DIVISION OF COMPUTER SCIENCE

Instruction Scheduling for a Superscalar Architecture

R Collins
G B Steven

Technical Report No.248

September 1996




i
]
|
|

Instruction Scheduling for a Superscalar Architecture

Roger Collins and Gordon B Steven
University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB
Telephone: 01707 284319 Fax: 01707 284 303 email: comggbs@herts.ac.uk

Abstract

It is increasingly accepted that superscalar processors can
only achieve their full performance potential through
compile-time instruction scheduling. This paper presents
preliminary performance results using a Conditional Group
Scheduler which targets the HSA processor model
developed at the University of Hertfordshire. In particular,
we show that guarded instruction execution improves
performance by allowing the processor to squash
instructions in the Instruction Buffer before they are issued
to functional units and enables the scheduler to delete a
significant number of branch instructions.

1. Introduction

Currently available superscalar processors issue up to
four instructions in each processor cycle. Even higher
issue rates are expected in the future. To exploit these
issue rates, a processor must identify groups of
independent instructions that can safely be issued and
executed in parallel. Unfortunately, the processor itself
has only a local view of the dynamic instruction stream it
is executing. As a result, even with advanced hardware
techniques such as dynamic branch prediction and out-of-
order instruction issue, the amount of parallelism that can
be realised is limited and may be as low as a factor of two
(1].

An alternative approach is to use an instruction
scheduler to reorganise code into independent groups at
compile time. The processor then issues these pre-formed
groups in parallel at run time. Unlike the hardware, an
instruction scheduler can take a global view of a program
and is therefore able to assemble large groups to satisfy
high instruction issue rates. As a result future high
performance superscalars are likely to rely increasingly on
instruction scheduling to realise their full potential.

The Hatfield Superscalar Project aims to develop the
instruction scheduling technology to support a high
instruction issue rate. The research is based on the
Hatfield Superscalar Architecture (HSA) that has been
developed at the University of Hertfordshire. The long
term aim of the project is to realise an order of magnitude
speedup over traditional RISC processors that issue only
one instruction per cycle. Further objectives include the
development of heuristics to avoid excessive code

expansion during instruction scheduling and the
development of hardware mechanisms, such as guarded
instruction execution, to support high issue rates.

This paper presents preliminary results generated using
the first instruction scheduler developed for HSA. In
particular, we measure the speedup achieved by different
processor models and evaluate the impact of running code
scheduled for one processor on alternative processor
models. We also examine the impact of multi-cycle cache
access times and of using guarded instruction execution to
remove instructions prematurely from the instruction
pipeline. Finally, we quantify the ability of the scheduler
to remove branches during scheduling.

2. The HSA architectural model

HSA is a load and store architecture with a RISC
instruction set derived from our earlier HARP project [2].
Separate integer and Boolean register files are provided.
The one-bit Boolean registers are used to store branch
conditions and to implement guarded instruction execution,
Functional units include arithmetic, relational, shift,
multiply, memory reference and branch units. A simple
four-stage pipeline is used:

IF:  Instruction Fetch

ID:  Instruction Decode and register fetch
EX: Execute

WB:  Write Back

In the first stage a fixed number of instructions is
fetched from the instruction cache into an Instruction
Buffer. One or more processor cycles may be required. In
the case of multiple cycle fetches it is assumed that the
cache accesses are pipelined and that a new instruction
access can begin in each cycle. In the instruction decode
stage one or more instructions are issued to functional
units. Instructions then spend a variable number of cycles
in the execution stage before returning results to a register
file in the write-back stage.

The Instruction Buffer decouples instruction feich from
instruction issue. Typically, the fetch rate of an HSA
processor exceeds the maximum issue rate to allow the
processor to benefit from its ability to remove or squash
instructions from the Instruction Buffer before they are
issued to functional units. HSA always issues
instructions to functional units in program order. There is
little to be gained from out-of-order issue if the instruction




stream has already been re-ordered for parallel instruction
issue by an instruction scheduler. In contrast, many
superscalar designs use scoreboarding or Tomasulo’s
algorithm to provide out-of-order instruction issue. HSA
avoids this complexity and the resultant pressure on
processor cycle time.

Branches are resolved in the ID stage. With a single
cycle instruction cache the branch delay is therefore one.
Load and store instructions use register indirect addressing
or the ORed indexing addressing mechanism developed for
HARP [3]. These simple addressing mechanisms allow
memory addresses to be made available at the end of the ID
stage and avoid a load delay with a single cycle data cache.

Other major features of HSA include a generalised
delayed branch mechanism, guarded instruction execution
and hardware support for speculative instruction execution.

2.1 Delayed branch mechanism

In a RISC pipeline, branches are typically resolved in
the second pipeline stage giving a branch delay of one.
This latency is often hidden by using a delayed branch
mechanism in which a fixed number of instructions
following the branch is always executed, irrespective of the
outcome of the branch,

The classic delayed branch mechanism is too inflexible
for a superscalar architecture. HSA therefore generalises
the traditional mechanism by allowing each branch
instruction to specify explicitly the number of instructions
that must be executed in its branch delay slots [4]. The
flexibility provided by this mechanism allows it to adapt
to different instruction issue rates and to different branch
latencies. Compatibility is ensured as long as each
processor can execute the new branch instructions. Any
HSA processor can therefore execute code scheduled for any
other HSA processor,

In contrast some recent superscalar architectures have
abandoned the delayed branch mechanism [5,6] in favour of
using a branch target cache (BTC) to predict the outcome
of branches. While a perfect BTC will result in no
performance degradation, in practice there is a performance
penalty proportional to both the BTC miss rate and the
instruction issue rate. As a result, as the issue rate of
superscalar processors increases, the performance penalty
of using a BTC will also increase. Using a BTC also
involves a significant increase in hardware complexity. In
addition to the cost of the BTC itself, the processor must
be able to recover rapidly from incorrect branch predictions
by squashing any instructions that have been speculatively
issued after the branch prediction.

2.2, Guarded instruction execution

Guarded or conditional instruction execution has been
proposed by a number of researchers [7,8] and has been
implemented in several processors including the Acorn
ARM [9] and the HARP processor [2] developed at the
University of Hertfordshire. All HSA instructions are
guarded. Guarded execution is implemented by associating

one or more Boolean guards with each instruction. For
example consider:

TB1 ADD R1,R2, R3

The addition will only return a result to R1 if the value
held in Boolean register B1 is true at run time. The
Boolean values themselves are generated by relational
instructions that return a Boolean value to one of the
Boolean registers.

Guarded instructions provide a simple mechanism for
percolating instructions into the preceding basic block.
For example consider:

EQ B1, R1,R2 /* Bl :=(R1=R2)*/
BF B1, label /* branch if B1 = false */
ADD R6, R3, R4

The instruction scheduler can always safely move the
ADD instruction in parallel with the branch instruction by
attaching the guard condition TB1;

EQ BI1,R1,R2
BF B1, label; TB1 ADD R6, R3, R4

Guarded execution also allows the scheduler to remove
some conditional branch instructions. For example,
consider the following code that has been generated for an
if then construct:

NE B6,R1,R15  /*B6:= (R1 #R15) */
BF B6, continue /* branch if B6 = false */
ADD R1, R2,R3 /* then-code */

continue:

Scheduling produces the following code:

NE B6, R1, R15
TB6 ADD R1, R2, R3;

Branch removal is particularly important in superscalar
processors that predict the outcome of branch instructions
dynamically, since removing branches from the program
will also reduce the number of branch prediction failures.

Another advantage of guarded execution is that the
pressure on functional units and other processor resources
can be reduced. Consider the following example with three
parallel instruction groups:

BT B1, label (#6); TB1 instrl; FBI1 instr4
TB1 instr2; FB1 instrs
TB1 instr3; FB1 instr6

Two branch delay slots are assumed and six instructions
following the branch must be executed before the branch is
taken. All six will be issued to functional units but three
of them will be squashed in their functional units without
returning a result to a register. Consequently the pressure
on result buses and register file write ports will be reduced.

Instructions can also be squashed in the Instruction
Buffer [10]. HSA will squash an instruction in the ID
stage, if the relevant Boolean guard becomes available and
the instruction has remained in the Instruction Buffer for a
full cycle without being issued. In the above example, the
instructions in the two branch delay groups satisfy these
conditions; so only two of the final four instructions need




be issued to functional units.
3. Instruction scheduling

HSA relies on compile-time instruction scheduling to
achieve high execution rates. Scheduling techniques were
originally developed to pack independent operations into
microinstructions to reduce the size of microprograms and
to enable them to execute more quickly. Recognition that
limited parallelism was available between branches led to
attempts to schedule code globally. Initially efforts were
directed towards combining basic blocks to create large
groups of instructions that could then be scheduled using
the techniques that had been developed to compact
microcode.

One of the first global scheduling techniques developed
was Trace Scheduling [11], In Trace Scheduling, the
scheduler identifies a series of paths or traces through a
procedure that are highly likely to be followed at run time,
The most important trace is then selected and scheduled as
if it were a single basic block. Finally, code is added at
the entry and exit points of the scheduled trace to preserve
the program semantics. This process is repeated until all
the traces in a procedure have been scheduled.

While spectacular speedups were achieved with highly
numeric programs, Trace Scheduling has a number of
limitations. Firstly, there is the problem of identifying
traces that are likely to be followed at run time, Accurate
trace identification depends on knowing the likely outcome
of branches and, in general, this information can only be
obtained by running a program and collecting the required
branch statistics. To reduce this difficulty, loops are often
unrolled to obtain a long trace consisting of several loop
iterations. Secondly, the execution time of the trace path
is optimised at the expense of off-trace paths, which may
be slowed down. Thirdly, the addition of semantic
preserving code together with aggressive loop unrolling
can lead to dramatic code expansion. Finally, and perhaps
crucially, instructions will usually only be executed in
parallel if they were originally in the same trace. Branches
off and into a trace therefore become barriers to code
motion, In the case of loops, instructions from one loop
iteration will never be overlapped with instructions from a
subsequent iteration to achieve so-called software
pipelining. This disadvantage can be partially offset
through aggressive loop unrolling, but only at the cost of
dramatic code expansion.

Professor Hwu’s group at Illinois University also
increases the scope for instruction scheduling by
combining basic blocks to form larger scheduling units
called superblocks [12]. A superblock consists of a series
of basic blocks with a single entry point but multiple exit
points. Superblocks of maximum size are systematically
created through basic block duplication called Tail
Duplication. They are then scheduled as single enlarged
basic blocks.

Superblocks provide larger scheduling units and
additional speedup at the cost of some additional code
duplication. Although speedups between 2 and 7 are

reported with an eight instruction-issue processor model
[12], superblocks retain one of the major disadvantages of
Trace Scheduling. Superblocks, like Traces, erect artificial
boundaries to code motion, that prevent code in one
superblock from ever being scheduled for parallel execution
with code from a different superblock. Similarly, code
motion across loop back edges is precluded. Trace
Scheduling and the formation of superblocks therefore both
remove the barriers to code motion between basic blocks,
only to create new barriers between either traces or
superblocks. As a result, neither technique, on its own,
can ever realise the full-potential of instruction-level
scheduling.

A more attractive approach is to move or percolate
instructions systematically between basic blocks,
duplicating code where necessary to preserve program
semantics. The code motion primitives involved were first
codified by Fisher [11] who viewed branches as fixed
points in the code and allowed non branch instructions to
flow in both directions across branch edges. Nicolau [13]
describes alternative primitives where all code motion is in
an upwards direction and where all instructions, including
branches, move upwards past both branch and non branch
instructions. Downwards code motion is therefore replaced
by upwards motion of branch instructions. For our
purposes, Nicolau’s primitives are the more useful since
they directly support algorithms in which operations are
consistently percolated upwards until every operation is
executed at the carliest opportunity.

Enhanced Percolation Scheduling [14] is an elegant
scheduling algorithm that has been developed by Kemal
Ebcioglu’s group at IBM. Innermost loops are scheduled
first, followed by the surrounding code. Starting with the
first instruction in a loop, parallel instruction groups are
constructed by searching forward through the code for
instructions to add to the group. All possible paths are
searched in turn and suitable candidates are moved forward
into the current group using modified versions of
Nicolau’s code motion primitives. Where necessary,
compensation code is added off the percolation path, When
the current instruction group is full, or there are no further
candidates to consider, immediately following instructions
are used as the basis for further parallel groups. The
algorithm therefore recursively fills instruction groups on
all possible control paths through the loop.

The execution of successive loop iterations is
overlapped by allowing code motion across loop back
edges. Percolation across a back edge requires a copy to be
inserted ahead of the loop to ensure correct program
operation, so a loop prologue is also generated
automatically, As a result, Enhanced Percolation
Scheduling achieves software pipelining with arbitrarily
complex loops. Furthermore, providing there are neither
resource restrictions, nor loop carried dependencies, a new
loop iteration can be initiated in every processor cycle.
This is the best that can be achieved without loop
replication,

IBM apply Enhanced Percolation Scheduling to an
unconventional VLIW architecture with uniform unit




instruction latencies and achieve speedups between 2.6 and
10.6, with a geometric mean of 5.1 {14]. The IBM model
assumes that each VLIW instruction can be fetched and
used to generate the immediately following instruction
address in a single processor cycle. Although the
processor only has to select one of several alternative
addresses embedded in each instruction, Ebcioglu estimates
[8] that the processor cycle time will be degraded by 30%.
However, in the case of a two-cycle cache access time, the
penalty would be over 100%. A major objective of the
HSA project is to achieve similar speedups using more
realistic processor models with multi-cycle cache access
times and non unit latencies for the more complex
instructions such as multiply and divide.

4. A conditional group scheduler

HSA uses a Conditional Group Scheduler (CGS) to
reorganise code for parallel execution at run time. The
primary goal of CGS is to achieve the maximum speedup
while minimising code expansion. A secondary aim is to
allow code scheduled for one processor to run on different
processor models with minimal performance loss.

CGS [10] is a global code scheduling algorithm that
applies powerful low-level mechanisms within the
framework of a high-level algorithm. The high-level
algorithm determines the order in which sections of code
are to be scheduled and which low-level mechanisms are to
be enabled during the scheduling phases. CGS provides
two sets of parameters that significantly effect the overall
scheduling algorithm. One set of parameters controls the
individual low-level scheduling features applicable for the
duration of the entire scheduling process. A second set
determines the type and scope of code motions that are
allowed during each individual scheduling phase.

The basic CGS scheduling unit is loop. However,
branch instructions impose an unnecessary lower bound on
the time required to execute each loop body. For example,
with a branch delay of two, the minimum loop length is
three instruction groups, and no loop iteration can start
less than three cycles after the previous iteration. This
limit on the Iteration Interval can only be removed by
replicating the loop body.

To minimise code expansion, CGS only replicates
loops if the loop execution time can be reduced. This is
achieved by first compacting the loop body into the mini-
mum number of instruction groups. Then if the natural
length of the scheduled loop is less than the total
execution time of a branch instruction, the loop body is
duplicated. Guarding replicated loops avoids increasing the
number of conditional branches in the loop [4]. The
replicated loop body is then rescheduled to combine code
from different iterations. As a result, assuming a branch
delay of two, a loop body with only one instruction group
will be replicated twice to give an Initiation Interval of
one, while a loop body with two instruction groups will
be replicated once giving an Initiation Interval of at most
two.

The scheduling process is divided into four phases. In

the first phase each instruction group is filled in turn,
starting at the head of the loop. Instructions are moved
into each group by recursively searching through the loop
control structure for suitable candidates. Software
pipelining is achieved by allowing instructions to be
moved across loop back edges from previously scheduled
groups. To preserve program semantics, instructions
moved across loop back edges are also added to a prelude
ahead of the loop.

If no restrictions are placed on code motion across loop
back edges, the scheduler performs excessive code motion,
cagerly pre-computing successive values on the faster
paths through the loop, sometimes many iterations ahead
of the point where the values are used. Successive values
of the loop count, for example, can often be pre-computed
many cycles ahead without speeding up the computation.
To avoid the resultant code explosion, a number of
heuristics were developed. Firstly, code motion across a
loop back edge is terminated as soon as the scheduler is
unable to move an instruction into the instruction group
currently being assembled. The objective of this
restriction is to synchronise the operations involved in
each iteration and to avoid premature computation of
values many iterations ahead. Code motion that requires
the duplication of instructions within the loop or renaming
of any previously scheduled instruction is also prohibited
in this phase.

Although the first scheduling phase minimises the
number of instruction groups occupied by the loop body, a
lower bound is set by the delayed branch mechanism. Asa
result, the code will be distributed across all the available
instruction groups, including any branch delay groups. A
loop with a natural size of one or two may therefore be
distributed across three instruction groups, including the
two branch delay groups. The second scheduling phase
therefore compacts the code groups at the top of a loop and
allows the minimum size of the loop to be determined.
During this phase code motion across the loop back edge
is disabled. At the end of the second phase, loop
replication is performed if the natural length of the loop is
less than the total latency of the branch instructions.

In the third phase, the replicated loop body is
rescheduled with code motion across loop back edges
enabled once more. This phase allows code from multiple
loop bodies to be overlapped. If no code replication has
occurred virtually no code motion takes place in this
phase. In the final phase, code is compacted again with
the back edge disabled. Earlier limitations on code
replication and register renaming can now be safely
removed in the absence of code motion across back edges.

Scheduling proceeds from inner to outer loops until
each procedure is scheduled. During the later stages, code
moves both into and across previously scheduled inner
loops, providing the execution time of a previously
scheduled loop is not increased. Finally, after all the
procedures in a program have been scheduled, code is
percolated across procedure calls. This code motion halts
as soon as one of the instruction groups in the called
procedure fails to move successfully into the calling




routine. This allows the program semantics to be
preserved by simply adjusting the procedure entry point,

5. Experimental results

This section presents results that demonstrate the
performance gains to be had by combining a powerful
scheduling algorithm with a simplified but sophisticated
superscalar architecture. Eight general-purpose programs
known collectively as the Stanford Integer Benchmark Set
[Table 1] are used throughout. All of the test programs are
written in 'C' and compiled by a GNUCC generated
compiler that targets the HSA instruction set. = After
scheduling, the programs are executed on a highly
parameterised HSA simulator [10].

Table 5.1 Stamford Benchmark Set

1. Bubble: Bubble sort.

2. Matrix: Matrix multiplication

3. Perm: Permutes 7 elements,

4, Puzzle: A cube packing problem.

5. Queens: The 8 queens chess problem.
6. Sort: Quicksort .

7. Tower: Towers of Hanoi problem.
8. Tree: Binary tree sort .

The dynamic instruction distribution of the benchmarks
is unremarkable with 40% arithmetic, 30% load & store,
13% relational and 17% branches. However, the
distribution of the branch instructions is unusual with
26% of all branches being procedure calls and returns.
This distribution reflects the highly recursive nature of
three of the programs: perm, tower and tree.

Two versions of the HSA architecture are compared, a
Slow Cache Model and a Fast Cache Model. In the Slow
Cache Model, both the instruction and data cache require
two cycles to perform a read operation. As a result all
branch instructions have two branch delay slots, Also,
data loaded from the cache by a load instruction can not be
used by an immediately following instruction without
introducing a stall of one cycle. The load delay is therefore
one. In the Fast Cache Model, the cache access time is
reduced to one cycle, giving a single branch delay slot and
eliminating the load delay. In both models multiplication
requires three cycles and division 16 cycles.

Many of the results involve measurement of the overall
speedup of scheduled code over unscheduled code. A
Baseline Model is provided by running unscheduled code
through a single-instruction-issue version of the simulator
and recording the total number of machine cycles required.
Since the compiler makes no attempt to fill branch delay
slots, the Baseline Model effectively predicts that all
branches are not taken and incurs a branch penalty
whenever a branch is taken,

5.1. Unscheduled code performance
Since HSA is a superscalar rather than a VLIW

architecture, some speedup will be achieved when
unscheduled code is run on a multiple-instruction-issuc

model. The speedups obtained with the Fast Cache Model
are given in Figure 1. With an issue rate of eight a 60%
speedup is achieved, reducing to 34% with an issue rate of
two. These figures conceal significant variation between
individual programs. Perm, for example, speeds up by
118% while puzzle only improves by 36%.

Speedup
1.8

1.7 4
1.6 4
1.5 4

1.4 —— A M.

= HM
1.3 4

1.29
1.1 4
1.0

¥ ¥ ¥ ¥ y ¥ ¥ ¥
0 2 4 6 8 10 12 14 16 18
Issue Rate

Fig. 1 Speedup for unscheduled code

5.2, Maximum parallel performance

Instruction scheduling results in a further significant
performance improvement. With the Slow Cache Model,
the overall arithmetic mean speedup is 3.1 with a
harmonic mean of 2.9 [Fig 2]. Again the average figures
conceal major variations between individual prograrms,
with speedups varying between 2.3 and 5.0. The low
figures for matrix and tree reflect the high proportion of
long latency operations in these programs,

Speedup
6.0

5.0

4.0 1
B unsoheduled

3.0 3 schedulsd
2.0 4 a
1.0 o
0 kol b [3
8 = g ¥ § o6 £ @ Pprogram
8 @ a 3 g @ ° =
ksl E o o had

Fig. 2 Speedup for slow cache model

With the Fast Cache Model speedups range from 2.4 to
6.2 with the arithmetic mean increasing to 3.6 and the
harmonic mean to 3.2 [Fig 3]. These speedups are 60%
better than those achieved on the HARP project with
identical benchmarks and cache latencies and reported at
Euromicro94 [15].

Finally, if all instruction latencies are reduced to one,
the arithmetic mean speedup is increased to 3.9 and the
harmonic mean to 3.6, a 24% improvement over the slow
cache model. This difference emphasises the dangers
inherent in using over simplified processor models.




Speedup

B unscheduled
O scheduled

Program

Fig. 3 Speedup for fast cache model

These performance improvements are achieved at the
cost of increasing the static code size [Fig 4]. The mean
code expansion is a modest 1.9 for the Fast Cache Model,
increasing to a factor of 2.3 for a three cycle cache model.

Code Expanslon

3.0
25
r B 1 oydle
2.0 g i E2 2cycles
i El 3oycles
1.0 " &
o X E o O 5 ®
8 =& 5 o e pPr m
IFig. 4 Code size vs. cache access time

5.3. Impact of issue rate on performance

The results in the previous section assumed processor
models with infinite resources. Figure 5 shows how the
performance of the Fast Cache Model degrades when code
scheduled for a machine with no resource constraints is run
on a model with progressively lower instruction issue
rates.

Speedup
6.0

| LI LI e W e
6 8 10 12 14 16 18

Issue Rate

bubble ———e&— matrix
—#—— perm ——¢— puzzle

Fig.5a  Speedup vs issue rate (fast cache]

Speedup
6.0

5.04

4.0

3.0+

2.0 1

1-0 1 1 L 1 T i ] 1

0 2 4 6 8 10 12 14 16 18
Issue Rate

——#— queens —@—— tower

A4 sort & tree

Fig. 5b

In general, performance degrades gracefully as the issue
rate is reduced. A mean speedup of 3.0 is maintained with
an issue rate of eight and the speedup is still 2.0 with the
highly restrictive issue rate of three.

This graceful degradation in performance as the issue
rate is reduced can be partly attributed to the ability of an
HSA processor to squash code in the Instruction Buffer,
Typically, guarded code will be scheduled into branch delay
slots from both successor paths. Squashing allows much
of this code to be removed from the Instruction Buffer
before it is issued to a functional unit.- Squashing
therefore becomes increasingly beneficial as the instruction
issue rate is reduced.

The same code was re-run with squashing in the
Instruction Buffer disabled. With low issue rates, some
programs now have speedups less than one [10]. In these
cases the scheduled code is running more slowly than the
unscheduled code. Over-optimistic code promotion has
resulted in time being wasted sequentially executing
instructions whose results were never used. With higher
issue rates, these speculative results were executed in
parallel and therefore did not degrade performance.

Figure 6 compares the speedups obtained for the
benchmark programs with and without the ability to
squash code in the Instruction Buffer.

Speedup
35

Speedup vs issue rate (fast cache]

3.0 4

25
Code Squashing

=& Inhibited
1.5+ === enabled

20

1.0 A

0.5

0.0 Y T 1 T T L
0 2 4 6 8 10 12 14 16 18
Issue Rate

Fig. 6 Lffect of disabling squashing




These figures confirm that squashing becomes
progressively more important as the issue rate is reduced,
with a 44% improvement in speedup for the 2-issue
model. In general, implementations require a 50% increase
in processor resources to compensate for an inability to
squash instructions in the Instruction Buffer.

5.4, Scheduling for specific issue rates

Up to now we have looked at the speedup of code
scheduled for infinite resources. Although squashing
allows this code to perform reasonably well as the issue
rate is reduced, additional speedup can be achieved by
scheduling code for each issue rate [Fig 7]. Code scheduled
for a two issue model is 18% faster, while code scheduled
for an issue rate of eight achieves 94% of the speedup
realised with infinite resources.

Speedup

35

3.0 1

25 plpe resources
2= |imited

204 ——fp== infinite

1.5 4

1.0 . 7 T T

0 2 4 6 8 10
Issue Rate
Fig. 7 Scheduling for fixed issue rates

The reduction in static code size is more dramatic than
the impact on speedup [Fig 8]. Code size is reduced by
6% for an issue rate of eight and 33% with an issue rate of
two. Scheduling code without regard for resource restraints
therefore results in significant over scheduling at low issue
rates.

Code Expanslion
26

2.4 4
2.2

2-pipes
4-pipes
6-pipes
8-pipes
infinite

2.0 4

1.8 Bt
161 gl B
144 B B & 3t
124 | P
1.0 el ] 1 t

bubble matrix perm puzzle queens sort tower tree
Program

Reducing the code expansion

OEODRE

Fig. 8

5.5 Reducing the cost of branches

An important objective of the HSA project is to use
instruction scheduling to minimise the impact of multi-
cycle cache access times. Further speedups were therefore
measured as a function of the Instruction Cache access
time. The Data Cache access time was held constant at
one cycle to avoid any impact on the results from increased

load latencies.

Figure 9 shows two sets of harmonic mean speedups for
the scheduled benchmarks. The first set indicates the
speedup achieved by scheduling code for each model, while
the second set normalises the speedups with respect to the
Fast Cache Model. While the first set of figures suggests
that CGS performs well as the Instruction Cache latency is
increased, the normalised figures reveal that the total
execution time does increase significantly.

Speedup
4.0
et
3.0 f :\.
:,-v‘/{j .v':- :;’
2.0 ;%' ‘. W 3 speedup
/’ff" " x:’ ju] f‘”““al'
?' N e ;;idup
1.0 4 r;%, /: :’
'f;': .-'\. .“.-'
0.0 G Wi <
1 2 3 4
Cache Access Time
Fig. 9 Speedup vs cache access times

This loss of performance is caused by the schedulers
inability to fill all of the branch delay slots as the
instruction cache access time is increased. However,
detailed examination of the scheduled code suggests that
much of the performance loss is caused by the inability of
the scheduler to deal adequately with all types of branches.
In particular, CGS currently makes no attempt 1o promote
conditional branches into the scope of other conditional
branches or to replicate conditional branches. As a result
these figures should improve as CGS is enhanced.

5.6. Branch removal

Finally, it is interesting to examine the total numbers
of each type of instruction that are executed in the
scheduled code and to compare these figures with those
taken for runs of the unscheduled programs, With the Fast
Cache Model, although the total number of instructions
executed increases by 23%, the number of branch instruc-
tions executed actually falls by 35%. As a result the
percentage of executed instructions which are branch
instructions falls from 17% to 10%. The reduction is
particularly dramatic in perm where 17327 conditional
branches are reduced to just five, Similar results were
observed with the Slow Cache Model. The total
instructions executed increasing by 32%, while the number
of branches executed fell by 31%.

6. Concluding remarks

These results demonstrate the validity of the HSA
model and show that compile-time scheduling can achieve
significant speedups whilst retaining code compatibility
across a range of processor implementations. By
transferring much of the superscalar's work to the
scheduler, the processor has also been greatly simplified.
Nonectheless, our minimal superscalar design is still able




to find significant levels of parallelism without the aid of a
scheduler, achieving a speedup of 1.6.

Currently scheduling realises speedups in the range 2.9
to 3.6 depending on the processor model. These figures
are 60% better than those achieved on our earlier HARP
project and compare favourably with results reported by
other groups.

We also show that code scheduled for a processor with
infinite resources can achieve satisfactory performance over
a wide range of processor models, with performance
degrading gracefully as the issue rate is reduced. Much of
this graceful degradation is achieved through HSA’s ability
to squash instructions in the Instruction Buffer. In general,
implementations require a 50% increase in processor
resources to compensate for the ability to squash
instructions. Nonetheless maximum speed is achieved by
scheduling code for a specific processor,

Figures are also presented showing the impact of cache
access time on speedup, with a 25% degradation as the
cache access time is increased to three cycles. Future work
with CGS will attempt to reduce this figure,

Finally, scheduling was found to reduce the number of
branches executed by over 30%. Similar results are
reported by Hwu'’s group which used conditional execution
specifically to remove branches and achieved a 27%
reduction in dynamic branch counts [16]. In contrast,
CGS reduces the number of branches as a side effect of
instruction scheduling. These results suggest that guarded
execution can significantly improve the performance of
Branch Target Caches in a superscalar processor.

The initial thrust of our scheduling work was to realise
ever greater parallelism. However, it was found that the
unrestrained application of CGS’s powerful code motion
primitives demanded excessive resources and, on occasion,
even slowed up program execution. Restraining
mechanisms were therefore developed to avoid code
explosion. An important conclusion of this work is
therefore that the application of code motion primitives
must always be tempered by heuristics which take into
account the likely costs and benefits of the code motion.

Many questions regarding instruction scheduling remain
unanswered. We still do not know much parallelism can
be realised through instruction scheduling, Although the
speedup achieved by CGS is encouraging, our scheduler is
still incomplete in many respects. Furthermore, analysis
using trace driven simulation [17] suggests that significant
additional parallelism is theoretically available. Further
work is also required to quantify the benefits of guarded
execution and instruction squashing. It is therefore likely
that our scheduler will be continually enhanced for some
time to come,

REFERENCES

1 Johnson M Superscalar Microprocessor Design Prentice
Hall, 1991.

2 Steven G B, Adams R G, Findlay P A and Trainis S A
‘iHARP: A Maultiple Instruction Issue Processor’ IEE
Proceedings, Part E, Computers and Digital Techniques
Vol. 139, No. 5 (September 1992) pp 439-449.

3 Steven F L, Adams R G, Steven G B, Wang L and Whale D J
‘Addressing Mechanisms for VLIW and Superscalar
Processors’ Microprocessing and Microprogramming
Vol. 39, No. 2-5 (December 1993) pp 75-78.

4 Collins R and Steven G B ‘An Explicitly Declared
Delayed-Branch Mechanism for a Superscalar Architecture’
Microprocessing and Microprogramming Vol. 40, No.
10-12 (December 1994) pp 677-680.

5 McLellan E ‘The Alpha AXP Architecture and 21064
Processor’ IEEE Micro, Vol. 13, No. 3 (June 1993) pp 36-
47,

6 Song S P, Denman M and Chang J ‘The PowerPC 604 RISC
Microprocessor’ [EEE Micro Vol. 14, No. 5 (October
1994) pp 8-17.

7 Hsu P Y T and Davidson E S ‘Highly Concurrent Scalar
Processing’ Proceedings of the 13th Annual Symposium
on Computer Architecture (June 1986), pp 386-395.

8 Ebcioglu K ‘Some Design Ideas for a VLIW Architecture for
Sequential-Natured Software’ IFIP WG 10.3 Working
Conference on Parallel Processing, Pisa, Italy (April
1988) pp 3-21.

9 Furber S VLSI RISC Architecture and Organization Marcel
Dekker, 1989.

10 Collins R ‘Exploiting Instruction-Level Parallelism in a
Superscalar Architecture’ PhD thesis, University of
Hertfordshire (October 1995)

11 Fisher J A ‘'Trace Scheduling: A Technique for Global
Microcode Compaction’ IEEE Transactions on Computers,
Volume C-30, No.7 (July 1981) pp 478-490

12 Hank R E, Mahlke S A, Bringmann R A, Gyllenhaal J C
and Hwu W W ‘Superblock Formation Using Static
Program Analysis’ Micro 26 (December 93) pp 247-255.

13 Nicolau A ‘Uniform Parallelism Exploitation in Ordinary
Programs’ Proceedings of the International Conference
on Parallel Processing, 1985, pp 614-618.

14 Moon S and Ebcioglu K ‘An Efficient Resource-
Constrained Global Scheduling Technique for Superscalar
and VLIW Processors’ Micro25 (December 1992) pp 55-
71.

15 Steven FL, Steven G B and Wang L. ‘An Evaluation of the
iHARP A Multiple-Instruction-Issue Processor’
Euromicro%94, Liverpool, (September 1994).

16 Mahlke S A, Hank R E, Bringmann R A, Gyllenhaal J C,
Gallagher, D M and Hwu W W ‘Characterizing the Impact
of Predicated Execution on Branch Prediction’ Micro27
(November 1994) pp 217- 227.

17 Potter R and Steven G B ‘Investigating the Limits of
Fine-Grained Parallelism in a Statically Scheduled
Superscalar Architecture’ Europar96, Lyon, (August
1996).




