DIVISION OF COMPUTER SCIENCE

Modelling Changes in Organisations for a Complex World

P N Taylor
E De Maria

Technical Report No.228

September 1995

Modelling Changes in Organisations for a Complex World

P, N, Taylor and # E. De Maria.

* Division of Computer Science and # Business School,
University of Hertfordshire, College Lane, Hatfield, Herts.
AL10 9AB. UK.

Tel: +44 (0) 1707 284763
email: comrpnt@herts.ac.uk

UIn this paper we discuss how to model the dynamic restructuring of a complex
organisation and its information flows to ensure that the organisation continues to
function despite fundamental changes taking place. Changes occur mainly because of
functional and environmental effects.

Decisions can be made rapidly and effectively if key information about each level of
the organisation is stored in an efficient and accessible way. We show how to model the
organisational hierarchy such that it can be adapted quickly and easily to cope with new
challenges.

As an example, we describe how this model is used in a wargame which simulates
two military organisations in conflict, The model itself has far wider applications since it
can be used to monitor the flow of command decisions, logistics and changes in unit
position and status. ' '

We introduce an object-oriented computer model which views an organisation as a set

of interacting objects; mathematical process algebras are used to model these interactions.

" This work is funded by sponsorship from British Aerospace Defence Co. Ltd. (Dynamics Division), Six
Hills Way, Stevenage, Herts. SG1 2DA. UK. Principal BAe Project Engineer, J.L.. Young.

Introduction

The relationship between Operational Research and the military has had a long and distinguished
history, dating back to just before the second world war. The success of the work carried out in those
pioneering days of O.R has assured it a permanent place in association with the military.

Many of the mathematical techniques that we use today had, at that time, not been invented.
Neither had the powerful computers that we now use to carry out such tasks. Despite the lapse of time
since those early days of O.R the emphasis of military O.R is still towards applying available tools and
methods to study military operations. Carrying out this military work we find that private companies,
individuals and universities are the main suppliers of material in this area [3]. The application area with
most entries (taken from a study between May 1984 and May 1991 [3]) were warfare and manpower.
Our own particular study concentrates upon the communication of information in warfare and the
computer simulation of combat between two battalion-sized forces.

Presently, we entrust many of the calculations and assessments that are carried out on behalf of
O.R to mathematical computer models. These models provide us with large volumes of data about the
system under review so that representative studies of a problem area can be undertaken. Mathematical
models are an essential part of military O.R studies since large scale military exercises are beyond the
scope of all but government-based organisations, mainly due to their cost.

We can break our study into 3 areas: (i) reality, which is where we reside, (ii) a model of
reality. For this particular study perhaps a manual wargame. Finally, (iii) a software interpretation of
the model of reality. This paper concentrates upon this third area, the software interpretation.

The computer model that we introduce in this paper uses advanced software modelling
techniques that have evolved within the field of computer science over the past few years; techniques
centred around object-oriented design methodologies [6,15] and object-oriented programming
languages [11,16]. These new software practices give us a more flexible approach to solving problems
than was possible in the past.

We apply our software model to the dynamic organisation of a battalion-sized military combat
force and draw upon a subset of problems encountered by all organisational structures in either
military, industrial or commercial environments; namely, coping with changes to the communication
structure of an organisation which are influenced by either a potentially hostile environment or changes
in internal functionality, Our model is an abstraction of military command as we only capture units
from battalion level downwards to individual squads of men. Consequently, we only model six levels
of the overall military command structure.

Certain assumptions are made regarding our software model. We simplify the communications
model normally adopted by the military by insisting that units at level » of the command structure can
only communicate with neighbouring units at levels n-/ and n+1. In our computer model destruction
of the force commander’s Battalion node leads to cessation of the wargame. In reality we recognise that
numerous levels of redundancy are introduced to ensure survival of the force and its command
structure, Units resident in our software model may not communicate with other classes other than

Modelling Changes in Organisations for a Complex World. ‘
Presented by PN, Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 2

those listed in their attributes list. At this early stage of development our work draws upon theoretical
ideas regarding data flow and the rerouting of communications links.

The organisation of this paper is as follows. Section 1 introduces the problem area by way of
our computer simulation model. We address a central issue of maintaining the flow of information
despite disruptions to the combat communications network. Section 2 discusses the dissemination of
command that so typifies the management structure of a military organisation and other civilian
organisations which are also engaged in life threatening situations (e.g: the emergency services).
Section 3 introduces the relevant storage of information in terms of efficient access, communication
and alternate sources of information. Section 4 presents a strategy for adapting information storage
depending upon environmental and functional changes to the network. Section 5 discusses the locality
of information and effective and efficient data transfer (i.e: getting the relevant data to where it is
needed). Section 6 discusses a multi-layered solution using object-oriented software design methods
and implementation. Section 7 suggests ways of identifying errors within elements of the organisation
before they can become a threat to the entire network; namely a strategy for minimising critical failures.
Section 8 discusses the stability of the proposed software data structures. Section 9 formalises the use
of objects and the dynamic connections between them using the m-calculus [8] to show how
connections can be substituted between nodes when failure occurs. Section 10 draws conclusions from
the work carried out so far and suggests areas of further research and development to improve and
enhance our proposed model.

1 Disruption of Information Flow

Military organisations the world over adopt a similar hierarchical view of management. Policy and
strategy is passed down from senior ranks to lower echelons to be implemented. We use a similar
hierarchical view of management to model the command structure behind our battalion level wargame;
entitled EMBLEM (Empirical Man-in-the-loop Battalion Level Effectiveness Model).

The primary goal of EMBLEM is to provide British Aerospace (Dynamics) with weapons
related information in a man-in-the-loop combat simulation environment. EMBLEM is intended to
provide a platform from which statistics regarding the use of both direct fire and indirect fire weapons
can be gathered. We use the computer simulation of engagements between opposing forces to generate
simulated results of weapon systems performance. The computer model enables us to produce realistic
data regarding the effective performance of particular weapon systems as well as highlighting areas of
concern related to their design and deployment.

In our computerised wargame two commanders “do battle” by positioning fighting units upon a
map displayed upon the computer screen and then issue orders to those units in order for them to reach
their assigned objectives. Underlying the map a terrain database (GIS) will supply height information
for line-of-sight and movement calculations to be performed so that the possibility of visual
engagement can be determined. Flight characteristics for different weapon systems will be fed into the

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995. Page: 3

|
i
:

simulation enabling accurate fly-outs to be recorded.

EMBLEM is a closed wargame; each player does not have full knowledge of the position or
strength of the enemy. Separate terminals are used to display each player’s own force positions and any
known enemy positions. Intelligence gathering sensors will relay enemy details to the commander of
each battalion (i.e: each player). Commands are issued at the terminal, directed towards individual
units or groups of units on the battlefield.

A senior player takes the role of neutral umpire, determining the validity of each move and
request from each of the two players. Historically, the Red team are the attacking force, with the Blue
team defending key installations or primary positions on the battlefield. A typical engagement area for
our model is 50 kilometres?, an area dictated by the weapon systems that we intend to study. Larger,
more complex combat scenarios have been modelled for different studies with different objectives for
the system designers [2].

The data structure used within EMBLEM resembles a tree structure where one complete tree
models each fighting force. Object-oriented software construction techniques [6,15] are used to
provide encapsulated storage for each node on the tree. Note that we use the terms node, object,
entity, unit and process interchangeably to describe the same element in our model. At the software
level each node is an object containing local state information, behaviour and links to subordinate
nodes and its own commander. We use a dynamic table (stored as a file) to maintain the actual location
of each subordinate node.

Presently, messages take the form of method calls to specific objects which are akin to
requesting an object to perform a certain task rather than passing a packet of information containing a
task to each object. Future development intends to pass messages as parameters to method calls to
increase the flexibility of the software model.

Although unlimited subordinate nodes can exist at each layer in our software model a battalion-
sized force is usually restricted to the units shown in Figure 1.1.

1 x Battalion

6 x Companies
24 x Platoons (4 per Company)
96 x Sections (4 per Platoon)
480 Vehicles (5 per Section)
480 x Squad (1 per Vehicle)

B

Total of 1087 units per force.
Figure 1.1

To model conflict between the Red and Blue teams we construct two tree structures.
Communications propagate through the six layers of the tree structure in order to task each object with
a specific mission. Only the last two layers of the structure represent active units on the battleficld. The
tirst four layers simply allow us to capture the chain of command. Orders filter down to vehicles and
squads from the entities above. Figure 1.2 shows one battalion structure partially populated with
objects, one sub-branch of the whole structure is presented to aid clarity. For example, a typical fully

Modelling Changes in Organisations for a Complex World.
Presented by PN. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 4

i
|
|
|
|
I
|
|
|
|
|

|

populated diagram of a battalion-sized force would require another 20 platoons, 92 sections, 475
vehicles and 479 squads. Based upon the overall size of each force the scope of the entire
communications network becomes apparent, hence the need to sub-divide communications at each
command level to maintain simplicity.

The Battalion node is head of the organisation and from each player’s perspective is used as a
point of entry into the structure. An order issued at the Battalion node is disseminated through the
chain of command to the appropriate vehicle or squad.

In EMBLEM, as in reality, communications flow in both directions through each layer in the
structure. Each entity connects to n subordinates as well as its own commander. Therefore, any node
can identify its commander and who it itself commands.

Battalion
Company Company Company Company Company Company
\
Platoon Platoon Platoon Platoon
\
Section Section Section Section
NT—
Vehicle Vehicle Vehicle Vehicle Vehicle

Squad

Figure 1.2

It is paramount for any military unit to continue to function despite serious disruptions to its
information pipelines and command structure. At this stage in its development much of our theoretical
work and software implementation parallels that of [1], although we simplify the fine details of
logistics and presently omit electronic countermeasures. Whereas [1] concentrates upon a complete
model of an operational unit this paper focuses upon certain key issues of the complete system; namely
information and flow and communications between battlefield units.

Throughout the remainder of this paper we attempt to show how such a structure can be
maintained so that key information continues to flow around the system regardless of the loss of a
certain number of nodes or, perhaps, entire levels of the original structure.

Modelling Changes in Organisations for a Complex World.
Presented by PN, Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 5

2 Dissemination of Command

One of the key issues surrounding the survival of an organisation in a life threatening environment is
that of its ability to adapt to change; akin to evolution in biology where only the fittest and most flexible
survive. In the context of military operations we regard a life threatening environment as one which is
continually changing, cannot be predicted and seeks to influence the organisation in some way by
attempting to compromise elements of the structure.

Damage to communications within an organisation can be minimised by adopting a strategy of
disseminating command. In a military structure this entails a certain amount of autonomy at each of the
six layers that we have identified. Overall control is still maintained at the head of the structure and
overrides any locally issued commands. In the absence of communications from a higher authority
each node should take control of itself and communicate with its subordinates in the hope that
communication with managing nodes can be restored.

Stage 1 Stage 2

Battalion Battalion
Company Company
Platoon Platoon

Figure 2.1

Figure 2.1 (Stage 1) illustrates normal two-way operational communications. Stage 2 shows
the failure of a link between the battalion commander and one of his company commanders.
Subsequent communications from the battalion are lost and therefore the company assumes control of
itself, maintaining links with subordinate nodes whilst sending messages back up the hierarchy to its
commander regardless of any further commands it may or may not receive.

One important implementation issue is the collection and storage of relevant information to
enable each node to carry on without directions from its superiors. One software solution is to share
the location of each node’s commander and its subordinates with all other nodes on the same level of
the data structure. Problems associated with this approach include the administration of information
should some nodes cease to function. The integrity of the information across the network would be
lost if there is a break in command. Also, implementation constraints are imposed by storage (memory)
and speed of execution (hardware). With 2174 nodes (representing fully populated forces for both Red
and Blue), each requiring up to 40 bytes of data storage we soon encounter large overheads in terms of
both access times and memory usage. For any computerised combat model to be effective response
times are critical to ensure feedback to the commanders so that decisions can be made regarding
commands issued to respective forces.

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 6

i

Alternative strategies for information storage could include the creation of a God node which
holds information about every other node in the entire network. Arguments against this particular form
of network management are that failure of the God node will guarantee system failure; similar in
context to destroying the command structure by targeting the senior commander. Within complex
management organisations efficiency must be traded against effectiveness. Single, isolated stores of
information are not recommended as the network is under severe threat should the primary store be
compromised, especially if there is no information backup storage facility within the system.

Only information which is necessary for the survival of each node should be stored locally. A
question arises as to the identification of information that is regarded as necessary (the reader is
referred to [9] for more discussion on this topic). In our software model we concentrate upon
maintaining the links between nodes in the data structure by using existing nodes to provide a bridge
between one layer and another. This link information is stored locally at each node in the form of a
single value (the unit’s commander) and a table of values (the unit’s subordinates).

A unit can use these locations (o setup an alternate route to deliver required information. We use
a dynamic list of destinations that each node can reference in order to send commands to specific units
or all units under its command. Blanket commands that affect all lower echelons are simple to
implement but specific commands incur a higher overhead as the unit in question needs to be sought
out and then tasked. A ‘hit” on the specific unit may only occur after a number of ‘misses’, where the
communications were routed through incorrect branches of the tree. A key issue arises from the
software implementation of routing messages with specific routing information embedded within each
packet. Increasing the message size with such information incurs a heavier load on the communications
network as all messages are increased in size. Efficiency is traded off against the number of ‘hit’s and

‘misses’ of each packet (see [12] for more information regarding routing algorithms and efficiency).

3 Information Storage
We have already argued that the notion of storing a lot of network structure information per node is
inefficient and causes depreciation of performance within the system. The question remains “what
information is required by each node to aid its survival and to allow it to perform efficiently?”. Similar issues
are addressed in [9] regarding the placement of information in distributed systems to aid efficiency
whilst maintaining data integrity. Although we regard Battalion, Company, Platoon and Section nodes
as simply transmitters for receiving and forwarding information they do have some physical presence
on the battlefield. Each one of these four entities represents a command post which can be subjected to
attack by the enemy. Should this happen then command would have to be transferred to alternate sites
to enable the force to operate in a coordinated manner.

In our EMBLEM model an end-of-game signal occurs when the Battalion node is put out of
action. There is only ever one Battalion node per combat force. The two physical entities that we are
most concerned with are vehicles and squads. Strict rules govern the use of vehicles and squads when

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 7

receiving and acting upon commands. Vehicles can pass commands to squads whereas squads are
terminal nodes and do not pass commands onward. Only ‘live’ vehicle crews and squads can receive
commands. A vehicle without a ‘live’ crew or squad in attendance 1s inert.

From the perspective of our software model, if a node should cease to play any further patt in
the wargame (either through failure or actual destruction) then its local state information is lost.
However, we do not lose the information about the dead unit’s subordinates. Consider the example in
Figure 3.1.

Company cl communicates with three platoons. Messages come down from battalion
bl, through company cl and on to the platoons pl11, p12, p13 and so on down the chain
of command. The failure of company cl means that communications from battalion bl
will be lost if some other communications bridge is not set up to act as a replacement.

Figure 3.1

In our software model each node maintains a list of subordinates with which it communicates.
The list itself is in the form of a file which contains the memory addresses of each subordinate node.
An analogy of the list would be radio frequencies and code words with each subordinate
communicating on a slightly different frequency. Any node taking on the responsibility of a failed node
would simply add the new addresses to the end of their list. When that node gets its communication
slot it simply passes each message to each node pointed to by the addresses in its file list. To illustrate
failure recovery in our particular model consider the course of events shown in Figure 3.2.

Company c2 assumes command from company ¢l. Company ¢2 adds platoons pl11, p12,
pl3 o its existing list of platoons (p21, p22, p23). Communications are then restored
and the structure is once again fully operational. '

Figure 3.2

We could automate the selection of an alternate bridging unit to carry the messages of a failed
unit. However, as EMBLEM is a man-in-the-loop simulation we offer alternate bridges to the player
who may then choose an appropriate unit to take control. Figures 3.3.1 and 3.3.2 further illustrate the
previous discourse from Figures 3.1 and 3.2.

cl
c2

Stage 1 bl Battalion

pll . . p2l
el pl2 <2 Company p22
p23

pl3 » /

Platoon 1 Platoon 12 Platoon 13 Platoon 21 Platoon 22 Platoon 23

[
|

_1
1
=177
A
1
1
1
i
1
iy
i

Figure 3.3.1

Modelling Changes in Organisations for a Complex World.
Presented by PN, Taylor and E, De Maria at OR’37. September 12 - 14 1995, Page: 8

c2 pll
Stage 2 bl Battalion I' pi2
pl3
p21
p22
¢2 Company p23
70 | 33
Platoon i Platoon 12 Platoon 3 Platoon 2 Platoon Platoon
el == = il r= o= r- -
S s B coI £In fIn
i | i~ =" P i I i

Figure 3.3.2

Figure 3.4 shows a source code extract for the sending of a message from a platoon to a series
of sections, up to some maximum constant value kMaxSECTION. A collection of these constants form
systems parameters that govern how many units of a particular class can be contacted via each other
class in the system. The boundary sel by these constants is known as the critical failure threshold
which restricts rerouting and backup unit allocation (see section 8 for more detailed discussion on
backup units). For the EMBLEM project we use the object-oriented programming language C++ [11],
hence both platoons and sections are modelled using class constructs.

Boolean PLATOON: :SendMsqg (MSG command)
{

FILE *filePtr;

short count = 1;

if((filePtr = fopen (this->getPLLinkFileName (), "r")) == NULL)
return(false),

while (count <= gMaxSECTION && (fscanf (filePtr,"$p",&ptrSECT) != EOF))
{

ptrSECT->SendMsg (command) ;

count++;

}
return (true);
}//end-method-PLATOON: : SendMsqg

Figure 3.4

In our software model we assume a maximum permissible number of node failures. Once
exceeded further rerouting and backup node allocation is not possible. Eventually an end-ol-game
signal occurs as too many units have been destroyed or put out of action. One system global variable
that we use is that of a maximum value for subordinate nodes. A limit can be placed upon the number
of subordinate nodes that a commander can communicate with, This value represents the number of

entries in the link table associated with each node.
If all communications fail in the network then it is intended that each unit will proceed with
their last command and halt until further instructions are forthcoming. Presently, we do not model any

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. D¢ Maria at OR’37. September 12 - 14 1995, Page: 9

form of intelligence in the units on the battleficld.

In section 6 we introduce a more advanced method of redundancy which builds upon the ideas
presented here. Our advanced method adds another level of redundancy into our model by introducing
extra nodes into the system to replace failed nodes rather than extending the coverage offered by
existing nodes.

4 Adaption of Information

It is logical to assume that an organisation’s environment will influence the behaviour of that
organisation. In EMBLEM the orders that are issued by each commander to their respective forces are
based upon experience and available intelligence. In reality this intelligence information is gathered
from sensors on the battlefield, either manned or unmanned. In our software model intelligence
information is presented in the form of console messages which are logged in a file for on-going
reference and post-game analysis.

We regard environmental effects as those primarily caused by enemy units. Internal (a.k.a
functional) effects are caused by node failure or internal processing carried out by autonomous nodes
which are only indirectly effected by the enemy

Each type of influence (either internal or external) can cause the links within the
communications network to change. We do not consider that the actual organisational structure will
change, only that the nature of the connections within the organisation will change. Connections
between units must be reviewed in order to maintain successful communications across all six levels in
the chain of command.

In our software model elements of the command structure can be tested for failure by
evaluating the state of each node, as shown in the diagrams in Figure 4.1.

s/ s2.1 531
Platoon pl Platoon’ 2 Platoon” 3
Ry R)
. 1 .82 . 831
Section * - Section ~ Section ?
‘K Kill’ ‘C Kill’

Figure 4.1

Section s/ in Figure 4.1 is not in a fit state to carry out any orders as it is ‘dead’. The state
K Kill effectively removes the unit from the battlefield as it can play no further part in the simulation.
In our software model, if a unit forms a link to lower echelons then it must be replaced or bridged,
otherwise all subordinate nodes from the dead node onwards will be not be able to be contacted by the
force commander. In Figure 4.1, section 52/ has suffered a ‘communications kill’ (C_Kill) and cannot

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 10

be communicated with or communicate with any other unit. At some later stage in the battle we may
signal adequate repairs to the communications equipment aboard section s21, thus enabling it to rejoin

the communications network. Section s37 is temporarily unable to receive communications (C_NP -
communications not possible). This may be due to electronic jamming or even terrain shielding. It is
only a temporary situation but any messages sent during the period when s31/ is in this state will not be
received.

In an aggressive environment the creation of dead zones within a organisation’s communication
network is expected as soon as nodes start to fail (i.e: units being compromised on the battlefield). The

structure of our software model draws upon the experience of military computer networks which have
the ability to survive in hostile environments [12]. These types of network can reroute information to
ensure survival. With our computer model we seek the same results, accepting failure of the entire
network only when a critical number of key nodes are destroyed (i.e: surpassing the critical failure
threshold). The particular strategy that we intend to follow is that of flooding the network with
messages [12]. Due to the relatively small size of our network in terms of depth (i.e: 6 layers) we do
not anticipate unacceptably large overheads as messages that ‘miss’ their target will not travel beyond
6-n layers before reaching a terminal node, where n is the layer issuing the message. Figure 4.2 shows
an example scenario featuring ‘hit” and ‘miss’ nodes.

| Platoon

Section Section

J e o ' i AN
Vehicle Vehicle Vehicle Vehicle

: Squad & ¢ Squad ;¢ Squad Squad

Figure 4.2

[

The shaded units represent those leading to a ‘miss’. The squad destined for the command is
shown at the end of the bold path.

|
1

4.1 Object-Oriented Design of EMBLEM Data Structures

Each layer in our EMBLEM data structure represents a separate class of object, where an object further
represents a combat unit in a battalion-sized force. The classes that we define for each layer are listed in
the table in Figure 4.1.1. The > DIS object at the top of the table in Figure 4.1.1 does not appear in our
conceptual command structure (as shown in Figure 1.2) as it is considered to be an abstract class and
consequently has no physical representation within our model.

2 Note that DIS (taken from the IEEE Standard 1278 for Distributed Interactive Simulation [5]) is our own
interpretation of the recognised military simulation standard used to connect several different types of
simulation info one virtual environment.

Modelling Changes in Organisations for a Complex World,
Presented by PN, Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 11

Layer| Class Name Unit Name

0 DIS Global Auributes per class
1 BN Battalion

2 coy Company

3 PLATOON Platoon

4 SECTION Section

5 VEHICLE Vehicle

6 SQUAD Squad

Figure 4.1.1

The structure of the DIS class is derived from those attributes common to all other classes in our
software model. The DIS class can be regarded as the grandparent object. The remaining six objects
are then derived from the DIS class. Each object class (BN,CQY,...,SQUAD) inherits its basic
behaviour and state information from the DIS class and then extends that information to include details
about its immediate neighbours and other specialist attributes. These specialisations make the object an
individual class from which other classes could be derived.

Object-oriented software construction allows us to reuse the structure of the DIS object,
minimising duplication within the source code. The DIS class is an abstract class template which
provides a given form for its derived classes. These in turn are also abstract class templates. It is only
during instantiation of either of the layers 1 through 6 that an instance of an object actually exists in a
form that we can manipulate and command. Figures 4.1.2 to 4.1.8 show the C++ source code extracts
defining each class of object, from level 0 (zero) DIS to level 6, SQUAD.

class DIS class BN : private DIS
{ {
private: private:
Force forcelD; coy *nirCOY;
char entityName[kMaxNameSize];
float entityLocation{3]; public:
Sfloat entityVelocity[3]; ...class methods defined here
float entityOrientation|3]; }
FightingState state;
protected.:
...class methods defined here
}
Figure 4.1.2 Figure 4.1.3
class COY : private DIS class PLATOON . private DIS
{ L
private: private:
BN *ptrBN; coy *pirCOY,
PLATOON *ptrPL; SECTION — *purSECT;
public: public:
...class methods defined here ...class methods defined here
/ J
Figure 4.1.4 Figure 4.1.5

Modelling Changes in Organisations for a Complex World.
Presented by PN, Taylor and B, De Maria at OR’37. September 12 - 14 1995. Page: 12

|
|

class SECTION . privaie DIS
{
private:
PLATOON *purPL;
VEHICLE *ptrVEH,
public.
...class methods defined here
J

Figure 4.1.6

Note that the class VEHICLE in Figure 4.1.7 has two FightingState variables. These hold the
current state of both the vehicle and the crew. Commands are carried out provided that the crew is in a
position to receive them (not K_Kill, C Kill or C_NP) and that the command is reasonable and can be
carried out (e.g: movement command and vehicleState # M Kill).

class VEHICLE : private DIS
{
private:
SECTION *pirSECTION,
SQUAD #pirSQUAD;
short numberOfCrew;
WEAPONSTRUCT vehicleWeapons[kMaxWeaponSize];
FightingState vehicleState, crewState;
public:
...class methods defined here
} .
Figure 4.1.7
class SQUAD : private DIS
{
private;
VEHICLE *pirVEHICLE,
short numberQfMen;
WEAPONSTRUCT squadWeapons[kMaxWeaponSize];
public.:
..class methods defined here
}

Figure 4.1.8

The creation of each object of a specific class (its instantiation) is brought about using the C++
function new(), which allocates storage for the object and assigns a pointer variable with the address of
that object. Every method (a.k.a operation or function) that we request of a particular instance of a
class uses the assigned pointer variable. Figure 4.1.9 illustrates object creation for each of the classes
in our model, together with example method calls using the pointer variables.

Modelling Changes in Organisations for a Complex World.
Presented by PN, Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 13

BN *ptrBN = new(BN);

coy *oirCOY = new(COY);

PLATOON *ptrPLATOON = new(PLATOON);
SECTION *pirSECTION = new(SECTION),
VEHICLE *ptrVEHICLE = new(VEHICLE);
SQUAD *ptrSQUAD = new(SQUAD),;

ptrBN->moveBN(newPosition),
ptrCOY->1inkCOY BN(pirBN);
ptrPLATOON->setPlatoonForce(Blue);
pirSECTION->printSection();
ptrVEHICLE->getVehicleState(),
ptrSQUAD->armSquad(weapon);

Figure 4.1.9

In C++ the arrow notation (->) is used to request a specific method pertaining to a class. In
Figure 4.1.9 the methods invoked can be seen after the arrow. Parameters required by each method
appear in the braces following the method name.

5 Locality of Information

By following the pointers housed in each object a unit knows the identity of its commander and also
the identity of those units that it commands. Units do not hold information about other units of the
same class (i.e: units on the same level of the command hierarchy). Formally, nodes at level 1 do not
store information about other nodes at level n, only information regarding a single n-/ level node (its
commander) and gMax<ClassName> multiplied by n+/ level nodes (its subordinates).

As each level of the EMBLEM data structure is represented by a distinct class of object we
could consider a modification to the failure recovery method initially introduced in section 3, where an
existing node takes up the responsibilities for communications on behalf of some failed node.

The proposed strategy for modification uses a backup supply of nodes, initially unused, that
are available to be called upon should units start to fail. A global variable governs the total number of
each class of object available as a backup. However, certain restrictions apply. For example, only one
instance of class BN is permitted and no further instances of classes VEHICLE or SQUAD are
allowed. These last two classes represent physical entities and, as such, we cannot consider replacing
them should they fail, once you’re dead you’re dead! The global variables gMaxBackup<ClassName>
store the number of backup nodes of each class available to the network at a time of crisis.

The C++ source code extract in Figure 5.1 helps to crystallise the idea of backup objects being
used to support successful communications.

It is worth pointing out at this stage that the original strategy for using existing nodes to aid
communication still exists and comes into effect once all backup nodes have been exhausted. The
modification proposed in this section simply provides yet another level of redundancy to our existing

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37, September 12 - 14 1995, Page: 14

command structure, further enhancing its resilience against enemy attack.

while ((count <= gMaxCOYLimit) && (fscanf (filePtr,”$p”,&ptrCOY) != EOF))
{
state = ptrCoOY->getCOYState();
if((state != K Kill && state != C Kill && state != C NP) &&
gMaxBackupCoYy > 0)
{ //1if spare node available then allocate and use failed node’s links

newCOYPtr = new(CQOY),

newCOYPtr->SetLinkFile (ptrCOY->getLinkFile());
newCOYPtr = ptrCoOY;

delete (ptrCOY) ;

} //...else if no spare nodes available then use existing node..
else if((state != K Kill && state != C Kill && state != C_NP) &&
gMaxBackupCOY <= ()
{
tempCOYPtr = ptrCOY->getNextCOYFPtr (),
tempCOYPtr->LinkFiles (tempCOYPtr->getLinkFile (),
ptreoy->getlLinkFile()) ;
tempCOYPtr->ResolveLinks () /;
delete (ptrCOY) ;
} //...else simply issue the command
else
ptrCoY->SendMsg (command) ;
count++;

}//end-while
Figure 5.1

The extra step of using spare resources to help maintain communications throughout the

network can be further illustrated in Figures 5.2 and 5.3.

Available Backup Resource
x

Company
Stage 1 bl

Battalion

p2l
Company 22

/ \m

Platoon pﬁl Platoon p2“1

T.

|| | r= ([r
':
|

~
-
R
=2
I
S
=
S
|
-
~
=
S
I
S
=
P~
LS |
3
3
)
I
S
b
S |
~
N
3
S
<
o
.~

| —

i

i

1

I

1
e |

| 77
i~ i

| Figure 5.2

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 15

— — x/
Battalion)

Stage 2 bl

e N =T
cl g Company p22
B 7)23
Platoon P} | Platoon P12 | Platoon P13 | Platoon P21} | Platoon P23 | Platoon P23|
r-- == = = -l il
(I c_2 cC-o c_2 C-o I
1 | i 1 i | i 1 i i i

Figure 5.3

The node for deletion is shown as the shaded Company object ¢/ in Figure 5.3. Note the
updated table for the Battalion b7 node and the use of the original ¢/ Company list table with the new
Company node x/. When modelling an organisation with a poor logistical capability we reduce the
number of available backup nodes. Difficull terrain and hazardous resupply routes will also have an
effect on the total number of excess unifs at an organisations disposal, The umpire for each game is
responsible for determining the bounds for backup objects and maximum communications for each
class.

Within our data network the rate of success in a hostile environment remains high as key nodes
can be substituted if they fail. Memory considerations associated with extra node allocation cannot not
be ignored but failed nodes will release their allocated storage back into the pool of available memory
so the reuse of address space is therefore possible.

6 Multi-layered Management Solution

For the sake of efficiency it seems logical to service any request locally rather than implicitly request
other distant nodes to undertake the task. In the software model used to build EMBLEM local help
comes in the form of object classes that can aid successtul communications.

In object-oriented programming certain methods (a.k.a functions) are associated with each
object type. Common actions are dealt with at the top of the object inheritance hierarchy in the DIS
object (see section 4.1, Figure 4.1.1). Note that the inheritance hierarchy is a different concept to that
of the command hierarchy. Commands that are issued to assign objects to fighting forces (i.e: Blue or
Red), issue meaningful names (such as Platoon Bravo, Delta Section, 2nd Battalion), move objects
around the battlefield and set an object’s fighting state are all delegated up to the original methods
associated with the grandparent class DIS. Commands such as assigning a crew, arming a vehicle and
engaging the enemy are dealt with locally due (o the uniqueness of the action.

Communications and orders propagate through the chain of command in a single direction. In
some cases local action is required prior to the command being forwarded to the next level of the

Modelling Changes in Organisations for a Complex World,
Presented by PN. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 16

command structure. Intelligence and requested information is passed back up the chain of command
when necessary. Due to the nature of the branches in our data structure (see section 1, Figure 1.2)
information from the battlefield reaches the top of the command structure with minimum delay. System
parameters can be used to model communications failure (as field equipment is more susceptible to
interference than main base station communications equipment).

From an implementation viewpoint the delegation of operations undertaken by each class can
be seen in Figure 6.1.

A Common DIS Specialist
Commands / Commands
BN coY VEHICLE SQUAD
PLATOON SECTION L 4

Figure 6.1

Objects of class BN (i.e: battalion) represent aggregations of individual vehicles and squads of
men. Figure 6.1 shows how unique commands seek out their intended host and are executed according
to the pointer type that the message request came [rom. Computer Scientists are concerned with correct
typing of variables and classes because methods requested from a certain class must be called via a
pointer of the correct type, otherwise a type mismatch error occurs.

For example, pt rPLATOON->getUnitCommander () will return the name of the commander for
a particular platoon. The pointer variable ptrpraToON only points to one specific instance of a
PLATOON class and therefore operations belonging to that class are quite distinct from the same
named operations belonging to another instance of a PLATOON class. The requested command may be
issued at battalion level but will only be executed courtesy of a specific instance of PLATOON. If a
command were issued to rename a unit (€.g: ptrPLATOON->namePlatoon ("new_name")) then the
PLATOON class would determine whether it could perform the request or pass in on to its parent
class. Delegation causes the method request to move up the inheritance hierarchy where it is serviced
by a generic method in the DIS class.

The two key elements responsible for organising the data structure aspect of the EMBLEM
wargame are the object manager and the communications manager. These two managers have access to
each object in the system and coordinate those object’s actions. Lost communications are detected via
the communications manager and messages are sent using the access to each object that the object
manager provides. Addresses of new replacement nodes or supplemental nodes are found using the
routines supplied with the object manager and each specific object. Routes through the data structure
can be found using routines in the communications manager.

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 17

7 Fixed Indicators based on Error

To help with the maintenance of the communications structure we evaluate feedback from units at each
level of command. The feedback can come in many forms and may only be required prior to pursuing
some particular request. For example it may be necessary to determine the operational status of a unit
prior to requesting a service from it (as illustrated in the source code extract in Figure 5.1). A return
value of K Kill indicates that the service provider (i.e: the unit) is not capable of responding. Note that
other valid states for a unit in our software model are M_Kijll (unable to move), /_ Kill (unable to fire),
C_Kill (unable to communicate), C_NP (communications temporarily not possible) and, of course,
Alive.

Objects which are in no fit state to carry out commands can be identified simply by viewing
their current state. Should a failure be noted then the player can be asked to choose an alternative node
to take control of communications. Alternatively, an automated routine could spawn a new object to
take over from the failed node or even select another node to act as a communications bridge.

Another error trapping strategy requires the polling of each node throughout the network at
fixed intervals. Response failures could then be logged and (if necessary) a radical review of the
structure could be undertaken, rebuilding and establishing the links where necessary.

Whereas one strategy for error handling is dynamic (dictated by current events) an alternate
view is closely related to batch processing which entails radical reform of the network at prescribed
times rather than during execution. Batch processing would temporarily bring the network ‘down’
whilst it were taking place. Consider Figures 7.1 and 7.2, which illustrate the difference between
dynamic and batch error handling.

Dynamic Stage 1 Dynamic Stage 2 5
bl ' 4 ¢/ bl) -
Battalion 2 Battalion
pll 5 w2 pll
pL2 Company © Company© pl2
nl3 - / nl3
Platoon P11} Y Platoon P12} | Platoon P13 Platoon P} | Platoon P12} | Platoon P13
ri_| li_l | I | I fi-—l l:::l
r ™ =" QT =7 | i

i | ! [I

Figure 7.1

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 18

Batch Stage 1]

bl Baualion Py Batch Job List
pll > Replace Company cl
”5% Company © with Company c2
D

Platoon pll Platoon pi2 Platoon pi3

I‘t ~l I_t | rt |

C- T Q=" Q7
i 1 [T
Batch Stage 2 b1 - Batch Stage 3 b)
"\ Baualion Battalion
4 pll - rY pl/
\ pl2 Company** Company pl2

pl3 / \ pl3

klatoon pll klatoon e klataon pi3 klatoon pli klatoon pi2 klatoon pi3

r | r I r | r | r 1 r |
r r r
| 1

Figure 7.2

Note how the complete structure is rebuilt during stages 2 and 3 of the batch processing
example. The link tables are updated and used to determine new links, thus avoiding the network’s
dead zones.

Routines to handle the storage, resurrection and allocation of nodes with new link address are
required to ensure that the network structure can take care of itself, beyond the interaction required by a
player of our wargame when choosing an alternate communicating unit. To ensure smooth game play
within EMBLEM we adopt dynamic restructuring as it is more suited to the player’s needs for
continuity.

8 Degrees of Stability

The ability of our communications network to survive, despite certain node failures, has been
discussed. We have also, briefly, mentioned the notion of a critical failure threshold (dictated by user-
defined parameters), beyond which the entire network is in jeopardy. In our computer model, as in
reality, the failure or destruction of nodes in the network reduces the effectiveness of command, either
through the failure to deliver messages to certain units or by increasing the delay in message delivery.
In our software model the boundary of critical failure is reached when n subordinate nodes fail,
from which the system cannot recover. These disjoint failures will eventually trigger an end-of-game

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 19

|
1
!
|
!

signal.

As soon as all available resources are depleted then failure of the communications structure is
assured following any further node failure. We do not model the ability to rebuild damaged nodes as
they are permanently removed from the command structure.

The fundamental problem with attributing a number of minor node failures with the failure of
the entire system is that we cannot be sure if an accurate representation of the general failure would be
caused if n nodes failed over a fixed period of time. Building any computer model will require certain
assumptions to be made about areas such as the number of attempts at rebuilding or deciding when a
node has been damaged enough to make it fail. Qur goal is to produce a model that is a close
approximation of reality. Experience with using the model and observing military command and
communications situations can guide us in the assignment of parameters that govern the success and
general failure of the communication system that we seek to build.

9 m-calculus Formalisation of Dynamic Military Communications

The dynamic rerouting of communications in a military structure and the subsequent softwarc model
has been the subject of the majority of this paper. We now present a formal representation of the
communications network, showing how messages are routed around the network dynamically during
its execution.

From a military perspective the ability to change links within an organisation during battle is
essential. Dynamic rebuilding is highly desirable for military applications since combat forces cannot
take a timeour whilst restructuring occurs.

We use the m-calculus (pronounced pi-calculus) [8] to help us in the task of specifying formally
the dynamic nature of our model’s data structure. The m-calculus is a process algebra which captures
process behaviour; a process being a military unit in this case. Unlike a functional notation, such as Z
[10], used for defining data storage and operations, process algebras concentrate on the ordered
sequence of events that make up the behaviour of a process. There is no concept of timing except for
the synchronisations that take place between communicating processes. Process synchronisation is a
formalisation of communication along a similar channel at the same instance in time. The 7-calculus
itself has the ability to receive channels passed to it as parameters and then use those channels during
subsequent communications to other processes in the system. Consequently, the n-calculus meets our
needs in modelling dynamic connections between units. The appendix contains the full formal
specification of the EMBLEM data structure. together with explanatory text.

Extensions to the nature of dynamically changing process algebras have been proposed |14}
and it is conceivable that further work could be undertaken to map our work with the w-calculus to
other similar high order process algebras, such as [14].

One avenue to further research in the area of dynamic communicating systems is capturing the
idea of adding new processes to an existing network whilst allowing existing processes in that network

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. Seplember 12 - 14 1995, Page: 20

to communicate with those new processes. In our present nt-calculus specification only a finite number
of processes are present, where the links between those processes represent the dynamically changing
elements of the system. [13] reports on other notations to cope with adding new processes and
changing communications links although we recognise that no suitable notation exists yet which caters
for both new processes and new links during execution. We intend this section to address only part of
these two issues whilst explaining the key elements of the n-calculus specification and also how this
particular formal notation can be interpreted by a programming language, such as C++ [11] or various
concurrent actor languages [16], both of which include the concepts of communicating objects.

Figure 9.1 shows how the processes within our structure interconnect. The labelled lines
represent channels through which processes synchronise and communicate. For clarity the channel

names have been abbreviated thus: give — g, ralk — t and switch — s. Also, further channels from

processes subscripted with 1 have been omitted to aid clarity.

BN
8] / \8n
oY, oy,
] S]A/ 1y \)
PLATOON PLATOON,,
ty YJA/ tn \Er\gn
SECTION, SECTION,,
) S]A/ I \)\gn
VEHICLE, VEHICLE,
‘] S]
SQUAD,

Figure 9.1

Each channel #; to 7, represents a talk channel and is bidirectional, representing
communications propagating up and down the chain of command. Note that VEHICLE processes do
not connect to SQUAD processes using the g, to g, channels. This is due to the terminal node status of
a SQUAD process; it has no subordinates to pass new channels down to.

The nature of each process and channel is further explained in Figure 9.2.

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 21

1
1

Action

Description

Applicable Processes

uX =talk . X

talk repeatedly to commander or
subordinates.

COY, PLATOON, SECTION,
VEHICLE, SQUAD

give(t’s’) . switch t's” . @

receive two new channels on give
channel. Pass two new channels to

COY, PLATOON, SECTION
VEHICLE

subordinate process to enable comms.
between subordinate and new alternate
process at same level as current process
then stop executing current process.

UX = switch(t’s”) . X(t"s") PLATOON, SECTION,

VEHICLE, SQUAD

receive new channels, then swilch
over (o use those new channels.

send two channels to subordinate COY, PLATOON, SECTION

for use by sub-subordinate.

uX =givets. X

Figure 9.2

Due to the generic nature of the actions specified in the left-hand column of the table in Figure
9.2 recursion is defined using Hoare’s definition [4, §1.2.2, p.122] in rows 1, 3 and 4.

Each process in our w-calculus specification can now be defined in terms of input and output
channels, together with appropriate actions. For example, the formal definition of the BN process
(representing the battalion node) is given in m-calculus notation as:

BN U give; talk; switch; . BN
(i < gMaxCOY ¢j < gMaxPLATOON ¢ (state(BN) = K _Kill 2 state(BN) # C_Kill @ state(BN) #C_NP))

Figure 9.3

An invariant may be included with a process definition which ranges over the process during
its lifetime. In Figure 9.3 the invariant states that the subscript for any BN channel give must be within
the range 1 to gMaxcoy (a global variable value). Also, talk and switch parameters must not exceed the
total number of available PLATOON processes in the system. Lastly, the invariant checks the state of
the process to ensure that it is capable of receiving communications.

Basically, the behaviour of process BN is to ‘give’ the parameters talk; and switch; to a
subordinate COY process, which in turn passes them on to a PLATOON process to start using. When
a process switches between one channel and another (possibly during rerouting) the new channel will
appear in the input parameter switch(t’,s). After recursion the process will start to use the new channel
that was passed to it as a parameter during the previous communication.

The appendix contains the complete nt-calculus specification of the EMBLEM data structure and
explains the details pertaining to processes at each level of command. Discussion about the contents
and behaviour of the processes can also be found in the appendix.

The semantics of the m-calculus provides us with the ability to switch communication channels
and is ideally suited to our needs. We use the mathematical rigour of this formal specification language

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 22

to enable us to reason about the detailed design of the data structure and provide an abstract
representation of the communications model.

10 Conclusions

The ability to adapt to a changing environment is a necessity for any organisation fighting to survive.
Changes that occur within the organisatioh (functional changes) and those which are forced upon the
organisation from the external environment need to be dealt with by a system of change that is built
into the structure of the organisation itself. We introduce such a data structure that forms the heart of
our computer model wargame; EMBLEM.

This paper has illustrated a dynamic communications network, represented as a data structure
and based upon a military organisation. Clearly, comparisons can be drawn between the military
command structure and that of civilian emergency services, such as Fire, Ambulance and Police
forces. To a lesser extent we can also map our model of military command onto an industrial and
commercial management structure.

The need for adaptive structures is paramount within organisations that deal with life
threatening situations. The introduction of a communications network that is adaptive allows our
computer model to cope with a degree of failure throughout each of the six layers of command that we
have identified. Nodes on the network have the ability to reroute their messages, enabling the network
to continue to function. In our software model existing nodes act as bridges between one layer and
another, sharing the load of some failed node of the same class. Links are kept active provided that the
maximum number of subordinate links-per-node are not exceeded.

An extension to our original strategy of rerouting communications through existing nodes is
presented. We introduce backup nodes that can be allocated (up to some user defined maximum).
These extra nodes (of classes COY, PLATOON and SECTION) take control of failed node
communications. Upon exhaustion of these backup nodes our original strategy of sharing
communications through existing nodes comes into effect. Consequently, a two tier redundant
communications system is proposed; namely that of rerouting communications and allocating backup
nodes to substitute failed nodes.

Ultimately we seek to provide a flexible model of communication that can change throughout
its lifetime and mimic closely the command and control communications in a milifary hierarchy. The
military structures that we model are subjected to hostile environments. We therefore need to model the
effects of such environments. We give our software model a certain amount of redundancy but insist
that failed nodes cannot be repaired.

We have shown an efficient, yet simple model for a communicating organisation that can deal
with a certain amount of internal and external change. Our studies reveal that redundancy must be
incorporated into the very structure of the organisation itself if it is to be flexible enough to withstand
certain changes. Further research is needed to map our simple model onto larger organisations. Also

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995. Page: 23

we seek to expand upon the ideas of prioritising messages and reusing repaired nodes after their initial

failure.

Although we do not explicitly discuss other non-military organisations the basic structure of

our data model shares many attributes found in industry and commerce. We can translate the layers of

military command into equivalent layers of management. Consequently, our work has application in
commercial and industrial sectors and can be used to show that computerised communication models,

such as that used in EMBLEM, can be of benefit to those wishing to model change in any hierarchical
structure with a similar form.

References:

[1]

2]

[6]

[7)

[8]

(9]

[10]

Bailey, M., Kemple, W. and West, M. et al. (1994). Object-Oriented Modelling of Military
Communications Networks. Journal of the Operational Research Society. v45, no.10.
ppl108 - 1122.

Gallagher, M.A. and Kelly, E.J. (December 1991). A New Methodology for Military Force
Structure Analysis. Operations Research. v39, no.6. pp877 - 885.

Hartley III, D.S. (August 1992). Military Operations Research: Presentations at ORSA/TIMS
Meetings. Operations Research. v40, no.4. pp640 - 646.

Hoare, C.A.R, (1985). Communicating Sequential Processes. Prentice-Hall: London.

IEEE Standards Board. (March 1993). IEEE Standard for Information Technology - Protocols
for Distributed Interactive Simulation Applications. IEEE Std. 1278 - 1993.

Meyer, B. (1988). Object oriented sofnwvare construction. Prentice-Hall International.
Milner, R., (1989), Communication and Concurrency. Prentice-Hall: London.

Milner, R. (October 1991). The Polyadic n-Calculus: A Tutorial. LECS Report ECS-LFCS-
91-180. Department of Computer Science, University of Edinburgh.

Singh, G. and Bommareddy, M. (June 1994). Replica Placement in a Dynamic Network.
Proceedings of International Conference on Distributed Computing Systems. IEEE, Poznan,

Poland, June 21 - 24, 1994. Conf. Code 21451. pp528 - 535.

Spivey, M. (1989). The Z Notation. Prentice-Hall: Hemel-Hempstead.

Modelling Changes in Organisations for a Complex World.
Presented by PN. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 24

[11] Stroustrup, B. (1991). The C++ Programming Language, (2nd. ed.). Addison-Wesley,
Reading: MA.

[12] Tanenbaum, A.S. (1988). Computer Networks, (2nd ed.). Prentice-Hall: Englewood Cliffs.

[13] Taylor, P.N. (May 1995). The Analysis of Formal Models of Communication for the
Specification of Reusable Systems. University of Hertfordshire, Computer Science Division,
Ph.D. Transfer Report.

[14] Thomsen, B., (1990). Calculi for higher-order communicating systems. Ph.D. Thesis.
Imperial College, London University.

[15] Wegner, P. (1987). The Object-Oriented Classification Paradigm. Research Directions in
Object-Oriented Programming. B. Shriver and P. Wegner (Editors). MIT Press.

[16] Yonezawa, A and Tokoro, M. (Eds.) (1987). Object-Oriented Concurrent Systems. MIT Press.

Appendix:

This appendix presents the complete mt-calculus specification of the EMBLEM communicating
data structures. A formal representation of the network is given, showing how messages are routed
around the network dynamically during its execution.

A brief summary of n-calculus terms are given, using the definition of the BN process in
Figure A.1 as an example.

BN dé’/'giTe—i_talkj Switchj . BN
(i <gMaxCOY 2j < gMaxPLATOON ¢ (state(BN) # K_Kill ¢ staie(BN) = C_Kill 2 state(BN) # C_NP))

IFigure Al

Firstly, processes definitions are read left to right. Process actions which have a line above
them denote output channels (e.g: action). Any actions immediately following an output channel are
parameters for that output channel. In Figure A.1 both talk; and switch; actions are parameters of the
output on channel M A full stop (.) separates actions, denoting the ordered sequence of actions that

dictate a process’s behaviour. The symbol + denotes choice in the nt-calculus (see Figure A.2), where
some decision is made regarding the use of one of a possible number of action sequences offered by a
process. Two types of choice exist, deterministic and nondeterministic. These relate to whether the
environment can influence which action sequence is chosen. We do not expand on this particular topic

Modelling Changes in Organisations for a Complex World.
Presented by PN. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 2¢

here. The reader is referred to [4, §1.1.3, p29 & §3, p101] and [7, §1.2 p20 & §2.3, p42] for more
information regarding determinism. Recursion is common in process definitions and is shown as a
reference to the process’s name at the end of each expression. Without recursion a process would
simply execute once and then terminate.

Input channels, such as those in Figure A.2, use braces to denote their parameters (€.g:
givey(t',s7)).

Expansion of the specification leads to the definition of the COY process itself. This class of
process extends the behaviour of BN processes by: (i) adding the ability to talk to neighbouring
processes at level n-I and level s+, and (ii) receiving and forwarding new channels for the
subordinate PLATOON processes to use directly, rather than forwarding messages for n+2 processes
to use (such as occurs in process BN).

Ex. COY(t5,8) % 1. COYiis.g) (1)
+osT) st 0 (2)
+ é;tj sp. COY(Ls.g) (3)

(i <gMaxPLATOON 2 j < pMaxSECTION ¢

(state(COY) # K_Kill ¢ state(COY) # C_Kill ¢ state(COY) #C_NP))

Ex.2 COYy(t,5.8) % COY(talky switchy,givey) (1)
+ 5,7[{/ s;p COY(1Ls5.g) (2)

(k< gMaxCOY ¢i < gMaxPLATOON = j < gMaxSECTION ¢

(state(COY) = K_Kill 2 stale(COYy) # C_Kill @ state(COYy) #C_NP))

Ex.3 COYy =talky . COYy + givey(1'.s7) . switchy t's” . () (1)
(k< gMaxCOY ¢
(state(COY)) £ K Kill # siaie(COYy) »C_Kill * state(COYy) #C_NP))

Figure A.2

In Figure A.2, Ex.1(1) defines the signature of the process COY together with the initial action
choice of talking to either of its neighbours in the command structure. Ex.1(2) specifies the reccipt and
forwarding of new talk and switch channels, after which COY terminates. These channels are sent to a
process of class PLATOON. Ex.1.(3) duplicates the behaviour of BN by sending falk and switch
channels to a PLATOON process for subsequent use by a SECTION process (level n+2 from COY).
The invariant (i < MaxPLATOON ¢ j < MaxSECTION) limits the range of subscripts to the total number of
PLATOON and SECTION processes respectively. Again, as with other processes in our formal model
the state of the process is queried to ensure that it can receive communications.

The extension of COY in Figure A.2 with Ex.2 and Ex.3 simply assigns the true meanings of

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995, Page: 26

the actions and channels, enabling the specification of numerous COY processes in the completed
specification. The subscript & is used (o limit the total number of COY processes to some global value.

Figure A.3 expands the invariant seen in other processes to check the fighting status of the
squad attached to a vehicle. If either the crew or the squad for the vehicle are in a fit state then
communications can proceed.

Ex.1 VEHICLE(t,s5,g) %/ (. VEHICLE(t,5,g) (1)
+gt's) stsT. O (2)
+8(°.s°) . VEHICLE(t",s",g) (3)
Ex.2 VEHICLE,(1,5,8) ¢ VEHICLE(talky switchy givey,) (1)
+5(t°s7) . VEHICLE(t ,s".g) (2)

(k < gMaxVEHICLE 2 (siate(VEHICLECREW),) # K_Kill 2

state(VEHICLECREW) # C_Kill # siate(VEHICLECREW)) #C _NP) ¢
(state(vehicleSquad(VEHICLE)) # K_Kill ¢ siate(vehicleSquad(VEHICLE),) # C_Kill 2
state(vehicleSquad(VEHICLE }) # C_NP})

Ex.3 VEHICLE,, = talk, . VEHICLE,, + givey(1's7) . swilchy i's”. @ (1)
(k < gMaxVEHICLE ¢ (state(VEHICLECREW,) # K_Kill =
state(VEHICLECREW) = C_Kill ¢ state(VEHICLECREW) #C_NP) ¢
(state(vehicleSquad(VEHICLE))) # K_Kill # state(vehicleSquad(VEHICLEy)) = C_Kill ¢
state(vehicleSquad(VEHICLEy }) # C_NP))

Figure A3

The behaviour of VEHICLE is similar to that of COY in Figure A.1. Differences between the
two processes come in the form of: (1) the removal of output on give channel, as a SQUAD process
has no subordinate and (ii) the extension of the invariant (as described above). SQUAD is similar
again, except for the removal of the receiving channel give(t”,s"). The extension of the invariant to
monitor the state of the squad still applies. Note that only an interrogation of the actual command can
detect whether an M_Kill vehicle or squad is requested to move and an F_Kill vehicle or squad is

requested to engage the enemy. Formally, we only model the fact that the processes must not be in a
K Kill, C Kill or C_NP state.

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria al OR’37. September 12 - 14 1995, Page: 27

Ex.1 SQUAD(15) % 1. SQUAD(1,s) (1)
+ s(t°,s7) . SQUAD(1"57) (2)
Ex.2 SQUAD,(1,5,8) % SQUAD(talky, switchy,) (1)
+ 85(1°,57) . SQUAD(L",s") (2)

(k < gMax SQUAD 2 (state(SQUADy) # K_Kill 2 state(SQUADy) #C _Kill @
state(SQUADy.) #C_NP))

|
i Ex.3 SQUADy, = talky, . SQUAD,, + switchy(ts”) . SQUAD, (1)
|
‘ (k < gMax SQUAD 2 (state(SQUAD,.) # K_Kill = state(SQUAD,) #C_Kill 2
state(SQUAD;) #C_NP))
Figure A4

The complete n-calculus specification of the command structure in EMBLEM now follows.
The reader is expected to apply the discussion in the first part of the appendix to the following process
definitions. Certain comparisons can be drawn between the behaviour of many of the processes in the
system.

BN Process:
Ex.1 BN %f give; la[kj switc/x/ . BN (1)

(i < gMaxCOY 2j < gMaxPLATOON <
(state(BN) # K_Kill 2 state(BN) = C_Kill 2 state(BN) # C_NP))

COY Process:

Ex.2 COY(t,5,8) % 1 COY(1,5,8) (1)
1 +g(l’s7). st’s”. 0 (2)
" Y g5 COVlLs.g) (3)

(i € gMaxPLATOON #] < pMaxSECTION *

(state(COY) % K_Kill 2 siaie(COY) # C_Kill ¢ siate(COY) #C_NP))

Ex.3 COYy(15,0) % COY(1alky, switchy,givey) (1)
+ é[—»(j 5 - COY(1.s,8) (2)
(k < gMaxCOY 2i < gMaxPLATOON ¢ j < gMaxSIECTION) @

(state(COY) # K_Kill 2 state(COY)) = C_Kill 2 state(COYy) #C_NP))

Ex4 COYy = talky, . COYy + give(t7.x7) . switch, (°s”. @ (1)

(k < gMaxCOY) ¢

Modelling Changes in Organisations for a Complex World. :
Presented by P.N. Taylor and E. De Maria al OR’37. September 12 - 14 1995, Page: 28

(state(COYy) = K_Kill < state(COY.) # C_Kill ¢ state(COYy) #C_NP))

PLATOON Process:

Ex.S

Ex.6

Ex.7

PLATOON(1,5,g) % (. PLATOON(1,5,8) (1)
+o(t's) st’s”. 0 (2)

+ s(t.87) . PLATOON(t s .g) (3)

+g;tjsj . PLATOON(1,5,9) (4)

(i < gMaxSECTION 2j < gMaxVEHICLE) ¢
(state(PLATOON) = K_Kill ¢ state(PLATOON) = C_Kill # state(PLATOON) #C_NP))

PLATOON(1,5,8) def PLATOON(talky ,switchy,givey) (1)
+ 5(1°.8°) . PLATOON(t",s",g) (2)
+8; ljsj . PLATOON(15.8) (3)

(k < gMaxPLATOON i < gMaxSECTION ¢ j < gMaxVEHICLE) @

(state(PLATOON) # K_Kiil 2 siatef PLATOON,) # C_Kill # stale(PLATOONy) #C_NP))

PLATOON,, = talky, . PLATOON, + give,(t1's") . switchy t's”. @ (1)
(k < gMaxPLATOON) ¢
(state(PLATOON,,) # K_Kill ¢ state(PLATOONy,) # C_Kill ¢ state(PLATOONy) #C_NP))

SECTION Process:

Ex.8

Ex.9

Ex. 10

SECTION(1,5,8) ¢ [. SECTION(1,5,g) (1)
+g(ts) st 0 A - (2)
+5(1757) . SECTION(1,s",8) (3)
+8i1j 5, SECTION(Ls,g) (4)

(i LoMaxVEHICLE % | < gMaxSQUAD) =
(state(SECTION) = K_Kill < s1ate(SECTION) = C _Kill @ state(SECTION) # C_NP))

SECTION(1,5.¢) %€ SECTION(talky switchy, givey) (1)
+5(t7) . SECTION(1,s",g) (2)
+ 81 ;. SECTION(1,5,8) (3)

(k < gMaxSECTION 2i < pMaxVERICLE 2 j < gMaxSQUAD) 2

(state(SECTION},) # K_Kill < state(SECTION)) # C_Kill 2 state(SECTION;) #C_NP))

SECTION;, = talk), . SECTION, + givey(1°,87) . switchy s’ 0 (1)
(k £ gMaxSECTION)
(state(SECTlONk) #K_Kill = siat(:(‘S‘E(]'/"/()/\’k) #C Kill 2 Smte(SECT[ONk) #C NP))

Modelling Changes in Organisations for a Complex World,
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995.

Page: 29

‘
|
i
|

VEHICLE Process:
Ex.l1 VEHICLE(1,5,8) %/ (. VEHICLE(1,5,¢)

+ gt s st 0
+s(t",s’) . VEHICLE(t",s",g)

Ex.12 VEHICLE(1,5,8) def VEHICLE(talky switchy,givey)
+s(t',s°) . VEHICLE(t",s",g)
k < gMaxVEHICLE ¢ (state(VEHICLECREW) = K_Kill *
state(VEHICLECREW) # C_Kill 2 stale(VEHICLECREW,) #C _NP) ¢

(state(vehicleSquad(VEHICLE))) # K_Kill 2 state(vehicleSquad(VEHICLE))) = C_Kill 2

state(vehicleSquad(VEHICLE})) #C_NP)

Ex. 13 VEHICLE), = talk), . VEHICLE + givey(1',s7) . switchy t's”. 0
k < gMaxVEHICLE = _(.s*lale{'\r"El‘IICL/SCRE\'Vk,) #K _Kill ¢

state(VEHICLECREW),) = C_Kill 2 state(VEHICLECREW) #C_NP) ¢

(state(vehicleSquad(VEHICLEL)) = K_Kill s state(vehicleSquad(VEHICLE)) # C_Kill =

state(vehicleSquad(VEHICLEY)) # C_NP)

SQUAD Process:
Ex. 14 SQUAD(1,5) % 1. SQUAD(1,s)
+3(1°,87) . SQUAD(1",s)

Ex.IS SQUADy(1,5,8) %/ SQUAD (1alky, switchy)
+8(t,s7) . SQUAD(L s7)
k < gMax SQUAD 2 siate(SQUAD),) = K_Kill * state(SQUADy) # C_Kill ¢

state(SQUAD,) #C_NP

Ex.16 SQUAD,, = walk; . SQUAD, + switch,(1’s”) . SQUAD,
k < gMax SQUAD = state(SQUAD) # K _Kill * state(SQUADy,) # C_Kill ¢
state(SQUAD) #C_NP

Modelling Changes in Organisations for a Complex World.
Presented by P.N. Taylor and E. De Maria at OR’37. September 12 - 14 1995,

(1)
(2)
(3)

(1)
(2)

(1)

(1)
(2)

(1)
(2)

(1)

Page: 30

