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A B S T R A C T 

The Dark Energy Spectroscopic Instrument Le gac y Imaging Surv e ys (DESI-LIS) comprise three distinct surv e ys: the Dark 

Energy Camera Le gac y Surv e y (DECaLS), the Beijing–Arizona Sk y Surv e y (BASS), and the Mayall z-band Le gac y Surv e y 

(MzLS). The citizen science project Galaxy Zoo DECaLS 5 (GZD-5) has provided extensive and detailed morphology labels for 
a sample of 253 287 galaxies within the DECaLS surv e y. This data set has been foundational for numerous deep learning-based 

galaxy morphology classification studies. Ho we ver, due to dif ferences in signal-to-noise ratios and resolutions between the 
DECaLS images and those from BASS and MzLS (collectively referred to as BMz), a neural network trained on DECaLS 

images cannot be directly applied to BMz images due to distributional mismatch. In this study, we explore an unsupervised 

domain adaptation (UDA) method that fine-tunes a source domain model trained on DECaLS images with GZD-5 labels to BMz 
images, aiming to reduce bias in galaxy morphology classification within the BMz surv e y. Our source domain model, used as a 
starting point for UDA, achieves performance on the DECaLS galaxies’ validation set comparable to the results of related works. 
For BMz galaxies, the fine-tuned target domain model significantly impro v es performance compared to the direct application 

of the source domain model, reaching a level comparable to that of the source domain. We also release a catalogue of detailed 

morphology classifications for 248 088 galaxies within the BMz surv e y, accompanied by usage recommendations. 

Key words: methods: data analysis – galaxies: bar – galaxies: bulges – galaxies: general – galaxies: interactions. 
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 I N T RO D U C T I O N  

alaxy morphology is a cost-ef fecti ve proxy for assessing galaxy
iversity and its physical properties. Originally proposed by Hubble
 1926 ), the Hubble classification scheme organized local galax-
es into elliptical, lenticular, spiral, and irregular categories. The

orphology of a galaxy is not only an external expression of
ts structure but is also closely related to its stellar population
Gonz ́alez Delgado et al. 2015 ) and environment (Margoniner &
e Carvalho 2000 ; Goto et al. 2003 ). With advances in imaging
epth and resolution, more detailed morphology features such as
piral arms, dust lanes, bars, and tidal tails can be observed in
hese extragalactic galaxies, enabling more systematic studies of their
hysical properties. Previous literature has explored the correlation
etween the global physical properties of spiral galaxies and the
 E-mail: rd23aag@herts.ac.uk (RSDS); ssy@shao.ac.cn (SS) 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
umber of their spiral arms (Hart et al. 2016 , 2017 ; Porter-Temple
t al. 2022 ), the strength of the bar and the quenching process (Kruk
t al. 2017 ; G ́eron et al. 2021 ), the global morphology and bulge
raction (Kumar & Kataria 2022 ; Kumar 2023 ), and the merging
tage and quenching pathway of galaxy mer gers (Dar g et al. 2010 ;
eigel et al. 2017 ). 
The morphology of a galaxy is typically obtained through visual

nspection. The Galaxy Zoo (GZ) project (Lintott et al. 2008 ) is a
ioneering citizen science effort in which volunteers visually classify
alaxy images into different morphology labels. GZ projects, includ-
ng GZ1, GZ2, and GZ DECaLS (Lintott et al. 2011 ; Willett et al.
013 ; Walmsley et al. 2021 ), organized many morphology studies.
y continuously collecting new contributions from volunteers, these
Z-based galaxy morphology catalogues have greatly facilitated

stronomical galaxy morphology studies (Zhang et al. 2015 ; G ́eron
t al. 2021 ). As more and more galaxies will be observed by the
ext generation of telescopes, classifying billions of galaxies through
olunteers alone will be impossible. Aligned with the development of
© 2025 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-2339-5581
http://orcid.org/0000-0002-3073-5871
http://orcid.org/0000-0001-7207-4584
http://orcid.org/0000-0002-9572-6212
http://orcid.org/0000-0002-2326-0476
http://orcid.org/0000-0002-0406-076X
http://orcid.org/0000-0002-2308-6623
mailto:rd23aag@herts.ac.uk
mailto:ssy@shao.ac.cn
https://creativecommons.org/licenses/by/4.0/


From galaxy zoo DECaLS to BASS/MzLS 641 

d
e
W  

e  

m
w  

S  

a
 

d  

t
L  

g  

t  

s  

M
(
i  

a  

w
l
2
B  

d
D  

t  

t
s
m

i  

A
(  

S  

t  

l
d  

t
a
e
i
d
i  

2

t
(
i
s  

p
t
o  

B  

t
i  

f  

w
 

F
G
s  

s  

Table 1. Surv e y parameters of DESI-LIS. 

Surv e y Instrument Bands Area Pixel scale 

DECaLS Blanco 4m/DECam grz ∼ 9000 ◦ 0 . ′′ 262 
BASS Bok 2.3m/90Prime gr ∼ 5000 ◦ 0 . ′′ 454 
MzLS Mayall 4m/MOSAIC-3 z ∼ 5000 ◦ 0 . ′′ 262 

t
w
b  

d
t  

r
l  

S  

C  

S
 

t  

w  

d  

p  

I  

F

2

2

T
D  

m  

m
g  

2  

p
e  

m
a

 

p
t  

D  

m  

h
 

f  

P  

a  

s
a  

a  

b

2

A  

l  

1 We do not use the prediction results of 314 000 galaxies from W + 21 . 
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eep learning techniques in computer vision, GZ catalogues provide 
xcellent training samples for supervised deep learning (Dieleman, 
illett & Dambre 2015 ; Dom ́ınguez S ́anchez et al. 2018 ; Walmsley

t al. 2020 ; Seo et al. 2023 ). Based on a series of GZ-related works, a
odel called Zoobot for detailed galaxy morphology classification 
as developed by Walmsley et al. ( 2021 , 2022a , b ) and Walmsley &
caife ( 2023 ), aiming to build a foundational model that can be
pplied to galaxies in other surv e ys. 

The DESI Le gac y Imaging Surv e ys (DESI-LIS) comprise three
istinct surv e ys: the Dark Energy Camera Le gac y Surv e y (DECaLS),
he Beijing–Arizona Sky Survey (BASS), and the Mayall z-band 
e gac y Surv e y (MzLS), together producing a new generation of
alaxy imaging data set with superior depth and co v erage compared
o the Sloan Digital Sk y Surv e y (SDSS). Among the three DESI-LIS
urv e ys, the pix el scale of BASS is larger compared to DECaLS and
zLS, and different g-band filter efficiencies compared to DECaLS 

He & Li 2022 ), resulting in subtle and systematic differences 
n the image files from these surv e ys, which can be referred to
s data shift. Predicting galaxy morphology labels from a surv e y
ith characteristics different from those used for training will likely 

ead to biased predictions if not properly considered (Huang et al. 
011 ; Goodfellow, Shlens & Szegedy 2015 ; Pooch, Ballester & 

arros 2020 ). Xu et al. ( 2023 ) have shown that there are systematic
iscrepancies in the latent space of common galaxies between the 
ECaLS and BMz surv e ys. Similarly, He & Li ( 2022 ) find that

he data shift from DECaLS to BMz affects the completeness of
he predictions for quasi-stellar objects (QSOs). In addition, label 
hift may also influence visual inspection (True labels) of galaxy 
orphology (see more discussions in Section 4.2.1 .) 
To mitigate the impact of data shift, a straightforward approach 

s to train each data set simultaneously (e.g. Walmsley et al. 2023 ).
lternatively, we can fine-tune the model employing transfer learning 

Ackermann et al. 2018 ; Dom ́ınguez S ́anchez et al. 2019 ; Tang,
caife & Leahy 2019 ; Hannon et al. 2023 ) or domain adaptation

echniques ( ́Ciprijanovi ́c et al. 2022 , 2023 ; Xu et al. 2023 ). Transfer
earning involves fine-tuning a pre-trained model on a specific 
o wnstream task, le veraging the kno wledge acquired in the initial
raining phase. Domain adaptation (DA), a subset of transfer learning, 
ddresses data shift by aligning embedding distributions or finding 
mbeddings that are domain-invariant, ensuring the model general- 
zes well across different domains. As a subset of DA, unsupervised 
omain adaptation (UDA) focusses on aligning invariant embeddings 
n data sets of different domains without collecting labels (Li et al.
020 , 2024 ; Huang et al. 2022 ; Wang et al. 2023 ). 
Empirically, both supervised transfer learning and domain adap- 

ation require less data compared to training a model from scratch 
Tahmasebzadeh et al. 2024 ; Euclid Collaboration 2024 ), but obtain- 
ng sufficient labels for under-represented classes (e.g. minor merger, 
piral galaxies with three arms) remains a challenge. We use UDA to
redict the galaxy morphology classifications from DECaLS images 
o BMz galaxies. This approach is justified because a finite number 
f galaxies with GZD-5 labels exist in both the DECaLS and the
Mz surv e ys and the sample size in both surv e ys is large enough

o identify under-represented classes and align invariant embeddings 
n the latent space. The UDA technique is well suited for data sets
rom the same physical domain, such as different galaxy surv e ys
ith different instruments. 
Our training strategy through UD A in volves a two-step process.

irst, we train a source domain model using DECaLS images and 
ZD-5 labels. After this source domain training, we fine-tune the 

ource domain model using 248 088 unlabelled galaxies in the BMz
urv e y, which are referred to the target domain. Importantly, this fine-
uning process leverages only unlabelled data from the target domain, 
ithout utilizing any labelled galaxies that might be common to 
oth the source and target data sets. Finally, we e v aluate the target
omain model’s performance on 3618 labelled BMz galaxies in 
he o v erlapping re gion between DECaLS and BMz. This work
epresents a testbed study for the implementation of established deep 
earning models in new galaxy surv e y samples such as the Chinese
pace Station Telescope (CSST; Gong et al. 2019 ), Euclid (Euclid
ollaboration 2022 ), and the Vera C. Rubin Observatory Le gac y
urv e y of Space and Time (LSST; Ivezi ́c et al. 2019 ). 
This paper is structured as follows. In Section 2 , we introduce

he galaxy sample in the DESI-LIS and GZD-5 labels. In Section 3 ,
e present the architecture of the models of the source and target
omains and details of the experiment. In Section 4 , we e v aluate the
erformance of the model in both the source and the target domains.
n Section 5 , we introduce the usage of the catalogue that we released.
inally, conclusions are drawn in Section 6 . 

 DATA  SET  

.1 Main galaxy sample in DESI-LIS 

he main galaxy sample (MGS) for spectroscopy in the Sloan 
igital Sky Survey (SDSS) consists of galaxies with r-band Petrosian
agnitudes m r ≤ 17 . 77 (Strauss et al. 2002 ). MGS has served as a
ilestone sample for studying the physical properties of low-redshift 

alaxies (Blanton et al. 2001 ; Kauffmann et al. 2003 ; Shen et al.
003 ; Baldry et al. 2004 ; Yang et al. 2007 ). Additionally, the GZ1
roject has provided a morphology classification baseline (e.g. spiral, 
lliptical, merger) for the MGS. The GZ2 project extends this with
ore detailed classifications, including features such as the number 

nd tightness of spiral arms and whether the galaxy is edge-on. 
As a new-generation sky survey, the DESI-LIS (Dey et al. 2019 )

rovides imaging results deeper than those of the SDSS across 
he sky in roughly 20 000deg 2 in the grz bands. For MGS in the
ECaLS surv e y, the GZD-5 project has pro vided detailed volunteer
orphology votes for 253 287of them (Walmsley et al. 2021 ,

ereafter W + 21 ). 1 

For the MGS in the BMz surv e y, the data set for UDA, we
ollow the GZD-5 selection criterion, i.e. z ∼ 0 . 15 , m r < 17 . 77, and
etrosian radius > 3 arcsec, resulting in 248 088 galaxies, which
re referred to the newly selected galaxies as BMz galaxies. This
election criterion ensures that the physical domain of BMz galaxies 
re the same as those of the DECaLS galaxies. Additionally, there
re 3618 common DECaLS/BMz galaxies in the o v erlap footprints
etween the DECaLS and BMz surv e ys (around 32 ◦ < δ < 34 ◦). 

.2 Stamp images of DECaLS/BMz galaxies 

s shown in Table 1 , the pixel scale of BASS (0.454 arcsec pixel −1 ) is
arger compared to that of DECaLS and MzLS (0.262 arcsec pixel −1 ).
MNRAS 537, 640–649 (2025) 
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Figure 1. Composite images (consisting of grz bands) of a randomly 
selected spiral galaxy in DECaLS (left) and BMz (right). Both images are 
being processed using the same arcsinh stretching method as the DESI Le gac y 
Surv e y Viewer. 
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o we ver, in the DESI-LIS data pipeline, images from BASS were
esampled to match the pixel scale of DECaLS and MzLS. This
peration results in a different background noise distribution of BMz
mages compared to DECaLS images, as demonstrated in Fig. 1 . We
btain the FITS image stamps (256 × 256 pixels with 0.262 arcsec
ixel −1 ) in the grz bands for both DECaLS and BMz galaxies using
he cut-out service from DESI-LIS Data Release 9. 2 For common
alaxies in the o v erlapping footprints, we acquired images from both
urv e ys. 3 

.3 Labels 

e train the source domain model on the GZD-5 volunteers’
otes that has been modified for volunteers’ weighting and redshift
ebiasing for 253 287 galaxies. 4 Following W + 21 , we excluded
he question ‘Do you see any of these rare features?’ in the GZD-5
ecision tree. As a result, there are 10 questions with a total of 34
eatures. To a v oid ambiguity, the ‘answer’ chosen by the v olunteer
s equi v alent to this morphology ‘feature’ of the galaxy. The final
ecision tree is the same as in fig. 5 of W + 21 . For each galaxy,
 olunteers’ v otes for a given morphology question range from a few
o several dozen. To ensure that the labels are informative for training
he source domain model, we train only on questions with at least
hree volunteers’ votes. Finally, we have about 249 581 galaxies with

ore than 3 votes on a total of 10 morphology questions. 

 M E T H O D  

n this section, we detail our two-step training approach: (1) source
omain model training on DECaLS images and GZD-5 votes, and
2) target domain model training on BMz galaxies. Although the
rst step mainly follows the methodology described in W + 21 , we
ave made some modifications, including using the raw fits images
ithout stretching and using a new neural network architecture. In

he second step, we modify the UDA method in Wang et al. ( 2023 )
o fit our decision tree-based scenario, adapting the source domain
odel to the target domain. The diagram of the two steps is illustrated

n Fig. 2 . 
NRAS 537, 640–649 (2025) 

 http://www.le gac ysurv e y.org/ dr9/ description/ 
 There is a small fraction of galaxies that will be outside the boundary of the 
ut-out stamps, which are mainly nearby local galaxies with z < 0.01. 
 As shown by W + 21 , these volunteer votes have been corrected for redshift 
ias and volunteer’s bias. 
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.1 Source domain model 

ntuitively, we can train a model to predict the behaviour of GZ
olunteers by treating each morphology question as a Multinomial
istribution case. With a large number of v olunteers, the v ote fraction
or each galaxy morphology feature approximates its true probability.
o we ver, because collecting enough volunteer votes for each galaxy

s time consuming, we often have only a limited number of votes. To
ddress this, we can model the responses of volunteers as sampling
rom a Dirichlet distribution and make the model predict the Dirichlet
istribution of each morphology question, as introduced in W + 21 .
irichlet distributions are parametrized by a positive value group α =
 α1 , . . . , αi , . . . , αn } , where n is the dimension of the distribution (for
xample, how many answers a question has). 

Consider a question q that has m different features and a total of
 q votes. We can easily calculate the vector of the fraction of votes

k q of each answer in question q. The source domain model aims to
earn to predict the true probability ρq , which is related to k q and N q 

hrough the Multinomial distribution Multi ( k q | ρq , N q ). Following
 + 21 , we use the conjugate prior distribution of the Multinomial

istribution, the Dirichlet distribution, Dir ( αq ), to predict ρq . The
ource domain model is then optimized by 

 s = − log 
10 ∑ 

q= 1 

∫ 
Multi ( k q | ρq , N q ) Dir ( ρq | αq )d ρq . (1) 

e then minimize L s , assuming a set of concomitant 5 q = 10
uestions for efficiency. A detailed explanation of the Dirichlet
istribution and the principle of this loss function can be found in
 + 21 and Walmsley et al. ( 2023 ). 
For the training set, we remove the galaxies in the overlapping

ootprint between DECaLS and BMz and divide the remaining
alaxies into a train-valid set by a split of 80:20. The architecture
f the model is EfficientNet-v2-s (Tan & Le 2021 ) and we use
he implementation in TORCHVISION . For each image, we apply
he following data augmentation techniques during training: (1) we
andomly flip the image vertically or horizontally, each with a 50
er cent probability, and (2) we randomly rotate the images anywhere
rom 0 ∼ 180 ◦. We scale the model output scores following W + 21
ith a sigmoid layer and multiply it by 100 and add 1 to obtain a

ange from 1 to 101, which meets the requirements of αq . 
Our training process use an NVIDIA A100 80G GPU, using the

damW optimizer (Loshchilov & Hutter 2019 ) with a learning rate
trategy that starts at a maximum of 1e–2 and a minimum of 1e–6 and
dapts according to a OneCycleLR scheduler (Smith & Topin 2018 ).
e set the batch size to 256 and the dropout rate to 0.3 to a v oid
 v erfitting. The beta parameters of optimizer are set to (0.9,0.99).
e stop the training process after observing no further decrease in

alidation loss for 10 consecutive epochs. 

.2 Target domain model 

efore describing the target domain model, we revisit the framework
f our source domain model. Our source domain model comprises
 latent embedding extractor f s ( ∗) and a classifier W s . We denote
ll the 34 morphology features with indices ( q, m q ), representing
he morphology feature (i.e. answer) m q of the question q. With this
otation, W s is a set of weights for all latent embeddings, where w 

q,m q 
s 

epresents the weight corresponding to the feature m q . The scores,
 During training, we optimize by summing the loss for all the question q, 
hich assumes that all the questions are dependent. 
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Figure 2. The schematic diagram of target domain training including cut-out input x s from source domain, x t from target domain, the feature extractor f s ( ∗) and 
f t ( ∗), and the classifier W s . Spherical K-means are used to obtain pseudo-labels. The triangle represents the feature embedding not assigned with a pseudo-label, 
and the galaxy-like shape represents the feature embedding of assigned morphology. 
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alculated by the product of the latent embeddings f s ( x s ) and the
eights of the classifier W s , represent the classification results before 

pplying the Softmax function. If the model correctly classifies a 
orphology feature m q , then the corresponding score should be the 

ighest among all m q and result in low loss. 
When it comes to the target domain (BMz) galaxies x t , the latent

mbeddings f s ( x t ) from the source domain model have data shift
nd will show systematic bias. To address the data shift, we adopt
DA method from Wang et al. ( 2023 ) to fine-tune f s ( ∗) to f t ( ∗)

o that latent embeddings f t ( x t ) can be classified by the same W s .
ince the ground truth morphology feature ( q, m̄ q,i ) is not available
or individual galaxy, we generate (pseudo) labels for their latent 
mbedding f t ( x t ,i ) by spherical K-means. 

Before performing spherical K-means at the beginning of each 
poch, we first fit the spherical K-means in the entire BMz training
et by minimizing the cosine distance between f t ( x t ,i ) and the
lustering centre O 

q, ̄m q of the previous iteration, where O are 
nitialized by the weights of the classifier W s . After fitting K-

eans, we generate pseudo-labels ˜ m q,i for galaxies that satisfies 
 t ( x t ,i ) � O 

q, ̄m q > THRESHOLD, and use them for fine-tuning f t ( ∗).
e set a conserv ati ve threshold (0.9-epoch ∗ 0.02) because, in 

he initial stages of the UDA process, the search region near W s 

ust be carefully constrained. This is especially important in high- 
imensional latent spaces, where an o v erly large region can cause
nstability or suboptimal results. 

Specifically, the weights of the classifier W s if fixed and the f t ( ∗)
s fine-tuned by the UDA loss function 

 DA ,i = −
10 ∑ 

q= 1 

log Softmax 
(
f t ( x t ,i ) 

� w 

q, ̃ m q,i 
s /τ

)
, (2) 

here τ is a temperature hyper-parameter that controls the sharpness 
f the Softmax output, making the probabilities either flatter or more 
oncentrated (He et al. 2020 ). 
In the UDA model, we set the temperature τ = 0 . 05 and a learning
ate of 1e–6 using the AdamW optimizer with beta = (0.9,0.99) and
 batch size of 640. We stop training after no impro v ement for fiv e
onsecutive epochs. 

 RESULTS  

fter training in the source domain and the target domain, we can
btain the expected probability ρ

m q 
q of 34 morphology features for a 

iven galaxy, which is calculated by equation ( 3 ) from the predicted
irichlet distribution parameter α

m q 
q . In this section, we first show 

he source domain model’s performance and then the target domain 
odel’s. 

.1 Classical performance metrics of source domain model: 
ECaLS galaxies 

e first e v aluate the performance of the source domain model,
hich also sets the upper bound classification performance of the 

arget domain model. We compute accuracy, precision, recall, and 
1 score in the validation set using SCIKIT-LEARN , 6 as shown in
able 2 . Ground truth labels are determined by receiving more than
0 per cent of the volunteers’ votes and at least a total of 30 votes 7 

or the given questions. If a question has a dependency question,
ts answer to the dependency question must also meet the criterion.
 or e xample, the feature ‘No Bar’ requires that both ‘Featured or
isc’ and ‘Edge-on No’ first be met with a vote fraction greater than
0 per cent, and that has more than 30 v olunteers’ v otes. For model
redictions on these galaxies with ground-truth morphology labels, 
e simply select the morphology features with ρ

m q 
q > 0 . 5. For a
MNRAS 537, 640–649 (2025) 
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Table 2. Classical performance metrics for the GZD-5 validation set. Each 
row represents a question. Bold fonts indicate an impro v ed or comparable 
performance compared to W + 21 . 

Question Count Accuracy Precision Recall F1 

Smooth or featured 8609 0.948 0.944 0.948 0.945 
Disc edge-on 2986 0.988 0.988 0.988 0.988 
Has spiral arms 2788 0.910 0.915 0.910 0.912 
Bar 2178 0.821 0.873 0.821 0.830 
Bulge size 2182 0.774 0.923 0.774 0.833 
How rounded 5504 0.936 0.936 0.936 0.936 
Edge-on bulge 427 0.932 0.950 0.932 0.940 
Spiral winding 1562 0.791 0.801 0.791 0.772 
Spiral arm count 1558 0.749 0.924 0.749 0.812 
Merging 7925 0.873 0.881 0.873 0.835 
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Table 3. Classical performance metrics for all the 3618 BMz images from 

the o v erlapping footprint between DECaLS and BMz. After filtering by 
volunteers’ total votes, there remain 835 galaxies. Bold fonts in the target 
domain indicate an impro v ed or comparable performance compared to source 
domain. 

Each row represents a question 
Question Count Accuracy Precision Recall F1 

(a) Source domain model predict on BMz 
Smooth or featured 835 0.834 0.855 0.834 0.828 
Disc edge-on 204 0.867 0.990 0.867 0.924 
Has spiral arms 165 0.878 0.980 0.878 0.925 
Bar 133 0.759 0.854 0.759 0.798 
Bulge size 129 0.744 0.840 0.744 0.781 
How rounded 179 0.905 0.908 0.905 0.903 
Edge-on bulge 16 0.812 0.932 0.812 0.865 
Spiral winding 98 0.755 0.843 0.755 0.790 
Spiral arm count 79 0.835 0.849 0.835 0.842 
Merging 341 0.973 0.971 0.973 0.972 

(b) Target domain model predict on BMz 
Smooth or featured 835 0.875 0.879 0.875 0.872 
Disc edge-on 204 0.926 0.990 0.926 0.957 
Has spiral arms 165 0.933 0.972 0.933 0.952 
Bar 133 0.834 0.864 0.834 0.849 
Bulge size 129 0.798 0.827 0.798 0.805 
How rounded 179 0.877 0.902 0.877 0.878 
Edge-on bulge 16 0.875 0.937 0.875 0.900 
Spiral winding 98 0.795 0.842 0.795 0.812 
Spiral arm count 79 0.860 0.843 0.860 0.851 
Merging 341 0.967 0.969 0.967 0.968 
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iven morphology question q, if there is no feature with ρ
m q 
q > 0 . 5

n the model prediction, we consider this prediction incorrect. We
ake almost the same performance calculation approach as in W + 21 .

ost of these metrics perform similarly or better to W + 21 (the
etrics with impro v ed or equi v alent performance are in bold text),
ith poorer performance on the question ‘Has Spiral Arms’, ‘Bulge
ize’, and ‘Spiral Arm Count’. 

.2 Classical performance metrics of target domain model: 
Mz galaxies 

o e v aluate the performance of our target domain model, we test 3618
Mz galaxies in the o v erlapping footprint so that they have ground

ruth morphology labels. These galaxies are explicitly excluded
rom the two-step training and validation sets, ensuring that they
emained unknown to the models. For each question, we take the
ame performance metrics calculations as in the previous section
nd list them in Table 3 . 

To have a better visual e v aluation of the target domain model’s
erformance, we first directly apply the source domain model to
hese 3618 BMz galaxies and show the model performance in the
pper part of Table 3 . Compared with the source domain model on
ECaLS galaxies, we find that the source domain model performance
n BMz galaxies is significantly decreased on almost all questions.
 or e xample, the accurac y of ‘Smooth or Featured’ decreases by
pproximately 11 per cent, ‘Bar’ by approximately 7 per cent, ‘Spiral
inding’ by around 4 per cent, and ‘Spiral Arm Count’ by roughly

 per cent. The degradation of the source domain model on BMz
alaxies confirms that there is a data shift between DECaLS and
Mz galaxies and the necessity of DA. 
The performance of the model after our UDA method is shown in

he lower part of Table 3 . As can be seen, the global performance
f the target domain model is significantly impro v ed and becomes
ery close to the source domain model for most of the morphology
eatures. F or e xample, for the morphology label ‘Bar’, the source
omain model has 82.1 per cent on DECaLS and 75.9 per cent on
Mz galaxies, respectively, while after DA, it achieves 83.4 per cent.
espite the success of our target domain model on most morphology

abels, we also find it difficult to increase the performance of ‘How
ounded’ and ‘Merging’. 
For the morphology feature ‘Merging’, it is very likely that the

ecrease in the UDA model performance is caused by fluctuations of
he small number of test galaxies, since the performance of the source
omain model on these BMz test galaxies is unexpectedly good
accuracy = 97.3 per cent), even much higher than the source domain
odel on DECaLS galaxies (accuracy = 87.3 per cent, Table 2 ). The
NRAS 537, 640–649 (2025) 
mpact of the morphology feature ‘How Rounded’ on classification
erformance remains uncertain; ho we ver, this reduction is considered
n acceptable trade-off. 

.2.1 Comparison with the results of Walmsley et al. ( 2023 ) 

ecently Walmsley et al. ( 2023 ) released the newly collected vol-
nteers’ votes for 54 716 8 DESI-LIS galaxies ( m r < 19) (GZD-8,
ncluding BMz galaxies). They used all the GZ labels to fine-tune the
oobot model and give a prediction for 8700 000 galaxies in DESI-
IS. In this section, we use their predictions of all m r < 17 . 77 BMz
alaxies (227 262) for 34 morphology features as labels 9 to compare
onsistenc y. F or comparison with GZD-8 labels, we discuss in the
ppendix A . We use the same performance metrics as in Section 4.1 .
e select the morphology feature with the highest probability as the

redicted morphology feature and handle dependencies as before. 
As shown in Table 4 , we present the classical performance
etrics of our target domain model’s predictions, demonstrating

trong consistency with the predictions from Walmsley et al. ( 2023 ).
pecifically, seven morphology questions in the target domain exhibit
omparable or better performance metrics compared to source
omain model in the source domain (GZD), achieving an accuracy of
7.9 per cent for the best morphology question and 81.5 per cent for
he worst. This consistency indicates that the target domain model
oes not exhibit significant bias under data shift. Additionally, our
esults confirm that the labels annotated by GZD-8 volunteers do not
how obvious bias between GZD and BMz. 

https://zenodo.org/records/8360385
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Table 4. Classical performance metrics of our target domain model on all 
the BMz galaxies when treating prediction from Walmsley et al. ( 2023 ) as 
true labels. Each row represents a question. We bold comparable ( ±0 . 05) or 
better performance compared to source domain model on GZD galaxies. 

Question Count Accuracy Precision Recall F1 

Smooth or featured 227 262 0.966 0.966 0.966 0.966 
Disc edge-on 54 736 0.910 0.988 0.910 0.948 
Has spiral arms 38 187 0.908 0.946 0.908 0.926 
Bar 25 846 0.872 0.942 0.872 0.901 
Bulge size 30 069 0.883 0.926 0.883 0.903 
How rounded 170 625 0.887 0.912 0.887 0.894 
Edge-on bulge 7518 0.930 0.962 0.930 0.945 
Spiral winding 15 918 0.816 0.882 0.816 0.834 
Spiral arm count 14 861 0.940 0.971 0.940 0.954 
Merging 219 004 0.979 0.989 0.979 0.983 
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Specifically, seven morphology questions in the target domain 
xhibit comparable or better performance metrics compared to the 
ource domain model in the source domain (GZD), achieving an 
ccuracy of 97.9 per cent for the best morphology question and 
1.5 per cent for the worst. This consistency indicates that the target
omain model does not exhibit significant bias under data shift. 

.3 From DECaLS to BMz: morphology feature probability 
istribution 

o further show the ability of our UDA model and to a v oid
uctuations of performance metrics caused by limited test galaxies, 
e compare the predicted Dirichlet distribution of DECaLS and 
Mz galaxies from the source and target domain model for each 
orphology question, respectively. As we have introduced, the 

hysical domains of DECaLS and BMz are the same as MGS, a
erfect UDA model should predict the same probability distribution 
f the morphology features on all BMz galaxies as the source domain
odel on all DECaLS galaxies. 
Specifically, we use probability simplex to visualize the Dirichlet 

istributions of our models’ prediction (equation 3 ). We take the 
uestion ‘Bar’ as an example, which has achieved the most significant 
nhancement after UDA (with an accuracy from 75.9 per cent to 
3.4 per cent). We plot the results of the source domain model,
he application of the source domain model to the BMz galaxies, 
nd the target domain model in the left, middle, and right panels
f Fig. 3 , respectively. As can be seen from the middle panel,
hen we directly apply the source domain model to the target 
omain, the proportion of the ‘Strong Bar’ and ‘Weak Bar’ galaxies 
re significantly underestimated, as evidenced by the incomplete 
o v erage of the model prediction (black contours) to the source
omain model results (red contours). After UDA, the distribution of 
ar morphology features of galaxies in the target domain is much 
loser to that of the source domain result (right panel). On the
ther hand, our target domain model anticipates a higher number of
alaxies located at the central region of the probability simplex. The 
 v erabundance of galaxies in this region implies a higher fraction
f BMz galaxies, so that our model cannot differentiate their bar 
eatures ef fecti vely, which is consistent with the fact that the image
esolutions of the BMz galaxies are lower than those of the source
omain (see Table 1 ). 

 G A L A X Y  M O R P H O L O G Y  C ATA L O G U E  

ur catalogue provides comprehensive classifications for 10 mor- 
hology questions across all 248 088 BMz galaxies. It lists the 
redicted Dirichlet distribution parameter ᾱ
m q 
q , av eraged o v er 100

nstances of MC Dropout (Gal & Ghahramani 2016 ), for each mor-
hology feature m q , and the associated question q. The columns for

¯
m q 
q are named using the format { question } { answer } alpha .
 or e xample, the column bar no alpha represents ᾱno bar 

bar . Ad-
itionally, the catalogue includes the expected probability ˆ ρ

m q 
q , 

hich indicates the likelihood that each galaxy corresponds to each 
orphology feature. This probability is related to ᾱ

m q 
q through the 

ollowing equation: 

ˆ 
m q 
q = 

ᾱ
m q 
q 

ˆ α0 
, with ˆ α0 = 

K ∑ 

i = 1 

ᾱ
m q 
q . (3) 

he column name format for ˆ ρ
m q 
q is 

 question } { answer } prob . Additionally, the catalogue
ists the variance of the probability ˆ ρ

m q 
q , whose column name format

s { question } { answer } var and is calculated by 

2 = 

ˆ ρ
m q 
q 

(
1 − ˆ ρ

m q 
q 

)
ˆ α0 + 1 

. (4) 

A straightforward approach to filtering the morphology features 
f interest ( q, m q ) is to apply a pre-defined probability threshold ˆ ρ

m q 
q 

r choose the maximum ˆ ρ
m q 
q for a given question q. For example, we

an filter galaxies with ‘Strong Bar’, ‘Weak Bar’, and ‘No Bar’ with
he corresponding ρm bar 

bar as shown in Fig. 4 . 
On the other hand, the ˆ ρ

m q 
q obtained from a Dirichlet distribution 

ith lo w ᾱ
m q 
q v alues can be the same as that with high ᾱ

m q 
q values,

espite higher uncertainties (equation 4 ). As an illustration, we 
andomly select galaxies with ‘Strong Bar’, ‘Weak Bar’, and ‘No Bar’ 
ith similar ˆ ρ

m bar 
bar values but across different uncertainty (variance) 

anges, respectively. The results are shown in Fig. 4 . It is evident that
he galaxies in the bottom row with a larger variance in predicted
robability ˆ ρ

m q 
q (characterized by low values ᾱ

m q 
q ) show more 

mbiguities in the bar feature than those of the corresponding galaxies 
n the top row (lower σ 2 ). Therefore, to confidently select a galaxy
ith a particular morphology feature, we recommend considering 
oth ˆ ρ

m q 
q and its σ 2 . 

So far, we have simplified the selection of the morphology features
f the galaxy ( q, m q ) into a single step using ˆ ρ

m q 
q and σ 2 , following

ur concomitant training methodology for all morphology questions 
Section 3.1 ). In contrast, for the training galaxies within the GZD-
 project, each v olunteer’s v ote follows a decision tree structure.
 or e xample, v olunteers only v ote on the ‘Bar’ feature for galaxies
lassified as ‘Featured or Disc’ and not for ‘Edge-on Yes’ galaxies.
his means that for inquiries about sub-features within the decision 

ree, such as ‘Has Spiral Arms’, ‘Strong Bar’, or ‘Tight Spiral
rms’, the training data set contains more votes for galaxies that
ave successfully passed the preceding higher level question, such 
s being classified as ‘Featured or Disc’ galaxies. 

Therefore, to conserv ati vely select a galaxy morphology feature 
ike GZD-5 volunteers, we can follow the same decision tree used
or DECaLS and BMz galaxies. An example of this approach is
hown in Fig. 5 , where a sample of strong bar galaxies selected using
imple ˆ ρ

strong 
bar and σ 2 criteria is compared with those selected using 

 complete decision tree. As seen, the galaxies with bars selected
sing the complete decision tree (bottom panel) are confidently disc 
alaxies with strong bar features. For galaxies selected solely on the
asis of bar feature criterion (top row), most are disc galaxies with
trong bar features. Ho we ver, it is interesting to note that this group
lso includes some elliptical-like galaxies with bar features (e.g. the 
rst column of the top row). The features of the bars in the elliptical-
haped light profiles may indicate S0-type galaxies (Hubble 1926 ), 
hich has been explored in previous studies (e.g. Dullo, Mart ́ınez-
MNRAS 537, 640–649 (2025) 
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M

Figure 3. Expected probability ˆ ρ
m q 
q of the Dirichlet distribution of the model output visualized by probability simplex for the question ‘Bar’, where the three 

vertices represent the corresponding three features, namely ‘Weak Bar’, ‘No Bar’, and ‘Strong Bar’. The scatter point is 1 per cent sampling from BMz galaxies. 
Each data point within a triangle represents the expected probability combinations of the features. To read the probability of a feature, draw a line parallel to its 
opposing side, and the intersection at the right side indicates the probability (bottom edge: ‘Strong Bar’, top right edge: ‘Weak Bar’, top left edge: ‘No Bar’). 
The left, middle, and right panels show the cases for ‘the source model on DECaLS galaxies’, ‘the source model on BMz galaxies’ and ‘the target model on 
BMz galaxies’, respectively. In each panel, the contours show the number density distributions of the data points. In the middle and right panel, the dashed 
contours are copies of the result of the source domain (left panel). 

Figure 4. Examples of BMz galaxies are shown with ‘Strong Bar’ (left), ‘Weak Bar’ (middle), and ‘No Bar’ features (right), respectively. All galaxies are 
selected with ˆ ρ

m bar 
bar > 0 . 5. The galaxies in the top row have lower variance (the top 15 per cent in σ 2 ), while those in the bottom row have higher variance (the 

bottom 15 per cent in σ 2 ). 

L  

e
 

d  

s

6

I  

g  

w  

t
 

i  

m  

m  

P  

t  

g  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/537/2/640/7945800 by guest on 31 January 2025
ombilla & Knapen 2016 ; Tahmasebzadeh et al. 2024 ; Tsv etko v
t al. 2024 ). 

In summary, the choice between using a single condition or a
ecision tree to select galaxy morphology features depends on the
pecific research objectives and user requirements. 

 C O N C L U S I O N  

n this study, we explore a UDA method that can fine-tune the detailed
alaxy morphology classification model from one surv e y to another
NRAS 537, 640–649 (2025) 

f  
ithout collecting new labels or common galaxies when they are in
he same physical domain. 

We first trained a model as a foundation on DESI-LIS DECaLS
mages and the votes of the GZD-5 volunteers (as a source domain

odel), which can predict the Dirichlet distribution of the detailed
orphology features of galaxies of z < 0 . 15, m r < 17 . 77, and
etrosian radius > 3 arcsec and has a performance comparable to

he previous study of W + 21 . We tend to apply this neural network to
alaxies of the same physical domain in the BMz surv e y to increase
he sample of galaxies with detailed classifications of morphology
eatures. We find that the data shift between DECaLS and BMz
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Figure 5. Example of BMz galaxies selected with ‘Strong Bar’ features. The top row of galaxies are following a decision tree: ˆ ρfeatured or disc 
smooth or featured , ˆ ρ

not edge on 
edge on , 

ˆ ρ
strong bar 
bar are larger than other features (the top 30 per cent σ 2 ), and while the galaxies at bottom are selected, simply selected with ˆ ρ

strong bar 
bar is larger than other 

features (the top 30 per cent σ 2 ). 
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ata sets (e.g. resolution, noise) results in a performance decrease 
hen the source domain model is directly applied on BMz galaxies. 
o accomplish the data shift from DECaLS to BMz, we fine-tuned 

he source domain model on BMz galaxies by the UDA method. 
he fine-tuned target domain model achieves an impro v ement in 
ost questions and mitigated the bias between the source and 

arget domain. We release a catalogue of 248 088 detailed galaxies 
orphology classification in the DESI-LIS BMz surv e y and the 

orresponding model’s weight of both domains. This catalogue has 
igh consistency with the prediction from Walmsley et al. ( 2023 ),
hich is fine-tuned on additional visual inspection from GZD-8. For 

he sake of completeness, the source domain model predictions on 
45 650 DECaLS galaxies are also released for comparison. For 
he galaxy morphology label, each galaxy contains the expected 
robabilities and variances for 34 morphology feature answers of 10 
ifferent morphology questions. To select a sample of galaxies with a 
pecific morphology feature, one may use a single morphology label 
r a combination of multiple labels, depending on the question being 
iscussed. 
This study complements the Zoobot series study and addresses 

he problem of data shift with a label-free strategy. Our study provides 
n efficient way of migrating galaxy morphology classification labels 
rom one surv e y to another, which can be easily adapted for future
stronomical surv e ys, such as CSST (Gong et al. 2019 ), Euclid
Euclid Collaboration 2022 ), and LSST (Ivezi ́c et al. 2019 ). Ho we ver,
t should be emphasized that this UDA algorithm relies on the 
ssumption that the physical properties inherent in two different 
omains should have the same distribution, as the two samples of
alaxies in this study, which are both low-redshift bright galaxies. 
o extend the galaxy morphology classification to different physical 
omains, e.g. fainter galaxies, our UDA method needs to be further
 xplored. F or e xample during the alignment of the morphology
eature embeddings extracted from the neural network (equation 
 ), it is necessary to distinguish which features in the target domain
re of the same origin as the source domain and which are new
eatures. 
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Figure B1. Example of BMz galaxies randomly selected by ˆ ρ
strong bar 
bar > 0 . 5. 
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able A1. Classical performance metrics of our target domain model on all
he BMz galaxies with GZD-8 labels. Each row represents a question. 

uestion Count Accuracy Precision Recall F1 

mooth or featured 552 0.900 0.899 0.900 0.899 
isc edge-on 135 0.962 0.963 0.962 0.963 
as spiral arms 125 0.888 0.883 0.888 0.874 
ar 125 0.768 0.772 0.768 0.769 
ulge size 125 0.800 0.816 0.800 0.802 
ow rounded 361 0.886 0.889 0.886 0.886 
dge-on bulge 22 1.000 1.000 1.000 1.000 
piral winding 99 0.656 0.692 0.656 0.666 
piral arm count 99 0.747 0.747 0.747 0.736 
erging 552 0.929 0.941 0.929 0.926 

PPENDIX  A :  C O M PA R I S O N  WITH  G Z D - 8  

ABELS  

n Section 4.2.1 , we discussed the consistency between our prediction 
nd the findings of Walmsley et al. ( 2023 ). Since the GZD-8 labels
nclude galaxies in the BMz region, we have the opportunity to 
iscuss possible biases of human visual inspection. Cross-matching 
ur predictions with the GZD-8 labels results in only 552 galaxies, 
ince most newly collected galaxies in the BMz region are faint, 
ith magnitudes in the range 17 . 77 < m r < 19. We calculate the

lassical performance metrics as the same in Section 4.1 . As shown
n Table A1 , we find a comparable performance with the bottom of
able 3 . Ho we ver, detailed features like ‘Spiral winding’ and ‘Spiral
rm count’ show obvious inconsistencies of more than 12 per cent 
ccuracy dif ference. It sho ws preliminary e vidence that volunteers’ 
otes on the detailed structure may have bias due to the resolution
ifference between GZD and BMz. 

PPENDIX  B:  STRO NG  BA R  SAMPLE  

We randomly select some ‘Strong Bar’ galaxies from our target 
omain model prediction in the BMz galaxies as shown in Fig. B1 . 
MNRAS 537, 640–649 (2025) 
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