial nature of the gauge field also
hints toward connections with the theory of linearized
gravity [28–32], which emerges naturally when the covar-
iant fracton theory is taken into account [33–36]. The
covariant extension

δAμν ¼ ∂μ∂νϵ ð4Þ
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of the fractonic transformation (1) is indeed a particular case
of the infinitesimal diffeomorphisms that define linearized
gravity, sometimescalled longitudinal diffeomorphisms [37].
Thus an action invariant under (4) would naturally carry a
linearized gravity term.This covariant formulation [33] gives
rise to the definition of an invariant rank-3 field strength
FμνρðxÞ, through which the Maxwell analogy and fracton
phenomenology of [8,9,38] is reproduced and expanded
from first principles. The covariant theory of fractons [33] is
free (or at least quantum-electrodynamics-like) in the sense
that the gauge field AμνðxÞ does not interact directly with
itself. However, the existence of a generalized invariant
field strength FμνρðxÞ suggests a mathematically natural
“non-Abelianization” of the above theory through the use of
the Frölicher–Nijenhuis bracket [39,40] (reviewed in [41]
Sec. 8), which is the focus of this paper.
In an interacting theory of fractons where the gauge field

interacts with itself, the gauge field modes themselves are
fractonic, so that there may be constraints on asymptotic in
states and out states. This may be interesting from an
amplitude-theoretic point of view and may possibly signal
new loopholes toWeinberg–Witten-typeno-go theorems [42].
The analysis presented in this paper is also of indepen-

dent mathematical interest. The Frölicher–Nijenhuis
bracket is a fundamental geometric structure, which has
recently appeared in the context of integrable models such
as the self-dual Yang-Mills theory [43]. In fact, the
Frölicher–Nijenhuis bracket generalizes to arbitrary Lie
algebroids [44], which appear in gauge theory in many
contexts [45–51], and both the fractonic case at hand and
ordinary Yang-Mills theory may be seen as special cases
(for the tangent Lie algebroid and a Lie algebroid bundle,
respectively) of a more general construction associated to
the general Lie algebroid. We thus see, again, that strong
analogies manifest themselves between fractons and
Maxwell/Yang-Mills theories.
Our interacting fractonic model is defined on flat space,

as gauge invariance breaks on curved space: the field
strength F only transforms tensorially if one assumes that
the metric gμν is flat and also transforms under diffeo-
morphism. Thus, to write an action principle one cannot
have gμν as a background (since it must transform), and the
equations of motion for gμν must ensure that it remains flat
(since otherwise gauge invariance fails). As a consequence,
for the scope of the analysis presented here, we only
postulate an equation of motion. For efforts at fractonic
behaviors on curved spaces, see [52–54]. We also do not
discuss issues regarding the classical or quantum stability
of our model.

II. MATHEMATICAL BACKGROUND

In the following,wewill need tomake use of the Frölicher-
Nijenhuis bracket onvector-valued differential forms and the
language of twisting, which we review briefly.

A. Frölicher-Nijenhuis bracket

LetM be a smooth manifold. The graded vector space of
vector-valued differential forms Ω•ðM;TMÞ¼⨁d

i¼0ΩiðMÞ
becomes a graded Lie algebra with respect to the
Frölicher–Nijenhuis bracket [39,40] (reviewed in [41]
Sec. 8):

½ϕ ⊗ X;ψ ⊗ Y� ¼ ðϕ ∧ ψÞ ⊗ LXY þ ðϕ ∧ LXψÞ ⊗ Y

− ðLYϕ ∧ ψÞ ⊗ X

þ ð−1Þpðdϕ ∧ iXψÞ ⊗ Y

þ ð−1ÞpðiYϕ ∧ dψÞ ⊗ X ð5Þ

for vector fields X; Y ∈ΓðTMÞ [where Γð−Þ denotes the
space of sections of a vector bundle] and homogeneous
differential forms ϕ∈ΩpðMÞ, ψ ∈ΩqðMÞ, where LXð−Þ is
the Lie derivative of a tensor field along a vector field, and
iXð−Þ is the interior derivative of a differential form along a
vector field.
In particular, between two (1,1) tensors Kμ

ν and Lμ
ν ,

we have

½K;L�ρμν ¼ 2Kσ
½μj∂σL

ρ
jν� þ 2Lσ

½μj∂σK
ρ
jν� − 2Kρ

σ∂½μLσ
ν�

− 2Lρ
σ∂½μKσ

ν�; ð6Þ

where antisymmetrizations are normalized.
Notice that, when one of the arguments is a (1,0) tensor

(i.e., a vector field), it reduces to the usual Lie derivative:

½X;−� ¼ LX ðX∈ΓðTMÞÞ: ð7Þ

Suppose that M is equipped with a Riemannian metric g
whose Riemann curvature vanishes. Then, using the
induced Levi-Civita connection ∇, we may define the
covariant exterior derivative:

d∇∶Ω•ðM;TMÞ → Ω•þ1ðM;TMÞ; ð8Þ

which squares to zero, and then Ω•ðM;TMÞ forms a
differential graded Lie algebra. Note that, when the curva-
ture of g does not vanish, then d∇ need not square to zero.

B. Twisting

A curved [55] differential graded Lie algebra
ðg; r; d; ½−;−�Þ is a Z-graded Lie algebra ðg; ½−;−�Þ
together with a linear map,

d∶g → g; ð9Þ

of degree one and an element r∈ g of degree two, called the
curvature, such that d is a graded derivation with respect to
the Lie bracket ½−;−� and
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dðdðxÞÞ ¼ ½r; x� ð10Þ

for any x∈ g. This is the special case of the notion of a
curved L∞ algebra [56–58] ðg; μ0; μ1; μ2;…Þ, which is a
graded vector space g equipped with totally graded-anti-
symmetric multilinear maps μi∶g⊗i → g that satisfy the
Jacobi identity up to homotopy. Then a curved differential
graded Lie algebra is the same as a curved L∞ algebra in
which μi ¼ 0 except for i∈ f0; 1; 2g; then μ0, μ1, and μ2
correspond to r, d, and ½−;−�, respectively.
Given a differential graded Lie algebra ðg; dg; ½−;−�gÞ

and an element Q∈ g1 of degree one, then the twist [59] of
g by Q is the curved differential graded Lie algebra gQ¼
ðg;dQþ 1

2
½Q;Q�g;dgþ½Q;−�g; ½−;−�gÞ. When ½Q;Q�g ¼ 0,

then this is a differential graded Lie algebra.

III. MOTIVATION AND IDEA

A. A review of Yang-Mills theory

Linearized Yang-Mills theory (that is, a direct sum of
copies of Maxwell theory) admits a natural non-
Abelianization in the form of Yang-Mills theory. Let us
recall how this works. The field strength in linearized Yang-
Mills theory is

Fa
μν ¼ 2∂½μAa

ν�: ð11Þ

In the non-Abelian theory, this is modified to

Fa
μν ¼ 2∂½μAa

ν� þ fabcAb
μAc

ν: ð12Þ

It is convenient to use the notation of Lie-algebra-valued
differential forms, in terms of which we have

F ¼ dAþ 1

2
½A; A�: ð13Þ

That is, the field strength is fixed by the structure of a
differential graded Lie algebra on the space of g-valued
differential formsΩ•ðMÞ ⊗ g ¼ ⨁dimM

i¼0 ΩiðMÞ ⊗ g, where
g is the color Lie algebra, M is spacetime, and • is a
placeholder for the form degree. Furthermore, this fixes the
structure of gauge transformations and Bianchi identities:

δαA¼ dAα dAF¼ 0 dA ¼ dþ1

2
½A;−� δαF¼ ½α;F�:

ð14Þ

The procedure of replacing d with dA goes by the name of
twisting [56–58] as discussed in Sec. II B. After this, we no
longer have a differential graded Lie algebra in the usual
sense since

d2A ¼ ½F;−� ≠ 0; ð15Þ

but we speak of a curved differential graded Lie algebra.
Given this, the equation ofmotion for the theory is fixed to be

dA⋆F ¼ 0: ð16Þ

B. Non-Abelianizing the covariant fracton
model: The idea

The covariant fracton model [33] is a free theory whose
fundamental field is a symmetric tensor AμνðxÞ. An invari-
ant field strength with one derivative can be defined, which
is of the form [[60], Eq. (7.2.16)]

Fμνρ ¼ a1∂μAνρ þ a2∂ρAμν − ða1 þ a2Þ∂νAμρ ð17Þ

for some suitable parameters a1; a2 ∈R. For any value of
a1, a2, the field strength FμνρðxÞ satisfies a Bianchi identity
[[60] p. 83],

0 ¼ ∂μðFβνρ − FβρνÞ þ ∂νðFβρμ − FβμρÞ þ ∂ρðFβμν − FβνμÞ
¼ 6∂½μjFβjνρ�: ð18Þ

This has the form of an exterior derivative, except that the
index β does not participate in the antisymmetrization.
Thus, it is natural to regard F as a T�M-valued two form,
similar to how the Yang-Mills field strength is a Lie-
algebra-valued two form. This then means that AμνðxÞ
should also be regarded as a T�M-valued one form.
There are however three problems that arise in this case,

which are related.
(1) There is no obvious Lie bracket for T�M-valued

differential forms (unlike Lie-algebra-valued differ-
ential forms).

(2) A T�M-valued one form will not generally be
symmetric between its two indices.

(3) The gauge parameter should naturally be a
T�M-valued zero form, i.e., an ordinary one form,
which is bigger than the scalar field gauge parameter
of the covariant fracton model.

We resolve these interrelated problems as follows.
(1) Unlike T�M-valued forms, there does exist a natural

Lie bracket on TM-valued forms: the Frölicher–
Nijenhuis bracket [39,40] (reviewed in [41] Sec. 8).
Thus, we work with TM-valued forms, and initially
ignore the symmetry property of the TM-valued one-
form gauge field Aμ

νðxÞ. Therefore, Ω•ðM;TMÞ is a
graded Lie algebra. For this to be a differential
graded Lie algebra, we fix a flat connection on TM.

(2) Having formulated this theory, then we will impose
the symmetry requirement with respect to a pseudo-
Riemannian metric:

gμνAν
ρ ¼ gρνAν

μ: ð19Þ
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(3) The constraint (19) will then naturally reduce the
gauge symmetry from Ω0ðM;TMÞ to Ω0ðMÞ, i.e., it
will require the gauge parameter to be a scalar as for
the covariant fracton theory.

IV. COVARIANT INTERACTING FRACTONIC
GAUGE THEORY

As mentioned in Sec. III, we first construct a nonlinear
equation of motion for a (1,1)-tensor field Aμ

ν in Sec. IVA.
Then we constrain it to be symmetric in Sec. IV B.

A. Nonsymmetric theory

Let M be a smooth manifold equipped with a flat
Riemannian metric gμν (such as Minkowski space). Then
ðΩ•ðM;TMÞ; d∇; ½−;−�Þ is a differential graded Lie alge-
bra, where ½−;−� is the Frölicher-Nijenhuis bracket (5).
Consider a (1,1) tensor,

Aμ
ν ∈Ω1ðM;TMÞ: ð20Þ

Then we may twist, as discussed in Sec. II B, to obtain the
curved differential graded Lie algebra

ðΩ•ðM;TMÞ; FA; d∇A ; ½− ∧ −�Þ; ð21Þ

where

d∇A ¼ d∇ þ ½A;−� ð22Þ

and

FA ¼ d∇Aþ 1

2
½A; A� ð23Þ

is the curvature [61]. In particular, we have

ðd∇A Þ2 ¼ ½FA;−�: ð24Þ

We postulate the infinitesimal gauge symmetry

δϵA ¼ dAϵ ð25Þ

for a vector gauge parameter ϵ∈Ω0ðM;TMÞ ¼ ΓðTMÞ
which, in explicit component notation, is

ðδϵAÞμν ¼ ∇νϵ
μ − LϵAν

¼ ∂νϵ
μ − ϵρ∂ρAμ

ν þ ∂ρϵ
μAρ

ν − ∂νϵ
ρAμ

ρ; ð26Þ

and define the field strength

FA ¼ dAþ 1

2
½A; A�∈Ω2ðX;EÞ: ð27Þ

Explicitly,

Fρ
μν ¼ ∇μAρ

ν −∇νAρ
μ þOðA2Þ; ð28Þ

where ∇μ is the (Riemannian) covariant derivative of a
tensor field. This is, to linear order, similar to the field
strength in [[60], (7.2.16)] with ða1; a2Þ ¼ ð1; 0Þ, which
however depends on a symmetric rank-2 tensor, while here
Aμ

ρ is an arbitrary rank (1,1) tensor. We shall discuss the
symmetric case in Sec. IV B.
Under a gauge transformation, the field strength F then

transforms covariantly:

δϵF ¼ −LϵF: ð29Þ

The fact that it is not invariant reminds us of the field
strength in Yang-Mills theory (14). If we interpret the gauge
parameter ϵμ as an infinitesimal diffeomorphism, then this
implies that Fμ

νρ transforms tensorially.
Now, we may postulate the equation of motion,

∇νFμ
νρ ¼ 0: ð30Þ

This is a diffeomorphism-invariant equation as long as we
also transform gμν under diffeomorphisms, i.e.,

δϵgμν ¼ −Lϵgμν ¼ −∇μϵν −∇νϵμ: ð31Þ

B. Symmetric theory

To make contact with the covariant fracton model, we
now constrain Aμ

ν to be symmetric. That is, we impose the
following constraint:

gμνAν
ρ ¼ gρνAν

μ: ð32Þ

This constraint is not gauge invariant for arbitrary ϵμ since the
right-hand side of (26) need not be symmetric. However, it is
gauge invariant if we restrict to “diffeomorphisms” of the
form

ϵμ ¼ ∂
μλ ð33Þ

(known as the longitudinal diffeomorphisms [37]) for some
smooth function λ∈ C∞ðMÞ, so that the resulting gauge
transformation is

δϵAμν ¼ ∂μ∂νλþ � � � ; ð34Þ

which to linearized order agrees with the covariant fracton
gauge transformation (4). Perturbatively and locally, (33) is
the most general gauge transformation that preserves the
constraint (32). This is because the general gauge trans-
formation (26) is (after lowering indices) of the form
δϵAμν ¼ ∂νϵμ þOðAÞ, so we must have ∂νϵμ − ∂νϵμ ¼ 0

(up to possible higher-order corrections); this is the exterior
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derivative of the one form ϵ, so by the Poincaré lemma, there
exists locally a function λ such that ϵμ ¼ ∂μλ. This is to
leading order, but it can then be easily checked that the ansatz
(33) respects the constraint (32) to all orders.
Now, we have the symmetrized equation of motion,

∇μFðρjμjνÞ ¼ 0: ð35Þ

The linearized equation of motion (with gμν ¼ ημν the
Minkowski metric) is

0 ¼ ∂
μð∂μAρν − ∂νAρμÞ þ ∂

μð∂μAνρ − ∂ρAνμÞ
¼ 2∂2Aρν − ∂ν∂

μAρμ − ∂
μ
∂ρAνμ; ð36Þ

which is the equation of motion found in the covariant
fracton theory of fractons [33,34,60]. In d spacetime
dimensions, this corresponds to dðd − 1Þ=2 degrees of
freedom, corresponding to the purely spatial components
of Aμν [34,35].
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Claude Bernard Lyon 1, 2021.

[50] S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann,
arXiv:2406.16755.

[51] S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann,
arXiv:2406.17634.

[52] K. Slagle, A. Prem, and M. Pretko, Ann. Phys. (Amsterdam)
410, 167910 (2019).

[53] E. Afxonidis, A. Caddeo, C. Hoyos Badajoz, and D. Musso,
Phys. Rev. D 109, 065013 (2024).

[54] D. Rovere, Phys. Rev. D 110, 085012 (2024).
[55] The nomenclature comes from an analogy with the fact that,

when one considers e.g. differential forms valued in a vector
bundle with connection, the (covariant) exterior derivative
operator does not in general square to zero anymore but
rather to a curvature-dependent term.

[56] A. Kraft and J. Schnitzer, Rev. Math. Phys. 36, 2330006
(2024).

[57] V. V. Dotsenko, S. V. Shadrin, and B. Vallette, arXiv:
1810.02941.

[58] V. V. Dotsenko, S. V. Shadrin, and B. Vallette, Maurer–
Cartan Methods in Deformation Theory: The Twisting
Procedure, London Mathematical Society Lecture Note
Series, Vol. 488 (Cambridge University Press, Cambridge,
England, 2023).

[59] This is a special case of the twisting of a curved L∞-
algebra [56–58].

[60] E. Bertolini, Notes from the bulk, Ph.D. thesis, Università di
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