DIVISION OF COMPUTER SCIENCE

Nested Signature Blocks

Marie Rose Low
Bruce Christianson

Technical Report No.223

March 1995

Nested Signature Blocks

Marie Rose Low and Bruce Christianson
M.R.Low@herts.ac.uk B, Christianson@herts.ac.uk

Abstract

For any signature block and any other data, there exists
a key which produces the same signature block. In this
report we identify the threat that this poses for the
SAProxy scheme which uses nested signature blocks as
pointers to other tokens. A modification to public key
certificates is then proposed to eliminate this threat.

1. The Threat

A signature block for a set of data is generated (in simple terms) by encrypting the data
with a particular key such that

{D}K=C
where C is the cyphertext = signature.

For any cyphertext, C, produced as above, and for any other data, D’, there exists an
easily computed key, K’, such that

(D'}K’ =C

It therefore appears that referring to signed data by its signature block leaves the way
open for a perpetrator to use a valid signature block to refer to false data signed under a
different key but yielding the same signature block. In schemes, such as the SAProxy
scheme [LoCh94a] [LoCh94b], signature blocks are used to refer both to public key
certificates (PKC) and other SAProxies and it seems that the above observation poses
a threat which may undermine the validity of the scheme.

2. Public Key Certificates
The threat is most pertinent to PKCs. A PKC for B, C, is usually of the form:

Cgr: B K*p Cid life-span sig(Cp)K-¢

where B is the identity of the owner of the public key, K+*p, (and hence the PKC), Cid

is the identity of the certification authority (CA) which generated the PKC and K¢ is
the CA’s private key.

A perpetrator, X, then generates a false PKC, Cx, with a public key, K*x whose
matching private key, K x, is known to X. X chooses a new, false key pair for C,
K*c'and K¢, and generates Cx.

Cx: X Kt+x Cid life-span sig(Cx)K-¢’

K-¢’ is chosen so that sig(Cx)K-¢' = sig(Cp)K-¢C .

X is then able to use any of B’s SAProxies that use sig(Cg)K-c as a reference to B’s

1

PKC. X can make a request or delegate authority to another party by sending Cx with
the request signed using K-x.

The problem now left to X is to persuade the verifier of the request that C’s public key
is now K*¢ and not K+c. If the verifier’s procedures to obtain C’s public key are not

very stringent or if X violates the party(ies) trusted by the verifier to supply him with

this key, then X will get away with the transaction and successfully use B’s
SAProxies.

The greatest risk may appear to arise when a trusted principal is endorsing another
principal’s token e.g. a visa or Freshness Certificate [Low94], and so accepting
liability for that token. Consider the situation where the verifier knows and trusts A
who endorses Cp with a visa. X may then send this visa with Cx to the verifier. The
verifier believes that Cx is valid because it is ‘endorsed’ by A. However, the verifier
must still check the PKC’s, Cyx, signature and in doing so must use K*¢’ if Cx is to

validate correctly. Principal A has not endorsed K*¢’, so the verifier has to be
persuaded of this key’s validity by some other means. The responsibility for getting
the correct CA public key still rests with the verifier.

N.B.

1. X does not have to violate the CA, C, to do this. X has to use a different CA
key.

2. X does not have to pretend to be B in the false PKC, though of course this is
also possible.

3. Generating such a false PKC is not possible with the private key of a violated
CA i.e. a different key is necessary to generate the same signature for different
data. Therefore violating a CA does not give rise to this situation.

2.1 Solutions
The problem can be tackled in two ways:

a. Instead of nesting the signature of the delegatee’s PKC in a token, the
delegatee’s public key is included. Then only the principal with knowledge of
the matching private key can make use of the token. The remaining problem is
how to identify the real owner of the public key.

b. The second solution is to make it computationally infeasible to produce a pre-
determined signature block. This is achieved by including the public key of the
CA in the PKCs.

Cp: B K*g Cid K*c life-span sig(Cp)K ¢

For every attempt at finding a bogus CA private key which generates the same
PKC signature as another, the value of the corresponding public key included
in the PKC, i.e. the data to be signed, also changes. Thus by this addition of
the CA’s public key, it becomes infeasible to generate a false PKC with a
particular signature and thus the threat to PKCs may be removed.

3. Tokens of Delegation

Are the tokens of delegation (SAProxies) also under the same threat as PKCs ? Can a
perpetrator gain any advantage from generating a bogus token that has the same
signature block as an existing one?

Consider the following example [Low94].

RSIB
I I I I
Cg Cp Pg.a request
| | | |
Cs C, P, ar
|
| | I |
C, G S ar

Assume X wants to make a request that looks like it is coming from B whilst
exercising rights that B has not got e.g. by replacing ar’ with enlarged rights, ar”. To
achieve this X attempts to generate a bogus token, P'g.4, that has the same signature
block as Pg:A.

X, however, has several problems:

a. X’s key, K™x, is such that when producing the following token

r

Pga: |Cs8 |CA [Pas |ar sig(P'p.A)K X

then sig(P'p:4)K"x = sig(Pp:a)K"a.

It is obvious that as this token stands, verification will fail because the public
key referenced by Ca which will be used to verify the token signature, is

different to K*x, the key needed to verify it.

b. To overcome this X, may replace Ca with Cx in P’g.4. Then P’p.4 will verify
correctly, but the llnc of authority from Pa:g to P B A is now broken as
sig(Cx) # sig(Ca) in Pa:s.

c. X therefore has to find a bogus CA key pair where K¢’ is chosen so that

sig(Cx)K-¢' = sig(Cpo)K-¢. Then the line of authority will follow from
one token to another and the right public keys are pointed at so that the
signatures of the tokens of delegation are valid. However, to get this far X has
had to introduce a bogus CA key pair and a bogus PKC, thus reducing the
problem to that described and dealt with in 2.1.

It is obvious from the above example that any X other than B would gain no benefit in
replaying B’s request as stated above, as X would only be able to repeat what B is
allowed to do anyway. This would effectively be the same as repeating the original
request without modification.

Therefore, either B has to be the perpetrator and sign a new request to do more than he
was allowed to do, or any other X would have to generate a bogus PKC for B as well
with which he can then generate and validly sign a new request.

If X has violated B’s CA and generated a bogus PKC that is signed by the correct CA
private key, then the verifier may be more easily persuaded that B’s new PKC is valid.
X then also has to change sig(Cg) in Pp:a.

In all cases the perpetrator always has to generate at least one PKC with a new, bogus
CA private key and this can be dealt with as in 2.1.

4. Advantages of using Nested Signatures

We have already argued that PKCs should include the CA’s public key. We now
consider whether SAProxies should also contain public keys and not PKC signature
blocks.

If only a public key (and not a PKC) is placed in a token, then the identity of the
owner of the public key has to be determined by some other means. There is then no
independent ‘electronic identity’ which can accompany a request so that full
verification can be done locally. Authentication of such users then requires
communication between the verifier and the CA of the user being authenticated and this
is not easily achieved in a distributed system.

It is possible to embed the whole PKC in a SAProxy i.e. include the whole PKC and
not just the PKC signature block in the SAProxy and therefore the SAProxy signature.
However, a PKC is an unforgeable entity on its own and as such does not need to be
covered by another signature. The only requirement is that the identity of the PKC
owner is tied to the SAProxy which is achieved by nesting just the signature block.

If the whole PKC is embedded in the SAProxy the amount of data to be verified
increases in every SAProxy and efficiency is noticeably reduced. It is then not possible
to achieve the significant improvement in performance, both in the amount of data that
has to be transmitted as well as verified, that is possible by caching tokens.

Provided that the format of a PKC is modified to include the public key of the CA
generating PKCs, the observation made in 1 does not pose a threat to the SAProxy
scheme because:

a. it is then computationally infeasible to produce a PKC with a predetermined
signature block.

b. without being able to produce such a PKC, verification of nested signature
blocks referring to false SAProxies will always fail.

Although this modification results in extra data being present in a PKC, the cost of this
is negligible as it only occurs in PKCs and not in all SAProxies. The SAProxy scheme
would therefore gain no strength from having public keys or PKCs embedded in the
SAProxies and it would be disadvantaged by a loss in performance.

5. Conclusion

We have shown that a CA’s public key should be included in the PKCs that it
generates. We have then shown that there is no need for any further modifications to
certificates or SAProxies to ensure that genuine SAProxies cannot be used with false
PKC certificates.

References

[LoCh94a] Low M.R., Christianson B. A Technique for authentication, access
control and resource management in open distributed systems. IEE
Electronics Letters, 30(2):124-125, January 1994.

[LoCh94b] Low M.R., Christianson B. Self Authenticating Proxies. Conputer
Journal, 37(5):422-428, October 1994,

[Low94] Low M.R. Self Defence in Open Systems: Protecting and Sharing
Resources in a Distributed Open Environment Hatfield: University of
Hertfordshire, Computer Science Division. Thesis (PhD), September
1994,

