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Abstract—The performance of a locally-connected associative memories built from a one-
dimensional array of perceptrons with a fixed number of afferent connections per unit is 
investigated under conditions of increasing network size. The performance profile yields 
unexpected results, with a peak in performance when the network size is 2 to 3 times the 
number of connections per unit. This phenomenon is discussed in terms of small-world 
behavior. A second simulation using similar techniques, but allowing distal connections 
reveals a performance profile suggesting that the best performance of the network, 
measured in terms of pattern bits recalled per node, is greatest at low levels of connectivity.
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1. Introduction 
 

By using perceptron training rules it is possible to create associative memory models which perform 
better than the standard Hopfield model [1], [2]. In the present study, we take a fully-connected network of 
perceptrons, and progressively increase the size of the network, while maintaining a fixed number of connections 
per unit. At each new value of network size, the network is rebuilt, and its pattern-completion performance tested. 
The resultant performance of the network as it changes from a small fully-connected network to a large locally-
connected sparse network is both unexpected and interesting. In the early stages of expansion, the network takes 
on characteristics of a small-world network [3], [4], in spite of having no distal connections, and performance 
unexpectedly peaks. It then declines, and reaches a steady state value. We also examine the performance of 
randomly-connected networks under similar conditions.
 

2. Network Dynamics and Training 
 

The network is arranged as a one-dimensional structure with wrap-around at the ends, and so takes on a 
ring-like topology. We will be concerned in this study with locally-connected networks, in which the number of 
afferent connections k, per unit is less than the total number of nodes N, and where each node is connected to its 
k nearest neighbors. See Figure 1 left. In a second study we will randomly rewire a proportion of the connections 
to each node of the local network, creating a number of distal connections. See Figure 1 centre, which shows the 
effect of rewiring 10% of all local connections: this is a small-world network. Figure 1 right shows the effect of 
rewiring 100% of all connections: this is a random network. 

 
 
 
 
 
 
 
 
 

Figure 1. The units arranged in a ring with four connections per unit.  Left: a locally-connected network, centre: 
showing the effect of  10% rewiring, and right: 100% rewiring.  Diagrams generated with the Pajek package [5]. 
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The networks used in the present studies have no symmetric connection requirement [6], and the recall 
process uses asynchronous random order updates, in which  the local field of unit i is given by: 
  hi = wijS j

j≠i
∑

where wij is the weight on the connection from unit j to unit i, and S the current state .  The network uses 
bipolar units with a Heaviside transfer function such that the next state, S´, of a unit is a function of its local field 
and its current state, given by: 

±1( )

  ′ S i =
+1 if hi > θi
−1 if hi < θi
Si if hi = θi

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

where θi is the threshold of unit i (set to zero for each unit). 
Network training is based on the perceptron training rule [2]. Given a training set ξ µ{ }

µ
the training algorithm is 

designed to drive the local fields of each unit the correct side of the learning threshold, T, for all the training 
patterns.  This is equivalent to requiring that:  
  Thi ii ≥∀ µµξµ,
So the learning rule is given by: 
 Begin with a zero weight matrix 
 Repeat until all local fields are correct 
   Set the state of the network to one of the ξ µ  
    For each unit, i, in turn 
       Calculate hi

pξ i
p . 

       If this is less than T then change the weights 
       on connections into unit i according to: 

      
k
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p
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ijijij
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The form of the update is such that changes are only made on the weights that are actually present in the 
connectivity matrix { } ijC (where =1 if is present, and 0 otherwise), and that the learning rate is inversely 
proportional to the number of connections per unit, k.  Earlier work has established that a learning threshold T = 
10 gives good results [7]. 

ijC ijw

 
3. Performance Measures 

 
3.1 Effective Capacity  

 
Two performance measures are used in this study: the Effective Capacity [8], [9] and the mean radius of 

the basins of attraction [10]. Effective Capacity is a measure of the number of patterns which a network can 
restore under a specific set of conditions. The network is first trained on a set of random test patterns. Once 
training is complete, the patterns are each randomly degraded by flipping 30% of their bits, before presenting 
them to the network. After convergence is complete, a calculation is made of the degree of overlap between the 
output of the network, and the original learned pattern. This is repeated for each pattern in the set, and a mean 
overlap for the whole pattern set is calculated. The Effective Capacity of the network is the highest pattern 
loading at which this mean overlap is 95% or greater. If a degraded pattern, by chance, becomes closer to 
another of the stored memories in the network, this degraded pattern is rejected, and another generated. 

The Effective Capacity of a network is determined as follows: 
Initialize the number of patterns, P, to 0 
Repeat 
  Increment P 
    Create a pattern set of P random patterns 
    Train the network on this pattern set 
    Repeat for each pattern in the set 
  Degrade the pattern randomly by inverting 30% of the pattern’s bits 
  With this noisy pattern as starting state, allow the network to converge 
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  Calculate the overlap with the original undegraded pattern 
    End Repeat 
    Calculate the mean pattern overlap over all final states 
Until the mean pattern overlap is less than 95% 
The Effective Capacity is P-1 

For implementation purposes, a binary search algorithm is used to search for the loading resulting in 95% or 
better recall, rather than simply increasing the loading from unity upwards. 

Previously reported results suggest a value of Effective Capacity of approximately 0.2N for large fully-
connected networks of perceptrons [8], where N is the number of units in the network. For such networks, 
Effective Capacity is thus directly proportional to the underlying maximum theoretical capacity of the network. 
For a fully-connected high-capacity version of the Hopfield network trained on random unbiased patterns this is 
given by 2N [11]. In non-fully-connected networks the maximum theoretical capacity is 2k [12], where k is the 
number of connections per unit. In Figure 2 we plot Effective Capacity against k in a network of 5000 units. This 
illustrates the linearity of Effective Capacity as a measure of network performance in sparsely-connected 
networks, and shows that for large networks it is directly proportional to k, and thus to the underlying maximum 
theoretical capacity of the network. The exact slope of the plot is dependent on the wiring architecture of the 
network, but in the present locally-connected case it is approximately 0.25. 
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Figure 2. Effective Capacity against connectivity for a locally-connected network of size 5000 units, averaged over 10 runs. For large 
networks, Effective Capacity is directly proportional to k, the number of connections per unit, and thus also to the underlying maximum 
theoretical capacity of the network. 
 

Although we have defined Effective Capacity, EC, as the pattern completion capacity of the whole 
network, it will also be useful to consider it as a measure of the number of pattern bits per unit which a network 
can effectively restore. This equivalence arises because in a Hopfield network, the number of bits per pattern is 
always equal to the total number of units in the network. Thus the number of pattern bits effectively stored per 
unit is simply EC multiplied by the number of bits per pattern (N), divided by the number of units (N). 

 
3.2 Radius of the Basins of Attraction  

 
The second performance indicator which we have used is the mean radius of the basins of attraction, 

based on the measure used by Kanter and Sompolinsky [9], and refined by Davey et al. [6]. It involves 
determining the maximum degree of noise which can be applied to a pattern, while still leaving it able to be 
restored to a perfect condition after convergence. The measure is normalized to compensate for overlap between 
the noisy pattern and the closest other fundamental memory of the system. The normalized mean radius of the 
basins of attraction, R, is defined as: 
 

  R =
1− m0

1− m1
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where  is the minimum overlap an initial state must have with a fundamental memory of the network to 
converge on that fundamental memory, and  is the largest overlap of the initial state with the rest of the 
fundamental memories. The angled braces denote a double average over sets of training patterns and initial states. 
A value of R = 1 implies perfect performance, and a value of R = 0 implies no pattern correction. 

0m

1m

Effective Capacity offers certain advantages over R as a measure [8], not the least being the absence of 
upper bound in its value, and is used predominantly here. R will be used largely for confirmation of our main 
findings. 

 
 

4. Results and Discussion 
 
4.1 Increasing network size in local networks 

 
In this simulation we have taken networks with a fixed number of connections per unit, and progressively 

increased the size of the network so that from an initially fully-connected state these networks become 
progressively more sparsely connected. During this process the network is rebuilt each time with local-only 
connections. Figure 3 shows a plot of the Effective Capacity of the networks against the number of nodes 
comprising them, for networks with 50, 100 and 200 connections per unit. 

It will be seen that as the network size is increased from a starting point where all units are fully-
connected, the Effective Capacity initially increases quite sharply, peaking at a point where the network size is of 
the order of 2 to 3 times the number of incoming connections per unit. Performance then declines, reaching a 
steady state by the point at which the network size is of the order of ten or twenty times the number of 
connections per unit. For the 100-connection network, EC is 13.1 when the network size is 100 units (fully-
connected). It peaks with an EC of 20.9 at 250 units, then steadily declines, reaching an EC of 19.0 at 2000 units, 
after which its value remains constant. 

For comparison purposes, Figure 4 shows the normalized radius of the basins of attraction, R, for the 100-
connection network featured in Figure 3. This exhibits a broadly similar performance to the plots of Figure 3. 
There is an initial phase of relatively rapid increase in R. R then peaks at a value of 0.8 at a network size of 190 
units, slightly earlier than the peak observed in the equivalent plot in Figure 3. It then drops more rapidly than 
EC, progressively slowing its rate of decline until it appears as if it will asymptote at a value of about 0.4. But 
even at a network size of 20,000 units, it does not quite reach a steady state.  
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Figure 3. Effective Capacity vs network size for networks with 50, 100 and 200 connections per unit, averages 
over 20 runs. In the case where k is 100 connections per unit, the Effective Capacity is 13.1 when the network 
size is 100 units (fully-connected). It peaks with an EC of 20.9 at a network size of  250, reaching a steady-state 
EC of 19.0 at a network size of  2000 units. 
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Figure 4. Normalized radius of the basins of attraction, R, vs network size for a network with 100 connections 
per unit, trained on 30 patterns, averages over 50 runs. R is 6.2 when the network size is 100 (fully-connected). It 
peaks to a value of 0.8 at 190 units. At a network size of 20,000 units its value has dropped to 4.1, and is still 
falling. 
 

While the differences between the EC and R plots might be expected because they represent two different 
measures of network performance, their broad similarities highlight an interesting phenomenon. It will be seen 
from Figure 3 that the Effective Capacity of the network is subject to two distinct phases. The first, in which EC 
increases relatively sharply, suggests that for the high capacity version of a Hopfield network, the fully-
connected state does not correspond with its greatest efficiency in terms of the total number of pattern bits per 
unit which it can restore under the specific conditions imposed by the EC algorithm, for a given connectivity, k 
(see the last paragraph of section 3.1). From this perspective, the greatest efficiency for a locally-connected 
network comes at the peak in the EC plot, which occurs where the network size is of the order of  2 or 3 times 
the number of connections per unit. 

As the size of the network increases further, there is also clearly a growing negative effect on 
performance, which causes the Effective Capacity to decline after its initial rise. We would suggest that this 
negative effect is the result of the nodes in the network becoming increasingly more isolated, so that the mean 
minimum path length between nodes in the network becomes significant. In the earlier phase, of relatively rapid 
increase in Effective Capacity, it could be argued that the network, although only locally-connected, takes on 
some of the properties of a small-world network [3], in which levels of clustering are significantly higher than 
those of a random graph, but where the mean minimum path length is low enough for all units to remain in good 
communication, and to be able to reinforce each other efficiently. At the peak in the curve, the mean minimum 
path length between nodes is 1.5. As the network continues to increase in size, communication between units 
becomes impaired, and the mean minimum path length steadily increases. The decline in performance continues 
until the network reaches a size of the order of ten or twenty times the number of connections per unit (i.e. the 
connectivity is of the order of 5% or 10%), at which point there is no further decline in Effective Capacity. At 
this stage, where the mean minimum path length is of the order of 5 or greater, the network has become 
disconnected, and each unit acts in relative isolation. The positive effect on performance of any further increase 
in network size is now exactly offset by the corresponding increase in the number of bits in each pattern in the 
training set, and Effective Capacity remains constant. 

 
4.2 Increasing network size in rewired networks 

 
It has been shown that by randomly rewiring a proportion of the connections in a locally-connected 

associative memory it is possible to improve network performance [13], [14]. This increase in efficiency is 
achieved when the rewired connections reduce the mean minimum path length between nodes, and enable the 
network to take on the characteristics of a small-world network in which the majority of connections to each unit 
are local, but where a number of connections are rewired to make contacts further afield, and so decrease the 
mean minimum path length of  the network. 
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Figure 5 shows the behavior of a network with a fixed number of connections per unit, in which the 
network size is progressively increased from 100 units, the fully-connected state, to 10,000 units. Four levels of 
rewiring are depicted: 0%, 15%, 40%  and 100%. With zero rewiring this is simply a locally-connected network, 
and the curve is identical to that shown in Figure 3, with the now familiar peak, though this is obscured 
somewhat by the presence of the other curves. The three rewired plots also show a sharp increase in Effective 
Capacity in the initial stages of network expansion, as the benefits of small-world connectivity become manifest. 
The rewired plots, however, do not exhibit the peaking behavior of the locally-connected plot, but continue to 
rise steeply because the amount of rewiring is sufficient to keep the mean minimum path length low (the mean 
minimum path length in the network with 100 connections per unit is just 1.9 in the 100% rewired case at a 
network size of 1000 units, compared to 5.5 with no rewiring). Eventually the increase slows, and the 15% curve 
plateaus. The 40% and 100% rewired curves appear to asymptote, though even at a network size of 10,000 units 
have not reached a steady state.  
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Figure 5. Effective Capacity vs network size for a network with 100 connections per unit, showing the effect of 
0%, 15%, 40%  and 100% rewiring, averages over 50 runs. 
 

Thus our plot of Effective Capacity in Figure 5 now suggests the unexpected result that the best 
performance of the network, measured in terms of pattern completion bits per node, for a given number of 
afferent connections per node, occurs at quite low levels of relative connectivity - of the order of a few percent or 
less in the present example. At these very sparse levels of connectivity, pattern completion performance per unit, 
as measured by Effective Capacity, is better than 45 (Figure 5, upper curve, right-hand end). The equivalent 
measure for a fully-connected network with the same number of connections per unit is just 13.1 (Figure 5, the 
lowest point at the left-hand end). The sparsely-connected random network thus has a pattern-completion 
performance measured in bits per unit, of more than three times its fully-connected counterpart. Fully-connected 
networks thus appear to represent an inefficient use of resources even before we take into account the physical 
costs of wiring, and it is unsurprising that in physical systems such as the cortex, we encounter relatively low 
levels of connectivity, of the order of 10% or less [15]. Anatomical studies further suggest that connectivity 
patterns within the mammalian cortex exhibit a Gaussian distribution pattern about each node  [16], and we have 
begun to examine the effects of using Gaussian and exponential patterns of connectivity in our high capacity 
associative memory model [17]. 
 

5. Conclusion 
 

The performance of a high capacity associative memory model under perceptron training rules, and 
configured as a one-dimensional lattice has been studied under conditions of increasing network size, but with 
each node having a specific and unchanging number of afferent connections. The performance of the locally-
connected network, measured both in terms of Effective Capacity, and the mean radius of the basins of attraction 
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exhibits an interesting profile. As the network size is increased from an initially fully-connected state, 
performance rapidly improves, and then peaks when the network size is around 2 to 3 times the number of 
connections per unit. As the network size is increased still further, performance declines, reaching a constant 
Effective Capacity when the network size is around ten or twenty times the number of connections per unit. The 
initial improvement in performance suggests the unexpected and important result that in terms of pattern bits 
repaired per unit, the optimum performance of the network, for a given number of connections, k, does not 
correspond to the fully-connected state, but to a point where connectivity is significantly less than 100%. In the 
first set of networks, where connectivity is restricted to purely local connections, optimum performance occurs 
when connectivity is of the order of 50% or less, corresponding to the peaks in the curves of Figure 3. 

In the second simulation, in which the same scaling exercise is repeated with networks containing an 
element of random connectivity, the same initial rise in performance is apparent, but instead of peaking and then 
declining, the increase continues beyond the maximum point reached in the first simulation, appearing to 
approach a stable or asymptotic state, at which the level of performance depends on the degree of rewiring of the 
network. From this data it can be seen that when rewiring is permitted, higher levels of performance are achieved, 
and that the best performance of the network in terms of pattern bits recalled per perceptron for a given number 
of connections, k, occurs at relatively low levels of connectivity. Taken together, these results suggest that in 
creating high efficiency associative memories, it is important to have sparse connectivity and short minimum 
path lengths: features found in the mammalian cortex. 
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