DIVISION OF COMPUTER SCIENCE

Applications of Neural Networks in Telecommunications
Simon Field
Technical Report No 219

February 1995

Applications of Neural Networks in
Telecommunications

Simon Field

Department of Information Sciences
University of Hertfordshire,
Hatfield, Hertfordshire, UK, AL10 9AB
E-mail: S.D.Field@herts.ac.uk

Abstract

The Teaching Company Scheme (TCS) I am participating in involves investigating
the potential for using neural networks in the development of complex software
products.

Recently neural networks have enjoyed a resurgence in popularity in academia and
industry (cf. DTI scheme), and it has become apparent that there are a number of
ways in which the technology can be applied to real-world problems. Neural
networks have a statistical basis, and they can be viewed as making these powerful
statistical techniques available and accessible to non-statisticians.

This paper will report on a number of projects I have been involved in over the last
year which have all used neural networks in the development of new software
products. It will include details of:

e atool that detects cloned, or copied, software,
e aproject to evaluate the complexity of software,
e astructured methodology for the design of neural network systems,

° a project which shows that the neural network approach is not always
applicable.

The difficulties in transferring this particular research technology to computer-based
products, and the advantages conferred by so doing, will also be summarised.

BNR, and its involvement with Neural Nets

I work at BNR (Bell-Northern Research) Europe Ltd. in the Software &
Systems Engineering (S&SE) department, which is part of their Advanced
Technology Centre. BNR is the Research and Development organisation for
Northern Telecom — a Canadian-based global telecommunications
equipment company, the fourth largest in the world.

To give an idea of the size of the NT/BNR group, there are approximately
58,000 people working for NT/BNR, and it makes sales to more than 90
countries, with revenues of over $8 Billion. Currently, approximately $1
Billion p.a. is invested in research and development.

The S&SE mission is ‘To provide a European source of expertise in the use of
advanced techniques.... in particular to improve software quality and
development interval, while reducing development costs’.

Software technology goes through three phases in reaching these goals:

1. Technology investigations

— Investigate the applicability of developments in software technologies
(University and market place) for use in BNR, triggered by a business
problem or new opportunity, and investigate possible software
technologies to apply to the problem.

2. Pilot studies

— Validating and tailoring the technology for use to solve specific
problems, and examining the possibility for use in products.

¢ 3. Introducing the technology

— Education, applying expertise in product development groups, product
component production, etc.

Normally a software technology passes through each of these phases until it
is introduced as a standard BNR technology (or rejected if it is not applicable).

Examples of current software technology studies include neural networks,
virtual reality, genetic algorithms, and knowledge based systems. It is the
Neural Networks Study that I am working with.

The Neural Network (hereafter referred to as NN) Study started in late 1992,
with 1.5 full-time people. The original aim was to investigate the subject,
focus on an area of software engineering to which the technology could be
applied, and demonstrate the benefits to BNR by the end of 1993. If the
technology could be seen to be worth the investment of resources then a full-
blown programme of work would be drawn up.

With the help of a Senior Lecturer from the University of Hertfordshire, .
working for BNR under the SAIS scheme,: the initial area chosen ‘to
investigate (which will be described in more detail later) was turned into'a -
prototype. This prototype proved to be so successful under testing that it is
currently being productised for use throughout NT/BNR, the idea was
patented, and there are now 5 full-time people and two part—time visiting

academics working on the team. An additional result, owing to the success of
the SAIS, was the instigation of the TCS which myself and another newly
appointed TCA are working on.

The project now has a number of key objectives:

Can the technology of NNs be used elsewhere within NT/BNR today?
What needs to be put in place if not?

What properties do NNs have and how might these be useful either
embedded within current or future products, or be used in the process of
constructing products?

~ There are many types of NNs; what sorts of cost/benefit differences are

there between them?

The project will produce concept demonstration systems to illustrate the
potential of the technology; where the promise is good, full-scale
prototypes will be built.

If NNs are to be useful within the company, a systematic method of
constructing systems which incorporate the technology is needed — a so—
called ‘methodology’.

The role of the TCS is to develop the methodology, and also a number of spin—
off applications. The tasks should work hand-in-hand, with the method
development being tested through the production of a number of applications,
and the development of the applications being aided by the existence of a
methodology to follow.

An Introduction to Neural Networks

There is currently a lot of talk and hype surrounding neural networks (NNs),
but just how much of it is based on fact? They are talked about as ‘artificial
brains’ and ‘programs that can think’. Neither of these points are true, but the
truth about what you can do with them is almost as grand. For instance, on 30
May 1994 the national media in Britain reported that several of William
Shakespeare’s early plays were in fact written by another: playwright,
Christopher Marlowe, and then adapted by Shakespeare. Researchers at Aston
University made this discovery using a neural network to analyse each
author’s writing style, characterising it by word frequency and context.

But how many people know what a neural network actually is? (Some see
them merely as a ruse to get lots of research money!) A neural network is quite
simply just a collection (network) of interconnected processing units
(neurons). Individually, the neurons can each receive an input and perform a
simple mathematical instruction, such as addition or multiplication, in order
to produce the output. Working together in a network, however, artificial
neurons can perform surprisingly complex non-linear functions. The human
brain is also made up of these simple, adaptive neurons, but contains
approximately 10,000,000,000 of them. It is this huge number of nodes which
enables humans to carry out the complex tasks that we do.

The idea of building an intelligent machine out of artificial neurons has been
around for many years. Some early results on brain-like mechanisms were
achieved by McCulloch and Pitts in the 1940’s. At first, research was centred
on trying to resolve problems such as theorem proving and chess, as these
were thought to require the essence of intelligence. Tasks such as vision and
natural language understanding were thought to be simple because even a
child could do them. The reality is somewhat different. Today we have many
expert chess programs, but there are no programs that can match the basic
perceptual skills of an infant. Humans can do what appear to be very simple
tasks like walking, talking, and common-sense reasoning, whilst computers
can carry out complex arithmetic calculations in nanoseconds, without any
errors, but cannot carry out the tasks easy for humans. It seems that the
structure of the brain is suited to some tasks, and not sulted to other tasks such
as high—speed arithmetic calculation.

NNs are biologically inspired; that is the nodes perform in a manner that is
analogous to the most elementary functions of the biological neuron. They are
then organised in a way that may or may not be related to the anatomy of the
brain. Despite this very superficial resemblance, NNs exhibit a surprising
number of the brains characteristics. For example, they learn from examples
and thus make available experiential knowledge, generalise from previous
examples to new ones, and abstract essential characteristics from inputs
containing irrelevant data. NNs have a statistical basis, and they can be
viewed as making these powerful statistical techniques available and
accessible to non-—statisticians.

NNs are trained to respond to the inputs they receive. This requires the user to .

spend some time up front providing them with data so that they can be coaxed . -
into performing a useful function — this is referred to as training. Some NN's
need to be supervised during this learning phase, whilst others can learn
features unsupervised, and others can even learn as they perform the task, i.e.

they adapt as new data arrives in a live situation. NNs do not compute an
algorithm as such, however, NNs can synthesize any mathematical function to
some desired degree of precision.

NN are resilient to problems such as noisy (slightly corrupt) data. Some will
degrade gracefully, i.e. they do not just fall over if presented with noisy data,
they will perform ‘nearly right’. This may or may not be a useful feature to
have.

At BNR, the NN Study team has just completed a project to detect cloned
software, i.e. software that has been copied from one part of a program to
another, and then had some changes made to it in order to alter its
functionality. The neural network trained on a section of code containing
1,700 procedures needed only 400 nodes to detect the clones. The next version
will use 2500 nodes and will thus be able to be trained on much larger sections
of code.

Other areas where NN are being applied at BNR include: management of a
telecommunications network; and more specifically fault correlation (more on
this later); routing; and traffic trends analysis. These three areas seem to match
the capabilities and features of NNs. Fault correlation is concerned with trying
to solve the problem of ‘seeing the wood for the trees’ in large
telecommunications networks under failure conditions. A large number of
alarm events can be generated from one or more real problems happening, but
these alarms can then cause further alarms to be generated — an explosion of
information results. The NN can be used to filter out redundant information.
Route finding is concerned with trying to find paths through a
telecommunications network with various constraints such as capacity,
quality of service, priority, etc. NNs can complement, or be used in addition
to, existing routing algorithms. Traffic trends analysis is a diverse area
concerned with spotting trends in the utilisation of a network, or other patterns
over time, such as failure patterns. Such trends can be used to optimise the
configuration of the network and predict faults.

As can be seen, NNs are being used in real applications today. They are not
research curiosities. Thus, in addition to developing NN solutions to
problems, the team at Harlow is also producing a systematic design method
for the development of neural network systems. The overall aim is to develop
and evaluate a structured methodology to aid the design, development, and
implementation of hybrid artificial neural network systems. This will make it
possible to ‘engineer’” NN components, rather than just hack them together as
now.

The above are just a small number of examples of the use of NN technology
in the telecommunications world. Examples from other industries include
medical diagnosis, monitoring of trading on the stock exchanges, process
control, noise filtering from time—series data, loan application scoring, credit
card transaction monitoring, etc.

Neural Networks have become yet another tool to add to the set 'an engineer

can use everyday, as you will see with the following examples of products
developed with the aid of NNs.

The Clone Detector

When the NN Study was formed at BNR, the team needed to learn a lot more
about the basic technology of NN, and it was decided to try to use this new
technique to solve a realistic problem. The problem area chosen was that of
detecting cloned software, i.e. software that has been copied from one part of
a program to another. This is a potential problem for companies that are
producing software products that contain large quantities of code because a
common method for producing new code is to copy existing code that is
known to work, and then alter it slightly to gain some new functionality. The
task of identifying sections of code that have been copied is becoming more
important as the amount of code increases, because if a problem is discovered
with one piece of code it is necessary to correct all occurrences of that code.

In the training phase, the blocks of code (procedures) that are to be analysed
are converted to a format that the NN can understand — vectors. In each
vector particular features of a procedure are recorded, including the number
of programming language keywords that appear in the code and how the code
is laid out (the indentation pattern).

TRAINING

Vectors

SOM Network

TEVE W4
(f L /N L 2L S

Procedures

D -, TESTING
-

Test Procedure

Clone
Database

Clones

The NN chosen to classify these vectors was a Self Organising Map (SOM).
A SOM transposes the input vectors into a 2—D representation, which simply
means that the vectors will be organised in such a way that similar vectors are
placed in the same location, and a number of groupings are thus formed.

The final state of the network is recorded in the ‘clone database’, which is
simply a file of all the procedures and which groups they are in. To find clones
the user then interacts with the database by specifying a test procedure and
then the tool displays a list of potential clones of that procedure, by looking
up the group it belongs to in the database.

The prototype clone detector seemed so potentially useful that it was offered.
for trial around the company in seventeen different groups. The results have
been unanimous support, and the team are now converting the prototype into
a full-blown tool, ready to be called up from within the standard BNR
development environment.

Evaluating Software Complexity’

Software complexity measures are used to determine how difficult a program
is to comprehend and work with, especially when maintaining it. As software
takes an ever more prominent role in systems engineering, then the need to be
able to ensure the quality of the software becomes even more important.

Numerous papers have been published identifying various metrics that can be
used to transform what is a qualitative issue into a quantitative measure. This
project was based on a piece of work carried out by Sheppard & Simpson who
chose a subset of twelve of all the possible metrics that could be used. They
developed a program to analyse ‘C’ source code and then used a simple
competitive learning NN to identify features from this data. Competitive
learning (CL) uses a form of unsupervised learning to develop a set of feature
detectors, from which the authors identified three classes of code which they
then categorised as Standard, Marginal and Non—Standard. They considered
Standard to have a complexity that was acceptable, whilst the other two
classes were deemed to be more complex than perhaps is necessary. It was felt
that the approach they had taken in reaching these decisions was somewhat
flawed in that the simple competitive learning net is prone to making a small
number of classifications, and we wished to see if indeed this was the case.

It was therefore decided to replicate and extend this work with BNR’s code.
The data was extracted from BNR’s code as a vector containing the twelve
metrics and then input to the competitive learning net. The initial results with
this approach showed that BNR’s code could be separated into four classes,
and it also became apparent that there was a difference in the type of code
produced by different teams in the company. It appears that the code written
by newer graduate employees seems to be ‘richer’ (short but meaningful) than
that written by other teams. This was an unexpected result, and could lead to
a separate study of it’s own.

The data was then input to other NNs to see if a different classification could
be achieved. The CL NN is limited in the details it provides because of the fact
that it will increase the chance of a node that has been activated previously
being activated again, and this precludes new clusters from forming. When a

the data with another NN architecture, the FuzzyARTMAP, also resulted in
more clusters, confirming the fact that code cannot be categorised by just
three, or four, classes of complexity.

A further stage with this work is to carry out analysis of the clusters found
with the SOM and FuzzyARTMAP architectures in order to determine
whether there is any correlation between clusters formed by the different
architectures. The results of this work will be presented at the IWANNT 95
Conference.

| 1. See “Using Neural Networks to Analyse Software Complexity”, University of
/ Hertfordshire Technical Report, and also “A Complexity Analysis of Telecommunications
Software Using Neural Networks”, in Proceedings of International Workshop on
Applications of Neural Networks in Telecommunications IWANNT) 1995.

SOM architecture was used, we were able to see many more clusters. Using' -

Neural Networks Methodology

The main aim of this project, which forms a key part of the TCS, is to produce
’ a structured design methodology to aid the design, development, and
implementation of neural network systems. The method will be developed in
successive stages and validated at each stage by using it with real applications
of the technology. This will result in the production of a number of prototype -
systems, developed for the telecommunications industry.

1 Many artificial neural network applications have demonstrated that this

technique provides a more effective way of addressing complex problems
; than conventional techniques. Unfortunately, the current literature on NNs
] provides very few guidelines as to how to select or develop an NN for a
particular problem. Few studies make explicit the base decisions and
assumptions that are made during the development of a solution. The strong
impression given to most newcomers is of a ‘black art’. Because of the lack
of a systematic method, the successful development of an NN solution is
generally being carried out by experts only, applying heuristics that they have
developed through their own experiences.

The project will target the following key areas in the development of a neural
network solution to a problem:

1. The applicability of neural networks to the task

2. Which network architecture to use

3. How to train the network

4. What pre/post processing of the data will be necessary

A number of papers have been published which report poor results for NNs
applied to particular problems, but lack the detail required for the reader to
ascertain whether the authors in fact applied NNs incorrectly, or whether NNs
in general are not suited to that problem area. A report currently being
completed by the author investigates the applicability of NNs to a task. A
thorough review of published papers is being undertaken, to establish what
sorts of tasks NNs are being used for, which architectures are chosen, whether
the applications are successful, and also investigating whether any
comparative work with non—-NN methods was carried out.

The various design issues and decisions that are involved in developing NN
applications will be extended to form a general methodology which will cover
several problem domains, using real applications. The methodology will be
applicable across the whole software lifecycle.

NNs do not always provide the answer — Correlating alarm reports
in a telephone system

Problem Description

processing element

processing element) link
card
\/
a4 a3 a2 al

alarms

A card may fail causing an alarm, the associated processing element could
emit an alarm, the link could transmit an alarm, and a related processing
element could emit an alarm. The network manager only wants to see alarm
al since it indicates the actual problem — all the others alarms are irrelevant
in terms of fault correction.

Neural Network ldeas ,
Initially this seems like a problem that can be resolved using the pattern
matching capabilities of neural networks. The task is to capture the alarm
output, and perform some sort of pattern matching in order to decide what
problem is occurring. However, it is not quite as simple as that.

The following gives an indication of what makes it a difficult problem to solve"
with NNs. The alarms can be output in any particular time order, and
depending on the order the network manager receives them they can indicate
different problems:

al +a2+a3+a4 = card failure

a2 +a3 +a4 = processing element failure
a4 = different processing element failure
a3 +a4 = link failure

Problems:

Overlapping alarms. This is the major problem to be overcome. Faults can
occur simultaneously for different problems, resulting in a large amount
of overlapping/interweaving of the alarms, so we can’t get a clear pattern
for each problem. The pattern may be so distributed that it will not be -
recognised by the Neural Net. In a sample taken, there are 33 problem-—
instances in the first 100 alarms. It is also not clear whether the first 100
alarms contain all the alarms for any particular problem.

Deciding the amount of the data to capture and analyse at a time. Different
problems have different numbers of alarms (anywhere between one and
two hundred). A small ‘window’ will pick up the problems with few
alarms but won’t be able to characterise problems with large numbers of
alarms. A large ‘window’ will swamp the input from problems with single
alarms.

Determining whether a new alarm corresponds to the same root cause
already flagged by another alarm involves storing all previous information
on active alarms within the net. This is impractical as the number of
current alarms can keep increasing. The amount of information being fed
back to the input layer will completely swamp any new input.

Alarm order is critical. For the alarm to be correlated into the lowest level
problem (root cause) then the alarm which creates the problem instance
must come first. Alarms can be added to this problem but will not change
it.

Alarms can repeat and will then occur over a wide time—frame. We would
need to filter alarms first, record them, and not admit repeats.

It can be seen that simple pattern matching techniques are not enough. If
Neural Networks are to be useful then we must find a way of separating out
the alarms before presenting them to the net, i.e. to classify them into related
alarms. To do this it is necessary to know what the root problem is to which
they are all related. This is likely to be very domain knowledge intensive — it
might be easier to build an expert system.

Summary:

The alarm stream output is too difficult for a NN to interpret due to alarms for
a problem being interleaved with alarms for other problems; the large number
of alarms; and there being no clearly defined time order in which alarms
arrive.

10

Conclusion

This report has discussed BNR and its involvement with NNs. It has also
described NNs and some of their characteristics. Two NN developments at
BNR were then reviewed — the Clone Detector tool and the Software
Complexity work. One of the main deliverables of the TCS project was then
described — producing a development method for NNs in order to. make
future NN products more “engineered”. Finally, an example of where NNs are
not applicable was given.

Whilst NNs have many uses in industry, and we have seen some of these here
in this paper, they are not a panacea. When NN technology is used correctly it
can quickly yield very impressive results. However, without a structured
development method to follow it can be all to easy to apply NNs for either the
wrong task, or in the wrong manner, e.g. if the wrong NN architecture is
chosen for a task then the results will often be poor. This report has also
highlighted the following points:

1. NNs can be applied to industrial applications without an enormous lead—
up time — the technology is accessible.

2. NNs are particularly useful for finding patterns in large data sets — the
clone detector, using unsupervised learning.

3. NNs are not very useful in systems where lots of structured knowledge is
needed — the alarm stream problem.

4. NNs are useful for learning implicit rules in large data sets.

One final point that should be noted is that anyone using this technology must
not underestimate the amount of time needed to pre— and post—process the
data in a NN application — this is the key time consuming area in NN

applications development. If the data is not in a format that is to be of use to
the NN then it is highly unlikely that any useable results will be obtainable.

To conclude:

* NN technology is accessible, and results can be obtained quickly;
° Itis important to consider how the input data is prepared;

* NNs can be used in problem areas where the user does not have any
knowledge about the relationship between sets of data— NN are capable
of analysing data and discovering patterns.

11

