Address and Data Register Separation
on the M68000 Family

Technical Report No. 102

Dr F L Williams
Dr G B Steven

May 1990




Introduction

On the M68000 registers are partitioned into eight data registers and eight address
registers[1]. Many authors consider this division to be a breakdown in instruction
set orthogonality and a major shortcoming of the M68000 architecture[2][3].
However, an investigation at Hatfield Polytechnic into the impact of instruction set
orthogonality on compiler code generation found that, in practice, this register
division was not a problem.

FLEC[4], a Hatfield Polytechnic research compiler, which compiles a subset of
Modula-2[5] onto the M68000, was written to assist in this investigation. Our
observations are derived from our experience while writing FLEC.

A Summary of the M68000 Architecture

The programmer model of the M68000 is shown in Fig 1. The eight data registers
' can be used for byte, word and long word (32-bit) data manipulation. The eight
address registers support 16 and 32-bit values and include separate stack pointers
(A7) for user and supervisor mode. A comprehensive set of instructions are
provided to manipulate the data registers, but only a limited number of instructions
manipulate the address registers (Table 1).

31 ' - 0 15 0
DO : SR
. System User
Eight Data Byte Byte
Registers
D7
31 0]
AO User Stack Pointer A7
Supervisor Stack Pointer
PC

A6

Seven Address Registers

Fig 1 M68000 Programmer Model




The Case against Register Division

The arguments against the M68000 register division are based on the concept of
orthogonality. An orthogonal instruction set allows every instruction to use every
addressing mode or modifier in exactly the same manner[2]. Since data and
address registers on the M68000 cannot be used interchangably, the division of
registers into data and address registers represents a major departure from the
principle of orthogonality.

As a result of this breakdown in instruction set regularity, the compiler writer
might find it difficult to decide whether to return a result to a data register or an
address register. The consequence would be either more compiler case analysis or
redundant move instructions to transfer operands between the two register sets.

Dividing the registers into two sets will also inevitably lead to a non-optimum use
of registers. It is unlikely that all programs will require eight data registers and
eight address registers. Some programs, for example, will run better with 12 data
and four address registers. This difficulty can only be resolved by prov1d1ng 16
general-purpose registers.

The Case for Register Division

The case for register division is based on the concept of low-level typing. Address
and data registers are provided to support different data types. Address registers
are provided to support addresses or pointers while data registers are provided to
support integers. Analogies can be drawn between this instance of low-level typing
and the provision of separate floating-point registers.

If it is accepted that address registers are provided to support pointers, the
instruction set should only provide sufficient address register operations to
effectively manipulate pointers. Viewed in this light, multiply, divide and logical
operations on pointers are meaningless and are quite rightly not provided.
Similarly, byte operations on address registers are not required.

In spite of the above argument, dividing the register set is undesirable if there are no




compensating architectural gains elsewhere. However, on the M68000, major
gains follow from the separation. It is possible to encode all the M68000
instructions into a single word, 16-bit format only because limited operations are
provided on the address registers. In contrast, insisting on a single set of
general-purpose registers would result in one of the following:

* some 32-bit instruction formats
» only eight general-purpose registers
» some other loss of instruction set functionality.

Finally, examining the implementation details of the M68000 family suggests that
further performance gains follow from the register set division [6]. Each register
set in the M68000 is associated with a separate arithmetic unit. The register
division therefore permits parallel micro-operations to be performed on address and
data registers.

Register Division Handling in the Hatfield Research Compiler

In the Hatfield compiler, the address registers and data registers were handled as

separate groups and were reserved for different data types. Pointers, including all

stack and display pointers, were assigned to address registers. while all other types
including integers were assigned to data registers. Array indices, for example,
were computed exclusively in data registers. As a result of this rigid low-level
typing there was never a requirement to move values betweén the address and data
registers.

Conclusion

Ideally, 16 general-purpose registers would have been provided in the M68000. In
practice, the use of separate address and data registers allows the instruction set to
be tightly encoded in 16 bits, and thus avoids the performance degradation of
multi-length instruction formats. Furthermore, since the division is based on a
well-conceived concept of low-level typing, the division presents no significant
problems for the compiler writer. In summary, the register division in the M68000
represents a reasonable design compromise.




Acknowledgements
Part of this work was supported by a SERC Postgraduate Research Studentship.
References
Semiconductors, 4th Edition, 1984
2. Wulf W A Compilers and Computer Architecture TEEE Computer, Vol 14,
No 7, July 1981, pp 41-47
Englewood, N.J.,1990.

1989
5. WirthN Programming in Modula-2 3rd Edition, Springer Verlag, 1985

Proc. 3rd Rocky Mountain Symposium, Microcomputers: Systems, Software,

Architecture, August 1979, pp 30-35

M68000 16/32-bit Microprocessor Programmer’s Reference Manual Motorola

Tanenbaum A S Structured Computer Organisation (3rd edition) Prentice-Hall,

Williams F L The Impact of Instruction Set Orthogonality and Complexity on
Compiler Code Generation PhD Thesis, Hatfield Polytechnic, UK. August

Tredennick N Implementation Decisions for the MC68000 Microprocessor




TABLE 1 Addressing Mode Restrictions on the M68000

1) ALL

ADD <ea>,DnIMOVE <ea>,Dn
SUB <ea>,DniCMP <ea>,Dn
ADDA <ea>,AniSUBA <ea>,An
CMPA <ea>,AnIMOVEA <ea>,An
2) DATA

AND <ea>,DniOR <ea>,Dn

CHK, DIVS, DIVU, MULS, MULU
3) DATA ALTERABLE
ADDI, SUBI, CMPI

ANDI, EORI, ORI

CLR, NEG, NOT, TST

NBCD, NEGX

BCHG, BCLR, BSET, BTST
MOVE Dn,<ea> |

EOR Dn,<ea>

4) ALTERABLE

ADDQ,SUBQ

5) MEMORY ALTERABLE
ADD Dn,<ea>ISUB Dn,<ea>

AND Dn,<ea>iOR Dn,<ea>
SHIFTS '

6) CONTROL

JMP, JSR

PEA,LEA

Key

R : Removes redundant format

M : Meaningless operation excluded
- : Not excluded

x : Potentially useful operation lost

An

b

mOX M M

»

PC
Relative

(An)+
-(An)

Imm

T EEEEREZX

<

==




