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[A]ll cells of a given individual organism inherit the same set of blueprints in the

form of DNA molecules. But as a higher organism develops from a fertilized egg a

striking variety of different cell types emerges. Underlying the process of development

is the selective use of genes, the phenomenon we call gene regulation. [... D]epending

in part on environmental signals, cells choose to use one or another developmental

pathway. - M. Ptashne [11, p. 1]

Abstract

We investigate the ability of artificial Genetic Regulatory Networks (GRNs) to evolve dif-
ferentiation. The proposed GRN model supports non-linear interaction between regulating
factors, thereby facilitating the realization of complex regulatory logics. As a proof of
concept we evolve GRNs of this kind to follow different pathways, producing two kinds of
periodic dynamics in response to minimal differences in external input. Furthermore we find
that successive increases in environmental pressure for differentiation, allowing a lineage to
adapt gradually, compared to an immediate requirement for a switch between behaviors,
yields better results on average. Apart from better success there is also less variability in
performance, the latter indicating an increase in evolutionary robustness.

1 Introduction

Typically in multicellular organisms, (almost) all of an individual’s cells contain the same genome
but still, depending on signals or differences in the internal environment, can take very different
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Figure 1: Schematic drawing of our model. The two cells have the same genome and thus the
same regulatory network but can produce very different behavior, induced by a very simple
signal which is here shown as external, but it could also be an internal gene that is always on
due to cell division disparity.

functional roles. Crucial signals are believed to be induced by other cells or the environment
early in development, e.g. turning on (a) homeotic gene(s), which “remain on through adult life
and maintain particular aspects of the pattern of gene expression characteristic of that segment
[they are part of.]” [11].
In biological Genetic Regulatory Networks (GRNs), genes encode proteins and proteins in turn
regulate the expression (activation) level of genes. The dynamics of these interactions not only
play a key role in development [4] but also in the ongoing metabolism of all cells during their
lifetime [1]. Furthermore, cells do not exist in isolation but are embodied in an environment,
which influences the cell; the cell can in turn influence its environment via internal regulatory
dynamics; see fig. 1.
As an evolutionary and computational paradigm, GRNs support complex regulatory and evolu-
tionary dynamics [2], which when combined with differentiated multicellularity represent a vast
potential for massive adaptive parallel and distributed computation [9]. This is achieved by a
continual coupling of internal and external dynamics as active, regulatory control systems [12].
Differentiation of cells into types has been investigated in artificial GRNs several times. The
most famous example is from Kauffman [7], but this and other early models are usually based on
random boolean networks. Newer non-boolean approaches mostly have a strong pre-specification
of the network structure (e.g. [5]), in this work we start from randomly connected networks.

2 Methodology

Before complicating matters by modeling huge multicellular structures with a diversity of cell
types we begin with evolving a system capable of showing two behaviors. In [8], where we first
described the proposed GRN model, we used it to evolve biological clocks with the circadian
rhythm abstracted to a sinusoidal wave. GRNs producing such cyclic behavior in response to
various periodic environmental stimuli could easily be evolved. Mirroring the phase of their input
as well as the production of the inverse phase was possible1, however with every evolutionary

1For results from those experiments see also http://homepages.feis.herts.ac.uk/∼kj6an/GRNclocks/.



run having only one of these behaviors as its objective. So in the context of differentiation it
was quite natural to ask whether it would be possible to integrate two or more functionalities
into one GRN. We evolve populations of GRNs with two such functionalities in various settings
and investigate the impact of the lineage’s history on regulatory and evolutionary dynamics.
Cell cleavage and development are also victims of abstraction – from the start we have two
identical cells receiving the same periodic external stimuli, cf. fig. 1. The expected difference in
behavior is only signaled by a type inducer that raises a protein level, which in our model could
be the result of either an internal gene turned on during cell division or externally generated.
There is currently no diffusion or other kind of interaction between the cells.

2.1 GRN Model

The proposed GRN model makes locally smooth regulatory and evolutionary dynamics possible,
and environmental interaction is explicitly considered. It has been first described in [8], where
more details can be found.
Every cell consists of proteins and a genome with a fixed number of genes. Gene activation is
controlled by regulatory sites (cis-sites or cis-modules), each composed of – possibly – several
protein binding sites. Depending on the attachment of matching proteins to the binding sites the
corresponding cis-modules positively or negatively influence the production of, not necessarily
different, proteins. In molecular biology, proteins acting in such a way are called Transcription
Factors (TFs). In our model all proteins are potentially regulatory. For simplicity in the
regulatory dynamics we use template matching, i.e. a perfect match of binding site and the
corresponding protein is required, unlike e.g. [2, 3]. The main difference to the Biosys model,
described in [12], is that one can have any number of cis-modules per gene and every cis-module
can have any number of protein binding sites. This is to allow for an additional level of protein
regulation, as it is known to molecular biologists that TFs not only show additive behavior but
might also interact with each other and thereby change their influence synergistically, see e.g. [13,
and references therein]. This level could for example facilitate the advent of “master control
genes”, i.e. one active gene at the top of a control hierarchy that might start a cascade, turning
on a huge number of other genes. For example [6] found that the out-of-place eye production in
the fruit fly Drosophila can be triggered by a single signal. Such selectors can be thought of as
choosing a particular pathway for the cell (as well as it’s descendants) and are assumed to be
involved in cell differentiation as well as developmental modularity.
In summary our approach facilitates the evolution of complex dynamics, coming a little closer
to nature, where “5-10 regulatory sites are the rule that might even be occupied by complexes
of proteins” [2].

2.1.1 Genetic Representation

The genome is represented as a string of integers, encoding the genes and some global parameters
of the network. Digits 0 and 1 are coding digits that may be involved in regulation or protein
coding. To differentiate between such a coding bit, a cis-module boundary and a gene boundary
the genetic alphabet was increased to four digits, with 2 delimiting the end of a cis-module and
3 delimiting the end of a gene. There are eight different proteins in the version of the model
used here, i.e. three bits encode a protein.
For this set of experiments we used a fixed number of genes, namely nine, as this had proven
more than enough for coping with the single task described in our earlier paper [8]. After
compartmentalizing the genome into genes, the last four coding digits of every gene determine



its output behavior, three bits for the protein produced and the last bit for the gene’s activation
type, which can be “default on” – even active when no activation is present or “default off” –
only with positive activation.

For cis-modules the first coding bit determines its influence on the gene’s activation level (in-
hibitory/activatory) and every following three coding digits are considered a protein binding
site. For example the gene 010111021101020011113 will produce protein 7 (111) and is “off by
default” (last bit is 1). It has two cis-modules, the first inhibitory (starting with 0) binding a
combination of proteins 5 (101) and 6 (110), and an activatory cis-module (starting with 1) to
which protein 5 (101) will bind. Note that the last zero of 110102 is ignored; we refer to such
coding digits which are neither translated nor regulatory as junk.
The genome also encodes several evolvable variables global to the cell. These are the protein-
specific decay rates (four bit for every protein, indexing into a fixed lookup table of values),
the global binding proportion (also four bits indexing into a lookup table, but identical for all
proteins), and finally the global saturation value (three bits indexing to a look up table, again
identical for all proteins).

2.2 Regulatory Logic

The model is run over a series of discrete time steps, its lifetime. In each time step initially a
fraction of the free proteins, determined by the global binding proportion parameter, are bound
to matching sites; if there is more than one binding site competing for the same protein the
fraction is equally distributed between all matching sites2. In this process all protein binding
sites are treated equally, regardless of the cis-module to which they belong. Let bi be the
number of all binding sites matching protein i (there can be several for the same protein within
and between cis-modules) and ct

i denote the number of protein i being available for binding at
time t. Then the amount pt

ijm of protein i bound at time t to a given binding site in cis-module
j of gene m and matching protein i is:

pt
ijm =

ct
i

bi

+ pt−1

ijm,

where pt−1

ijm is the amount of protein i at the binding site in the previous timestep after saturation

and protein-specific decay have been taken into account, with the initial condition p0
ijm = 0.

The activation level am of gene m with k cis-modules is calculated as:

am =

k
∑

j=1

±j min
i: protein i binds to cis-module j

pt
ijm,

where ±j =

{

+1 if cis-module j is activatory

−1 if cis-module j is inhibitory.

Note that this use of min is similar to a logical and and results in non-additive effects (“synergy”)
in gene regulation.
So the calculation of every gene’s activation level is done by adding (activatory) or subtracting
(inhibitory) the values per cis-module but only the lowest value of bound protein per cis-module

2Note that all variables for protein amounts are continuous.



is used (min). The increase in protein concentration due to gene m is then fm(am), 3 where

fm(x) =

{

r
2

(tanh(x−15

s
) + 1) if gene m is “default off”

r
2

(tanh(x+5

s
) + 1) if gene m is “default on”.

The parameter s = 5 determines the steepness of the slope, with the function becoming more
switch like as s gets smaller, and r = 150 determines the range of the function. The output of the
gene’s activation function is added to the unbound concentration of that gene’s output protein
type. After this calculation the concentrations of all unbound proteins are, if necessary, reduced
to the global saturation value and then all proteins, free or bound, are decayed by the protein
specific rate. Finally environmental input occurs by increasing the unbound concentration of
certain proteins by some value and output by reading some protein concentration values. Simple
scaling by r is used to map stimulus input levels from the signal range to a protein concentration,
and vice versa for output protein levels.

2.3 Evolution

We use a fairly standard Genetic Algorithm with weak elitism, tournament selection and re-
placement. Every evolutionary condition was studied with ten repetitions; each lasting 500
generations of 250 individuals, where one individual consisted of two cells with the same genome
and thus the same regulatory network. The initial population started with one cis-module per
gene and one protein binding site per cis-module, all coding bit values being randomly assigned;
in network terms the nodes are randomly connected, with at most one incoming arc.

2.3.1 Selection

Later generations are formed by carrying over the best-performing individual of the last gen-
eration automatically and, keeping population size constant, the other individuals are replaced
by offspring. To generate each pair of offspring, 15 (not necessarily different) individuals of the
prior generation are chosen randomly and of these the best two selected to be “parents”.

2.3.2 Variability

A (single-point) crossover between the parent genomes occurred 90 percent of the times and
every coding bit is flipped with a mutation probability of one percent. To generate a variable
number of cis- and of protein binding sites per gene it is necessary to have variable length
genomes. Note that despite this, the number of genes stays the same all the time. These
properties are achieved by dividing the parent genomes into compartments: one compartment
for every gene and one compartment for the global variables. Then (with a probability of 0.9)
a single compartment is chosen for crossover and in this compartment a point allocated for
crossover. However when crossing over from parent 1’s genome to the second parent’s genome
copying does not necessarily continue at the same position of parent 2’s genome but is shifted
by an offset (see fig. 2), mimicing the unequal crossing-over observed in biology.

3For example, for the gene 010111021101020011113 from above this would mean that due to the first (in-
hibitory) cis-module, assuming a share of 20 type 5 proteins (101) and 1 type 6 protein (110) per binding site,
the value −1 would go into the sum. The second (activatory) cis-module however would contribute +20 resulting
in an overall activation of 19, which gives a protein output of about 125 type 7 proteins.



110110110...

110110110...

010110110...

010110110...010111021 020011113

110111021 021101020011113

110111021
+
101 020011113

−
101020011113021010111

2)

1)

3)

4)

Figure 2: Gaussian offset crossover. Genomes of (1) parent 1, (2) parent 2, (3) offspring
1, (4) offspring 2. Only one gene and part of the global compartment shown. Both children
get digits up to the crossover point from their respective parent, but then continue in the other
parent’s genome with opposite gaussian-distributed offsets (−3 and +3, respectively, here).

This offset is randomly drawn from a gaussian distributed random variable with mean 0 and
standard deviation 4. The relatively large number four was chosen to increase the chance of
duplicating genetic information, the importance of which was already pointed out by [10] for the
evolution of biological complexity. Ohno put emphasis on whole-genome duplications while it is
now, with better techniques, becoming ever clearer that “both small- and large-scale duplication
events have played major roles” [14].
Note that the offset point is limited to stay within the boundaries of the compartment, hence
if crossoverpoint + offset is smaller/larger than the left/right boundary it is set to the corre-
sponding boundary value. So the number of 2s (cis-modules) might increase by crossover –
mutation was only applied to coding digits (0s and 1s) – but not the number of 3s as these are
the compartment boundaries. When crossover occurs in the part encoding for global parameters
the offset is always set to 0 as more bits would be meaningless here.
These processes allow both neutral crossover and mutational changes, as ‘half’ cis-modules
(i.e. less than three bit – one protein – long) are ignored. Additionally this means that, although
the number of genes was constant over one evolutionary run, genes could become inactive, in
a similar manner to the so called pseudo-genes found in nature, i.e. if there was not a single
cis-module and the gene had an activation type of “off by default”.

2.4 Environmental Coupling

We decided to systematically vary evolutionary conditions by varying the pattern of external
signal received at the cellular level as well as the periodic output behavior expected.

2.4.1 Input stimuli

The basic idea was to have periodic environmental stimuli based on a sine curve (shifted to the
interval [0, 1]). The wavelength w was set to 20 time steps, while the lifetime for every GRN was
400 steps. Variations included having only the positive part of sine, a periodic step function,
and a brief pulse. The four functions used are depicted in fig. 3. As mentioned above, both
cells of an individual always received the same periodic stimuli. However one cell additionally
received an inducing signal with a continuous value of 1, realized as increasing the level of a
protein type different from those used for periodic input and output.
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Figure 3: Periodic functions used: 1) sine (dashed the inverse/shifted wave), 2) positive part of
sine, 3) step (dashed the inverse/shifted wave), 4) pulse.

2.4.2 Output behavior

Two periodic target functions were used to measure the performance of an individual and assign
fitness: sine (fig. 3.1) and step (fig. 3.3). While the induced cell’s desired output would be in
the the same phase as the input, we ultimately want the other cell to produce the inverse of the
input, which is equivalent to shifting the input’s phase by one half. Fitness was measured as
the deviation from this desired output, i.e. the smaller the value, the better adapted the GRN.
Letting ct

i0
denote the (unbound) concentration of the induced GRN’s output protein i0 and dt

p

the desired output in phase p relative to that of the input at time t, the deviation is simply
calculated as:

∑L
t=1

|ct
i0
− dt

0.0| and similarly for the other cell, only with dt
0.5 – a phase shift

of one half which is equivalent to the inverse wave. Finally both deviations were added up and
divided by 2. The lifetime L of every individual was set to 400 time steps; as a reference, over
such a lifespan a random GRN achieved a deviation of approximately 200.
However in one set of experiments we did not immediately, i.e. from the first generation, expect
individuals to fully differentiate and rate performance accordingly. Instead, the environment
became gradually harder by increasing the relative shift in wavelength little by little from 0
to w/2 every 25 generations (writing g for the current generation we wanted dt

p∗ with p∗ =
min( g

⌊25⌋ ,
w
2
)/w) – so full differentiation was only required after 250 generations.

3 Results

Overall, 8 evolutionary scenarios were tested (two desired output types times four environmental
stimulus input functions) and each scenario was run ten times. Additionally, the whole set of 8
scenarios was repeated for gradually increasing environmental pressure, as described above.

3.1 Evolutionary Dynamics

In every scenario most repetitions successfully produced well adapted individuals that had
evolved a kind of switch, allowing them to behave very differently when an inducing stimu-
lus was present. Not very surprisingly, the more sparse the input was the harder it was to
reduce the deviation from the desired output wave. For the immediate full shifting set of exper-
iments, when considering a deviation of 80 acceptable4, in 30 (out of overall 80) repetitions no

4By experience we found that GRNs with a performance worse than 80 often were much better at one task
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Figure 4: Exemplary evolutionary runs showing the best individual per generation (average over
10 repetitions); 1) with full differentiation pressure, 2) with gradually increasing differentiation
pressure. For most experiments we found the best and worst repetitions to be closer together
when the lineage’s environment changed slowly.

GRN in the population could be considered to have achieved an acceptable performance level.
For the gradual setting however, this failure happened only twice, and the superiority of this
condition can also be seen from table 1. It seems that an evolutionary environment gradually
introducing a requirement for a switch between behaviors facilitates differentiation, and the
smaller standard errors suggest an increase in evolutionary robustness. This is also reflected by
the finding that for most experiments the best and worst repetitions are closer together when
the lineage’s environment changed slowly; for an example see fig. 4.5

3.2 Evolved dynamics

In all the best evolved GRNs we found the use of and-like regulatory logic with several binding
sites bundled to a cis-module as described above, although the initial random nets started with
only one site per module. Typically, the protein level being influenced by the type inducer, which
might be considered as the output of a “master control gene” or an environmental stimulus, had
a very prominent position (i.e. a high outdegree) in well adapted individuals. For example the
one shown in fig. 5 participates in the regulation of 4 out of 7 functional genes. Finally, following
are figures illustrating what is going on in an exemplary individual which was the best of its
repetition in the scenario: sine input, sine output desired, gradually increasing differentiation
pressure. Figures 6 and 7 show its dynamics, with the lower matrices each corresponding to the
“inverse desired” cell.

than the other, i.e. no real differentiation had taken place.
5Additional results as well as the full source code will be made available at http://panmental.de/GWALdiff



desired behavior

env. input

sine
(inverse/mirror)

step
(inverse/mirror)

sine 63.38 ±11.2 std. err.
best evolved: 14.71
best rand.: 86.67/88.58

76.19 ±12.0 std. err.
best evolved: 27.90
best rand.: 126.2/92.01

pos.
sine

50.14 ±6.29 std. err.
best evolved: 21.78
best rand.: 80.18/75.37

85.12 ±10.8 std. err.
best evolved: 37.57
best rand.: 100.4/113.2

step 57.27 ±8.92 std. err.
best evolved: 27.63
best rand.: 86.06/70.33

60.75 ±9.40 std. err.
best evolved: 28.90
best rand.: 72.17/70.84

pulse 74.34 ±6.25 std. err.
best evolved: 27.93
best rand.: 86.44/89.68

81.02 ±11.9 std. err.
best evolved: 26.70
best rand.: 128.7/99.64

sine 29.52 ±3.62 std. err.
best evolved: 18.87

39.13 ±6.49 std. err.
best evolved: 8.672

pos.
sine

38.34 ±6.12 std. err.
best evolved: 16.12

56.34 ±6.83 std. err.
best evolved: 31.04

step 37.15 ±3.10 std. err.
best evolved: 24.78

40.96 ±1.20 std. err.
best evolved: 32.73

pulse 43.38 ±4.74 std. err.
best evolved: 19.41

63.59 ±6.66 std. err.
best evolved: 23.39

Table 1: Outcomes of experiments with immediate (upper half), gradual (lower half) differen-
tiation pressure, with the leftmost column depicting the environmental stimuli used and the
topmost row the desired output behavior for every run. The data cells show the best final
deviation averaged over 10 repetitions with 500 generations times 250 individuals each, ± the
respective standard error. Additionally the best deviation achieved by evolution and, in the
upper part, the best deviation found when testing the same number – 1.25 million – of random
GRNs (one/two binding sites per gene are shown).
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Figure 5: Regulatory interaction diagram of an evolved 9-gene GRN. Boxes denote
genes (rounded corners indicating “default on” ones with the others being “default off”), con-
nections ending in an arrow are for activatory influences and the T-like endings depict inhibitory
ones. The bolder the connections the more binding sites the receiving gene has for the corre-
sponding protein, resulting in a bigger share of the protein binding.

Figure 6: In these matrixes the 8 protein concentrations of the GRN from fig. 5 over 100
time steps are depicted. Note that row 2 reflects the input protein level while row 7 corresponds
to the GRN’s output. In the lower matrix lack of activity in row 4 induces inversion of the input
stimulus.

Figure 7: As in fig. 6, but here the output activity of each of the 9 genes is shown. Every
row corresponds to one gene’s protein output, where darker means more output. One can clearly
see the distinct activation patterns. Note that genes 1 and 8 are inactive, i.e. generate no output
ever, see fig. 5.



4 Discussion

The GRN model is clearly able to evolve functional differentiation. However the lineage’s evolu-
tionary history seems to be very important in determining the probability that a switch between
two behaviors can be found. Comparing with the immediate requirement for a switch between
behaviors we found that in the gradual case final GRNs usually showed better success with less
variability in performance, the latter indicating an increase in evolutionary robustness. In the
future we will analyze the properties of evolved networks further – what do those that show a
switching behavior have in common as opposed to those with no switch? – and also: How did
the switch evolve? Last but not least, it will be interesting to see how well these findings scale:
can we evolve control hierarchies with levels of switching?
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