Knowing What We Can Do

Actions, Intentions, and the Construction of Phenomenal Experience

Abstract

How do questions concerning consciousness and phenomenal experience relate to, or interface with, questions concerning plans, knowledge and intentions? At least in the case of visual experience the relation, we shall argue, is tight. Visual perceptual experience, we shall argue, is fixed by an agent's direct unmediated knowledge concerning her poise (or apparent poise) over a currently enabled action space. An action space, in this specific sense, is to be understood not as a fine-grained matrix of possibilities for bodily movement, but as a matrix of possibilities for pursuing and accomplishing one's intentional actions, goals and projects. If this is correct, the links between planning, intention and perceptual experience are tight, while (contrary to some recent accounts invoking the notion of ‘sensorimotor expectations’) the links between embodied activity and perceptual experience, though real, are indirect. What matters is not bodily activity itself, but our practical knowledge (which need not be verbalized or in any way explicit) of our own possibilities for action. Such knowledge, selected, shaped and filtered by the grid of plans, goals, and intentions, plays, we argue, a constitutive role in explaining the content and character of visual perceptual experience.
1. Introduction: Fluent Action in a Topsy-Turvy World?

To understand perception, we need to understand its relations to action. Try to imagine a creature whose conscious experience presents it with an upside down world, but whose motor routines are so neatly tweaked and tuned that their physical engagements with the world always go off without a hitch. Imagine, moreover, that this creature is so familiar with its own motoric eloquence that it is never surprised that its actions work out. Imagine too that all its episodes of planning and imagination have come to be as well integrated with motoric action as our own, enabling it, for example, to plan and execute complex climbs on mountainsides and indoor training walls, and whatever else you would accept as proof of some proper inter-animation between conscious reason and successful action. Now ask yourself: *can you really imagine that this creature experiences its world as 'upside down'?*

Skill-based accounts of perception provide a powerful framework in which to press a negative response. At the heart of such approaches is the simple but compelling idea that in spatial perception (at least) the way we consciously perceive the world is intimately, rather than merely contingently, tied up with routines for (or behavioural dispositions towards) engaging the world by deed and action.

For example, Mandik (1999) argues for what he terms the ‘behavioural constituency of perceptual space’. This is the idea that our egocentric experience of space is conceptually intertwined with our possession of various bodies of behavioural know-how. Similar intuitions are pumped in Evans (1985) and Grush (1998). For example, Grush claims of our perception of a sound as pulsating, that

‘part of the normal content of pulsatingness, for us, is that it is something with which we can co-ordinate a number of sensorimotor skills’
Suppose we hear the sound of a siren as pulsating. That perception, Grush argues, poises us to exercise a battery of skills. We might wave a hand, tap a finger, or nod our head in time with the pulses. The total failure of an embodied agent to be able to bring any such skills to bear is, Grush argues, incompatible with the idea that that agent actually perceives the sound as pulsating (though she may know it to be pulsating by some other means). Intrinsic to the perceptual auditory content then, is something that puts that content in touch with dispositions towards various kinds of embodied actions.

The idea is thus that there may be conceptual links between experience and acting, planning and intending that a theory of perception would do well to accommodate. Contemporary work in active vision (Ballard (1991), Churchland, Ramachandran and Sejnowski (1994), Ballard et al (1997)) complements this idea, depicting vision as essentially active and exploratory, and visual experience as deeply geared to the control of various forms of world-engaging behaviour. The account we develop here aims to build on these proposals. Visual experience, we suggest, consists in practical knowledge of our own possibilities (real or apparent) for action. It involves 'knowing what we can do'. Direct awareness of such a currently enabled 'action space' explains, we shall argue, both the contents and the qualitative character of visual experience.

2. Two Takes on Perception and Action

If constitutive links do obtain between perception and action, what more can we say about the nature of those links? One option is suggested by Noë’s (2004) sensorimotor
theory of perception. On such a view, the content and character of our visual experience is determined by our implicit knowledge of the systematic ways in which stimulation will change as a result of certain bodily movements. In this way:

‘perceptual experience acquires content thanks to our possession of bodily skills. What we perceive is determined by what we do (or what we know how to do); it is determined by what we are ready to do…we enact our perceptual experience: we act it out’

The quote offers several not obviously equivalent glosses on the sensorimotor model. In particular, the reference to ‘what we know how to do’ needs to be seen for what it is: a reference to the role of knowledge of counterfactuals concerning the ways sensation depends on movement, rather than a reference to the kinds of knowledge with which we shall later be concerned, viz knowledge concerning what we are poised to accomplish. For example, a line in front of the perceiver, on Noë’s account, appears vertical to her just in case she implicitly knows that her sensations will remain largely the same if she nods her head up and down the line, but will differ in a predictable and regular way if she moves her head from side to side. A visually-presented tomato appears spherical (rather than appearing as a circular tomato-façade) if the perceiver possesses implicit knowledge of how her sensations would change were she to move around it. And the tomato is experienced as visually rather than tactually presented if the perceiver implicitly knows that (for example) moving her head and eyes around will alter her visual sensations in characteristic ways, while leaving her tactile sensations unchanged. Perceiving, on Noë’s account, is a matter of knowing how what we can do affects what we can see.
An alternative connection between perception and action is suggested by considering dispositionalism about colour looks. Standard dispositionalist accounts of colour (e.g. Johnston (1992)) identify colours with dispositions to produce certain visual experiences in certain perceivers. But we might also attempt to give a dispositional analysis of those experiences themselves, in terms of capacities for classification, discrimination and judgement with which they are associated (Shoemaker (1996), Pettit (2003)). So, for Pettit (2003), for something to look a certain way with respect to colour is for it to empower certain abilities in the perceiver. For example, a tomato’s looking red to a perceiver is a matter of its empowering her to, among other things, sort it with red and other similarly-coloured objects, sift it from differently-coloured objects, and track it across a range of different backgrounds and perceptual situations. Though Pettit restricts his treatment to colour looks, his account might be generalised to other aspects of perception. The tomato looks spherical to the perceiver if her perception of it disposes her to sort it with other spherical objects and sift it from differently shaped ones. The tomato is experienced as visually, rather than tactually presented just in case it empowers a suite of abilities in the perceiver that are characteristic of vision rather than touch (sifting and sorting it on the basis of its colour, rather than, say, its temperature to the touch). Perceiving, on Pettit’s account, is a matter of knowing how what we can see affects what we can do.

What we have here are two contrasting ways of understanding the kind of tight relationship between action and perception argued for in section one. The camp occupied by Noë² thinks we must appeal to action in understanding perception since perception is constituted by our understanding of how possible perceptions depend on what we might do. The camp occupied by Pettit and, as we shall see, by the present authors,³ thinks that in some way this story gets things in reverse, and that perceptual
experience is constituted by our understanding of how possible actions depend on what we perceptually detect. To try to make this plausible, we next turn to a puzzle case.

3. Kohler’s Coloured Goggles

Consider Kohler’s (1964) experiments involving adaptation to colour-distorting goggles. In these experiments, subjects wore goggles with vertically-bisected lenses, each of which had a blue-tinted left half and a yellow-tinted right half. Upon initial donning of the goggles, subjects’ colour experiences and their colour naming and categorising behaviours were predictably disrupted. A uniformly white wall would appear half blue and half yellow when the subject looked directly at it, or completely yellow or blue when looked at through the appropriate half of the goggles. However, after several weeks of wearing the goggles, subjects’ experiences and colour categorisations returned to normal – the distorting effects of the goggles had somehow been compensated for.

What do these results tell us about the relationship between action and perception? Consider how a sensorimotor theory might account for these results. Hurley and Noë (2006) claim that:

‘The sensorimotor expectancies characteristic of particular colours relate ultimately to the underlying invariant patterns of dependency of sensation on movement, and these do not change when the goggles are worn. But they are given new clothing, a transformed implementation, and as a result the perceiver’s understanding of them is disrupted until his expectations have adjusted to this new implementation and related it to the underlying invariant patterns.’

The idea is that the sameness of experience before the goggles are donned and after adaptation has occurred is explained by the subject’s sensitivity to an underlying invariant dependence between sensation and movement. The goggles disrupt this sensitivity by giving this dependence a ‘new implementation’ which is filtered out, or compensated for, over the course of the adaptation. However, we suggest that sensorimotor theorists face a problem when attempting to specify exactly what the relevant sensorimotor invariant is.

To see this, first note that there is an ambiguity in the appeal to the dependency of perception on action as we have sketched it so far. Sensorimotor theorists appeal to the sensorimotor dependency of perception on action in order to explain the content and character of perception. But the ‘perception’ in this perception/action dependency admits of a personal-level and a subpersonal-level construal. For example, a sensorimotor theorist might construe the perceptions that vary according to our movement either as subpersonal activity (such as patterns of retinal stimulation, or at some higher level of visual processing) or personal level visual experience\(^4\). But as we shall now see, neither of these construals can provide the invariant sensorimotor dependence required for an explanation of Kohler’s results.

Sensorimotor relations which obtain between perceptual *experience* and movement are not invariant, since these relations change when the goggles are donned (everything looks blue when the subject looks left, yellow when she looks right) and return to normal over the course of adaptation. Sensorimotor relations which obtain between *subpersonal stimulation* and movement are not invariant, since donning the goggles introduces a new dependency between eye-movements and systematic shifts in the wavelength of light hitting the retina. This new dependency continues to obtain after adaptation has occurred, but the subject’s experience has reverted to the way it was when the normal set of dependencies was in place.
On both the personal and the subpersonal-level construals of sensorimotor dependence, sensorimotor relations differ over different stages of the experiment. To specify an invariant, then, the sensorimotor theorist must appeal to some higher-level commonality between the sets of relations. But whatever these sets of relations have in common, it is not dependence between either perceptual experience and movement, or subpersonal stimulation and movement. It is therefore opaque to us how the relevant invariant is to be motivated or captured in sensorimotor terms.

The account we shall develop suggests instead that what is disrupted and restored over the course of the goggle experiment is the way in which the subject’s perceptual sensitivity to colour poises them over a space of enabled actions. Before the goggles are donned and after adaptation occurs, an identical space of colour discriminations, categorisations and judgements are enabled by the subject’s perceptual exposure to a coloured object. According to our account, the invariance that allows the subject to adapt to the disruption of these abilities by the goggles is not to be found in sensorimotor relations between sensation and movement, but in the invariant way in which objects are apt to be sifted, sorted, tracked and otherwise categorized on the basis of their objective colours throughout the stages of the experiment. The goggles disrupt the perceiver’s sensitivity to this invariance by introducing a new set of sensorimotor dynamics. Subjects who have just donned Kohler’s goggles thus misunderstand the way the coloured objects in their perceptual environment should be sifted, sorted and tracked; staring at a white wall they see one half as apt to be sorted among yellow things and the other as apt to be sorted among blue things. Adaptation consists in compensating for the distortive effects of the goggles to bring the perceiver’s range of colour-related dispositions and intentions – the space of actions elicited from the subject by exposure to coloured objects – back into line with the way in which colour properties are actually distributed.
Before donning the goggles, the subject sees the different portions of a uniform white wall as apt to be sifted, sorted and tracked in uniform ways, as they in fact are. Initially after donning the goggles, her sensitivity to the invariant colour of the wall is disrupted, disposing her to treat different portions of the wall in different ways with respect to their colour, depending on the side of the goggles through which she views them. And after adaptation, she once again sees the wall as apt to be treated in a uniform way with respect to its colour. The relevant invariant over the course of the experiment is how the wall is apt to be treated with respect to its colour, and this is what allows adaptation to occur. However, as we have just seen, the way that the subject’s perceptual uptake poises her to act with respect to the wall’s colour changes in ways that track the changes in her experience.

The correct moral to draw from Kohler’s results is thus that knowledge of sensorimotor relations is of only instrumental importance in explaining the content and character of visual experience. Implicit knowledge of sensorimotor relations might be part of what is involved when we come to know the nature of our own poise over an action-space (a kind of knowing that, we will argue, is constitutive of experience). But Kohler’s results imply that a range of very different sensorimotor backdrops are consistent with such poise obtaining. Kohler’s results thus suggest that the character of experience is fixed by the subject’s perceptual grasp of a space of enabled (or apparently enabled) actions, not by our familiarity with whatever sensorimotor dependencies such a grasp may involve. The way things look to perceivers over the stages of Kohler’s experiment reflects what they take themselves to be poised to do on the basis of their perception, not what they know they could perceive as a result of their actions.

4. The Dual Visual Systems Hypothesis
The ‘dual visual systems’ hypothesis (DVS) (Milner and Goodale (1995), Clark (2001), Jacob and Jeannerod (2003), Jeannerod and Jacob (2005)) lends further empirical support to this view of the relationship between action and perception. According to the DVS model, the contents of conscious perceptual experience are determined by the activation of a distinctive body of internal representations operating quasi-autonomously from a perceiver’s direct motor engagement with her environment. These representations are perceptual but are geared towards (and optimized for) the specific needs of reasoning and planning rather than those of fluent physical engagement. These representations are conditioned by a stream of inputs that do indeed originate at the sensors, but this stream proceeds in large part in parallel to the processing stream dedicated to the fluid control of online, fine-tuned, sensorimotor engagement, and is systematically insensitive to much of the lower-level detail.

The most dramatic versions of the dual-stream story are due to Milner and Goodale (1995) and Goodale and Milner (2005) who suggest that conscious visual awareness reflects information-processing activity in a specific visual processing stream geared towards enduring object properties, explicit recognition, and semantic recall. This stream - the ventral stream - is also in charge whenever real-world objects are unavailable, and governs our attempts to mime actions on imagined or recalled objects. Actual object-based motor engagements, by contrast, are depicted as the province of a semi-autonomous processing stream - the dorsal stream - that guides fluent motor action in the here and now. Milner and Goodale thus contrast capacities of visually-guided action and capacities of conscious visual perception, suggesting that these come apart in a variety of unexpected and revealing ways.

In support of this hypothesis Milner and Goodale invoke a rich body of data concerning both normal agents and subjects with damage to areas in either the dorsal or
(as in the famous case of DF, the visual form agnosic studied extensively by Milner and Goodale) the ventral visual stream (for extensive discussion, see Clark (2001) (2007), Jacob and Jeannerod (2003), Jeannerod and Jacob (2005)). For present purposes, we shall simply assume that something like a nuanced version of the dual visual systems account is true for at least some dimensions of human visual experience.

The interactions between the dual systems are, however, important. For rather obviously, conscious visual perception and the control of world-engaging action work closely together in the service of reasoned worldly response. To capture the flavour of this co-operation, Goodale and Milner (2005) elaborate a ‘tele-assistance’ model of the interactions between the two streams. In a typical tele-assistance set-up, a human operator and a semi-intelligent distal robot combine forces so as to perform actions in some environment. A familiar example might be a Mars rover, where the human operator reviews images on a screen in Texas, flagging items of interest (such as a strangely shaped rock in the top left of the screen). The operator commands the robot to retrieve the flagged item, perhaps adding commands that specify the use of one of several retrieval modes (according to estimated weight, fragility, etc). The robot rover then does the rest, locomoting to the spot and calculating the local commands needed to deploy the robot body and gripper so as to achieve the goal. Such approaches should be contrasted with tele-operation solutions, in which the human operator controls all the spatial and temporal aspects of the robots movements (perhaps via a joystick or a set of sensors that allow the operators own arm and hand movements to be relayed to the robot).

The tele-assistance analogy identifies the conscious human operator with the ventral stream (working with stored memory and various 'executive control' systems). The task of this coalition, the analogy suggests is to identify objects and to select types of action that are appropriate given the agent's current goals, background knowledge, and
currently attended perceptual input. The task of the dorsal stream (and associated structures) is then to turn these high-level specifications into metrically accurate, egocentrically specified forms of world-engaging action.

This view of matters tells against the sensorimotor theorist’s view of the relations between action and perception. As noted, sensorimotor theorists appeal to implicit knowledge of the ways in which movement affects perception. But DVS invites us to conclude that what is distinctive about the perceptual representations underlying conscious perception is the way in which they are apt to be put to use in reasoning, planning, imagining and intention-formation. On such a picture, the relevant relation between perception and action is the way in which perceptual input enables these abilities to plan and select actions and goals, with these actions and goals understood in a relatively coarse-grained way, independently of the fine details of the bodily movements needed to implement and execute them.

Again, it seems to us that the correct moral to draw here is that sensorimotor relations should play, at best, an indirect role in our understanding of conscious visual experience. A sensorimotor theorist might argue that implicit knowledge of effects of movement on perception is required for the ventrally-mediated abilities emphasised by DVS. But further argument is needed to demonstrate this. And even if such arguments were provided, assuming we take the results of DVS seriously we should conclude that sensorimotor relations are only relevant to our visual experience insofar as they play a role in enabling the distinctive ventral-dominated abilities of planning, reasoning, and recognition. The DVS results suggest that it is those abilities, however enabled, that we should emphasise in our understanding of conscious visual experience.

5. The Action-Space Model
The considerations of the previous two sections suggest that in order to understand visual perception we must attend to the relations between a subject’s perceptual sensitivity to their environment and the actions enabled for them on the basis of that sensitivity. To this end, we propose an ‘action space’ model of conscious visual perception. According to such a model, what counts for (what both explains and suffices for) visual perceptual experience is an agent’s direct unmediated knowledge concerning the ways in which she is currently poised (or, more accurately, the way she implicitly takes herself to be poised) over an ‘action space’. An action space, in this specific sense, is to be understood not as a fine-grained matrix of possibilities for bodily movement, but as a matrix of possibilities for pursuing and accomplishing one's intentional actions, goals and projects. The essential links between perceptual experience and behaviour, we are thus suggesting, show up not at the level of individual bodily routines and the sensory changes they engender, but rather in the agent’s appreciation of her opportunities for action: in her perceptual appreciation of what can be done given the constituents of the current scene. What matters is thus not bodily activity itself, but our knowledge, which need not be verbalized or in any way explicit, of our own possibilities for action.

Consider the case, mentioned briefly above, of DF. DF lacks visual experience of shape and orientation (she retains experience of texture and colour). She can, if prompted, post a card through an oriented slot with amazing fluency, all the while insisting that she cannot see the orientation that appears to guide her action. By now, after many years of testing and prompting, she is even indirectly aware of her own capacities, and has developed ways to self-prompt her own actions (see Goodale and Milner (2005)). But what she still lacks, we suggest, is direct appraisal of the shape of her own space of currently enabled actions. Thus suppose we ask her some new question
such as ‘can you place one finger on each side of the slot?’ or ‘can you post the letter half-way through the slot and then withdraw it?’ She must answer (unless these are things she has tried before) that she doesn’t know, that she would have to try it to see. This is quite unlike our normal condition, where we simply know, with reasonable accuracy, what kinds of goals and projects our current visual contact with the world enables us to carry out.

The same model appears to provide a plausible diagnosis of blindsight cases. Blindsight subjects exhibit perceptual sensitivity to shape, motion, and even colour, but claim to make these discriminations in the absence of any attendant conscious experience. However, these discriminations can only be made as a result of prompting by the experimenter – blindsight patients have no insight into when these discriminatory abilities are enabled for them independently of this prompting. We suggest that the discriminatory abilities of such subjects differ from our own in that they lack the capacity to automatically integrate their own enabled abilities with ongoing planning, reasoning and intention-formation. Normal perceivers do not have to be prompted in order to know that their current perceptual sensitivity to their environment enables them to make a certain range of discriminations. Unlike DF and blindsight subjects, normal conscious perceivers have direct unmediated knowledge of the space of actions that their current visual coupling to the environment affords.

In the light of all this, we suggest a rather strong claim. To be directly apprised (in a non-phenomenal sense: see section 6 following) of one’s poise over a perceptually-detected action space just is, in our view, to enjoy perceptual experience. The upshot of this view is that any partially constitutive story obtains not between conscious perception and real-world action, or even between conscious perception and (what might be called) first-order dispositions to action. Instead, it obtains between conscious perception and planning for action. Planning for action constitutes what we shall dub a ‘second order
disposition towards action’: that is, a disposition to generate, if all is functioning properly, a specification of a first-order routine (one that really would move the body as required in space): a routine that (once again, if all is working properly) would indeed result in successful world-engaging action.

The notion of planning that is at issue here is, to be sure, a relatively weak one. The kind of practical grasp of the shape of a space of possible actions to which we are appealing does not require that the agent be able to engage in reflective thought, or to bring the enabled actions under concepts. In addition, an agent’s grasp of the actions that her current perceptual situation actually supports will always be partial, because limited by her states of attention and by her active or longstanding plans and projects. Neither the appreciation of currently enabled actions nor the integration of that appreciation with planning and reasoning requires full-fledged, context-neutral conceptual abilities.

The sort of practical understanding that matters for conscious experience does, however, involve more than skillful Rylean know-how (Ryle (1949), Ch. 2), such as the unreflective practical knowledge of how to effectively wield a tennis racquet. It also involves the subject’s ability to deploy her perceptuo-motor repertoire in ways that respect both her current goals and the transduced scene-specifying information. As an agent engages in intentional activity over time, objects she encounters afford opportunities and obstacles relative to her aims (Gibson (1986)). Our claim is that conscious perception depends upon an agent’s ability to adjust her actions and intentions in light of her sensitivity to such environmental affordances and impediments. Even when a conscious perceiver casts an apparently disinterested eye across the scene, with no well-defined or explicit goals in mind, her perceptual sensitivity poises her to respond to features of her environment in ways that respect their potential to support or impede possible forms of goal-directed activity. Such a possibility of interplay between
perceptual sensitivity and intentional activity is what is involved in the suites of adjustments, responses and interventions afforded by particular physical objects and features being apt for integration into ongoing planning and reasoning, in our sense. When an agent’s perceptual sensitivity is such as to automatically mesh with her capacities for intentional activity in this way, she unreflectively takes herself to be poised over a space of actions. Our claim is that an agent’s understanding of herself as poised in this way suffices for perceptual consciousness.

Thus, the kind of knowledge of poise over an action space we emphasize does not single out language or concept-using agents. Non-linguistic and non-concept-using agents capable of planning and reasoning by (directly and non-inferentially) identifying the actions afforded by a current perceptually-specified situation are, on this account, already denizens of experiential space.

The sorts of enabled actions to which the action-space account appeals include those that Matthen (2005, pp.229-232) highlights as ‘epistemic actions’, such as the abilities to reidentify, co-classify, group, sort and track objects and states of affairs. Thus, the colour experiences of a subject adapting to Kohler’s coloured goggles return to normal insofar as their abilities to sift, sort and track objects on the basis of perceptual sensitivity to colour-determining properties are brought back into line with the range of abilities they possessed before donning the goggles (Pettit (2003)). Blindsight subjects retain abilities to perceptually discriminate between certain shades and shapes, but lack conscious experience of those shades and shapes since the discriminations and classifications enabled for them can only be put in touch with their current intentional goals and projects via the intermediary of a prompt from the experimenter. In standard cases, such enabled abilities are automatically apt to inform an agent’s intentional behaviour, such as performing the sorts of discrimination tasks that blindsight subjects take themselves to be unable to do. It is this automatic interface between the actions
afforded for a perceiver by their environment and their ongoing practical reasoning that, we claim, explains the content and character of conscious experience.

6. Feeling the Poise

It has often been noted that there is something it’s like to be a conscious perceiver – conscious perception feels a certain way. Since the action space model is being proposed as a theory of conscious visual perception, it is under an obligation to provide reasons why an implicit knowledge of enabled abilities should feel like anything to the perceiver. According to the action-space account, the fact that some space of actions appears to be afforded to a perceiver is something the perceiver is directly, non-inferentially apprised of at the personal-level. Direct personal-level apprision cannot here mean anything like ‘appraisal via the intrinsic properties of experience’, on pain of the action-space account’s begging the question as a theory of conscious perception. Instead, the enabling to which the account appeals is enabling in a way that is simply known to the agent. But why suppose that such enabling must feel like anything to the perceiver in question?

For the beginnings of an answer, consider how the action-space account relates to a proposal made by Clark (2000). Clark argues that certain patterns of access-consciousness (the availability of mental contents for use in reasoning, report and control (Block (1995))) actually entail phenomenal consciousness. Imagine13 a creature who can reliably make a range of perceptual discriminations – say it can identify and distinguish objects based on their olfactory, visual, and tactile properties. It seems conceivable that a creature could exercise these discriminatory abilities without any attendant perceptual experience. But now suppose we endow this creature with limited non-inferential access to some of the facts about how it makes these discriminations – for example, it
automatically knows when it has made a discrimination by sight, rather than by smell or touch, but cannot say more about the differences between these ways of sensing, due to the limits of its access to whatever features make the difference. If the creature had no access to the features in virtue of which the ways of sensing differed, then it will not claim that there is any difference between (for example) perceiving the size of an object by sight and by touch. If the creature had complete access to the features in virtue of which the ways of sensing differed, then it is plausible that differences between sensory modalities will only be differences in the content and extent of the information gleaned in perception, and we need not suppose that such a difference in content need feel like anything to our creature. But if the creature has the kind of limited, but direct and non-inferential access suggested above, there will be a salient difference, registered by the creature, between the discriminations it makes by sight and those it makes by touch – a difference that the creature can report and reflect upon, but (due to its real-but-limited access) can give us no further information about. Such a creature, Clark (2000) argues, must, when pressed, report that the two situations simply look different. Such creatures are said to occupy a necessarily zombie-free zone: a zone where the pattern of real-but-limited access to their own processing forces them to judge (if they are creatures capable of so doing) that they are loci of somewhat ineffable ‘qualitative experiences’.

It seems, in short, that if such patterns of real-but-limited access are in place, then this will result in our creature claiming, when we interrogate it, that there is something-it’s-like to make a discrimination by sight, and that it simply feels different to make discriminations by (e.g.) smell and by touch. We can see the action-space account as an empirically-motivated way of further fleshing out this proposal. In the original article Clark suggests that the appeal to direct non-inferential access might be cashed out in the following way:
‘...what we have access to when we have access to the modality involved in the act of detection is the specific battery of skills that we could have deployed. Insofar as the sets of skills differ according to the modality involved [...] access to the sets of skills which could have been deployed would constitute direct non-inferential access to the modality in use…’

Clark (2000), p.35

The action-space account likewise suggests that conscious perception essentially involves access to a range of perceptual skills. Recall the last section’s discussion of DF and blindsight cases. Experimental settings demonstrate that such subjects possess perceptual sensitivity to their environment that, according to their sincere reports, is not reflected in their conscious experience. Their intake of optical information cues abilities to act, discriminate and report in various ways, but such cuing goes on without their knowledge – without prompting, the cued abilities cannot be put to use in the pursuit of any of their intentional goals and projects (such as posting a card through a slot, or obeying other instructions from an experimenter). We suggested that the lack of an automatic and unreflective interface between perceptual sensitivity and intentional activity is what separates such subjects from normal conscious perceivers. Unlike DF and blindsight subjects, the actions enabled by our perceptual contact with our environment are effortlessly and spontaneously factored into our ongoing intentional activity.

On this account, what DF and blindsight patients lack can be glossed as a kind of direct and non-inferential access to the range of skills that their perceptual sensitivity enables them to deploy. Clark’s proposal suggests how the presence or absence of such access bears on whether there is something it’s like to be the subject in question. The action-space account builds on Clark’s proposal by suggesting that we understand the
range of skills to which access is required as the possible actions cued by perceptual
sensitivity to the environment, and the direct, non-inferential access to which Clark
appeals as the ability to automatically integrate the affordances disclosed by perceptual
sensitivity with the agent’s ongoing intentional activity.

It might be objected that Clark’s proposal merely explains propensities to judge
or report the presence of phenomenal states, rather than the existence of those states
themselves (see Chalmers’ objection in Clark (2000), p.32)). But this objection stems
from a mistaken conception of experience that the action-space account can show us
how to resist. To see this, note that we can gloss the action-space theory of
consciousness as a form of action-oriented representationalism. Chalmers (2004) divides recent
approaches to the relationship between consciousness and intentionality into two camps.
Dretske (1995) and Lycan (1996), attempts to ground consciousness in intentionality, and
to do so ‘without remainder’: that is, they argue that there is no more to various states of
conscious experience than the obtaining of various intentional and content-bearing
representational states. The other camp, whose exemplars include Searle (1990), Horgan
and Tienson (2002) and (with some caveats) Chalmers (2004), attempt to ground
intentionality in consciousness (usually in some way that fails to constitute a fully-fledged
reduction of the intentional to the conscious). The action-space account belongs firmly
in the first of these two camps. It depicts visual experience as constituted, without
remainder, by various complexes of content-bearing mental states. But the relevant states
are now construed not as passive representations of internal or external states of affairs.
Rather, they present the world as an arena for intentional action, including ‘epistemic
actions’. We can view a perceiver’s being poised over an action space as that perceiver’s
occupying an action-oriented representational state, where the content of that state is
given in terms of the abilities that state empowers.
This allows the action-space account to capitalise on representationalist insights about experience. Following Jackson (2003), viewing experience as representational in this way gives us a choice as to how we think about the phenomenal properties of an experience. We can see them either as *instantiated* properties, properties that our experience instantiates, and a theory of consciousness must explain. Or we can see them as *intentional* properties, properties of how that experience represents the world as being. My having an experience of red is a matter of my being in a state that represents things as being a certain way. But my representing things in this way need not entail that I stand in a relation to some existent object with the represented property. The representationalist diagnoses the temptation to think this is so as stemming from the confusion of an intentional property with an instantiated one.

To illustrate the relevance of these remarks to our conception of experience, consider how they bear on what we might say about Mary, the brilliant colour scientist who has spent her life incarcerated in a black-and-white room (Jackson (1986)), upon her release. Jackson’s (2003) point is that drawing an anti-physicalist conclusion from the fact that Mary has a new experience when she leaves the room relies on a certain conception of experience. The anti-physicalist suggests that when Mary sees her first red object, she learns about a new property of experience (phenomenal redness) that the physical information she assimilated in her black-and-white room did not tell her about. But viewing matters from a representationalist perspective allows us to question this conception of experience. The above remarks showed us that we need not think of Mary’s experience of red as involving her standing in a relation to some instantiated experiential property that physicalism does not tell us about. Rather, we can understand her as being in a new kind of representational state, one that her previous black-and-white environment rendered off-limits. The intuitive line of resistance to this idea is that merely saying that Mary represents things in a new way leaves out the fact that she learns
something new, of the form ‘red things look like this’. But whilst it is true that this is something Mary might say upon entering her new representational state, moving from that fact to the falsity of physicalism requires interpreting the above ‘this’ as picking out some instantiated property of experience that is new to Mary, precisely the characterisation that the representationalist rejects14.

According to the action-space account, the objection lodged against Clark’s ‘access implies qualia’ proposal, above, relies on just such a mistaken conception of experience. The objector presses the intuition that the account leaves out our acquaintance in experience with some property that stands behind our reports, judgements and enabled abilities. But appreciating the representationalist point above allows us to reject this intuition as misleading. According to the action-space account, the novel visual experience that Mary enjoys when seeing her first red rose consists in her directly and non-inferentially grasping that her visual contact with the rose enables her to sift, sort, track, classify and otherwise act upon it in ways appropriate to its particular colour. Prior to her release, her monochrome environment ensured that the kind of poise over a space of enabled actions characteristic of visual contact with red objects had not occurred for her. Mary thus enters a new representational state upon seeing the rose, the content of which can be specified in terms of enabled abilities apt for integration with her intentional activity. Clark’s proposal has suggested how the nature of the access that Mary has to that suite of enabled abilities can result in her sincerely claiming that there is something-it’s-like to see the rose, that looking at it feels different from looking at the objects in her black and white room. The objection under consideration is that the real explanatory target as far as consciousness is concerned is not such claims, or the propensity to make them, but the phenomenal properties that stand behind them. But the representationalist point is that this construal of matters is non-mandatory. We need not think that such claims are grounded in acquaintance with non-representational
phenomenal properties of experience; they might just as well be grounded in its intentional properties – how experience represents the world as being. And this is just what the action-space account holds – the basis of Mary’s sincere (and, appropriately interpreted, true) claims about the new qualities of her visual experience is the new way in which she is directly and non-inferentially apprised of her poise over a space of enabled actions.

In sum, viewing representationalism in the light of Clark’s proposal helps us see why a representational state should feel like anything to a perceiver in that state. And viewing Clark’s proposal in representationalist terms allows us to see that the natural objections to that proposal rest on a distortive or question-begging conception of experience. The action-space account thus combines a representationalist focus on world-representing contentful states with a kind of ‘enactivist’ focus on world-directed action. Like the sensorimotor theorist, we believe that there obtain deep (indeed, fully constitutive) relations between visual experience and our knowledge of possibilities for active, world-engaging response. But we do not unpack that knowledge in terms of sensorimotor expectations, but rather in terms of knowledge concerning the space of apparently-enabled intentional actions. The account thus occupies the (to our knowledge) unexplored middle ground between standard forms of representationalism and strong sensorimotor models.

7. Illusions, Hallucinations, and Sleepwalking

The action-space story claims that conscious experience is constituted by the way a perceiver takes herself to be poised to act in and on her environment. One sort of counterexample to our account would be a case where conscious experience arises, but an agent does not take herself to be poised to act in the manner we have outlined.
Visual hallucinations and some visual illusions look like plausible cases of this sort. During a visual hallucination, for instance, there is no physical object present for the agent to act upon, either by physical engagement or via ‘epistemic’ actions such as tracking, comparison or classification. When a subject stares at a Hermann grid and perceives illusory grey dots at the intersections of the white lines, there are no such objects for her to interact with. Additionally, if she is familiar with the illusion, it seems that she will not take herself to be enabled in any ways relating to identifying, tracking or otherwise engaging with grey dots, for she knows that there are none present. In what sense, then, is it the case that such experiences involve grasp of poise over a suite of enabled actions, as required by the action-space approach?

According to the action-space account, such instances of illusion and hallucination (and, indeed, ordinary cases of dreaming) are standard cases of misrepresentation. For an agent to be poised over an action-space, and hence for her to undergo a conscious experience (be it veridical or otherwise) is for her to occupy a representational state whose content specifies possibilities for action, and where this content is apt for integration into her higher-level capacities of action-planning and practical reasoning. Perceptual error occurs, on this story, when some or all of these represented possibilities fail to obtain; where the world doesn't satisfy the agent's implicit expectations. When a suitably informed agent perceives the illusory dots in the Hermann grid, we claim that she implicitly takes herself to be empowered to act in ways that conflict with her explicit judgement that there are no such dots to be acted upon. For example, she takes the illusory dots to be roughly occupying such-and-such a set of points in her egocentric space, and to be discriminable in shade from both the white of the lines and the black of the squares that surround them. Illusions and hallucinations, then, are simply cases in which the agent takes herself to be empowered in ways that she in fact is not. As a result, it is not quite true to say that experiences are constituted by the
exercise of knowledge of what one can do, for knowledge is factive. Instead it is appropriate to speak more neutrally of the perceiving agent as unreflectively taking herself to be poised over an action-space in experience, where such taking can sometimes go awry.

Recall from section 5, above, that a subject’s taking herself to be poised over an action-space in the sense we wish to emphasise does not require that she judges herself to be so poised, nor that she places the actions she takes to be afforded, or the objects she takes to afford them, under concepts. This opens up the possibility that the space of actions which an agent implicitly takes to be enabled can come apart from her explicit conceptual judgements about what actions her environment affords. This is how, when our informed perceiver experiences the grey dots at the intersections of the Hermann grid, she can implicitly take herself to be able to sift, sort, track and compare (see Pettit (2003)) the dots in a certain way whilst explicitly judging that there are no objects present that are appropriate for such actions.

Another type of counterexample to our account would be a case where an agent takes herself to be poised to act on the environment, and can factor this into her reasoning, planning and intention-forming, but apparently without conscious experience arising. It might be thought that sleepwalkers constitute such cases16. Sleepwalkers are capable of navigating their way through an environment and even, in some cases, of performing relatively complex tasks such as driving cars or attempting to carry out mechanical repairs (Cartwright (2004), p.1152). Intuitively, these are examples of agents acting on the basis of their perceptual sensitivity to the actions afforded by the environment, selecting action types and targets appropriately, and apparently acting in a goal-directed manner. If it is correct to describe sleepwalkers as perceptually sensitive to the affordances of their environments and able to put this sensitivity to use in achieving a goal, do they constitute a counterexample to the action-space account?
One option for the action-space theorist is to claim that the sleepwalker does in fact undergo a conscious experience, but is unable to recall that she has done so (Crisp et al (1990) defend such a view). The sleepwalker implicitly understands herself to be poised over a (probably more limited than usual) space of actions, and puts this understanding to use in achieving some goal, thus satisfying the requirements for conscious experience. But due to some inhibition of the systems on which recall and report depend neither she nor we can know about this experience afterwards. Evidence that suggests sleepwalkers are amnesic for a short period after being woken (Cartwright (2004), p.1157) might be taken to support this hypothesis by suggesting that the sleepwalker may have conscious experiences when asleep just as they do shortly after being awoken, but that each such period of conscious experience is unavailable to report and recall.

A second option is to deny both that the sleepwalker has a conscious experience, and that her perceptual situation meets the conditions required by the action-space account. The view that sleepwalkers lack conscious experience perhaps accords best with the popular conception of sleepwalking. It also seems significant that the most commonly cited sleepwalking behaviours such as wandering around, performing a menial household task, and even driving, appear to be behaviours that waking subjects can perform with minimal conscious awareness. The action-space account could perhaps be squared with a denial that sleepwalkers have conscious experience by pointing to discrepancies between the ways in which the perceptual sensitivities of sleepwalkers and normal perceivers to their environments inform their behaviours. The most significant such discrepancy, for our purposes, is that sleepwalking behaviour seems to be inflexibly geared towards the achievement of a single goal, rather than open to the complex and shifting matrix of goals and projects active during waking behaviour. For example, a sleepwalker engaged in cleaning kitchen surfaces might exhibit no sensitivity to the fact
that the kitchen is dark, that the surfaces are already clean, that a valuable and long-lost ring is visible on the tabletop, or that a concerned family member is asking them what they are doing. This suggests that they are either perceptually insensitive to these facts, or that they are not able to modify their behaviour in the light of such sensitivity, each of which contrasts with the way a conscious perceiver, on the action space model, must be empowered to act by her environment.

In fact, we think that the most plausible account of the sleepwalking case lies somewhere between these options. Sleepwalkers present difficult cases for any theory of consciousness, since they manifest some apparent hallmarks of conscious experience (such as using perceptual sensitivity to their environment to inform a goal-directed behaviour) whilst lacking others (such as the abilities to recall and report, and to respond flexibly and intelligently to their environment). As a result, both intuition and empirical studies leave it unclear what we should conclude about the conscious state of the sleepwalker. We think that the evidence from both these sources precludes placing sleepwalkers at either end of a conscious/non-conscious continuum. It seems natural to describe sleepwalkers as in a state somewhere between sleep and wakefulness – perhaps we should assume on this basis that their conscious experience has a similarly intermediate status. It seems to us that this is the most natural diagnosis of the sleepwalker’s situation, and one that the action-space account rather easily affords. For the sleepwalker seems to be located somewhere on a continuum between the full and flexible integration of perceptual sensitivity with goals and plans that characterises the normal conscious perceiver, and the kinds of rigid and reflexive responsiveness to the environment that can occur without conscious experience at all. We have seen in previous sections that there are good empirical and conceptual reasons to believe that the ability to put perceptual sensitivity in touch with intentional activity suffices for conscious experience. It is unclear how best to characterize the nature and extent of the
sleepwalker’s perceptual sensitivity, and their abilities to integrate that sensitivity with capacities for planning and reasoning. However, it seems uncontroversial both that such sensitivity and integrability are present to some extent in the sleepwalker, and that sleepwalkers are markedly impoverished with respect to waking conscious perceivers in these respects. The action-space account thus suggests that the experience of the sleepwalker occupies a space in between that of the waking perceiver poised to act fluently and intelligently upon her environment, and that of machines and simple systems that respond in a fixed and unthinking way to the affordances of their environment.

The sleepwalker enjoys conscious perceptual experience in proportion to the extent to which her sensitivity to the affordances of the environment can be integrated with her ongoing and long-term goals, wants and plans. We think that such a conclusion provides the best fit to the available data and that sleepwalking, far from being a puzzle case, neatly illustrates the claim that conscious experience is knowing poise over a space of perceptually-enabled actions.

8. Conclusions: Linking Experience and Action

Perceptual experience, we have argued, arises when an agent enjoys a certain kind of epistemic contact with her own currently enabled skills and capacities. In particular, it arises when an agent is directly apprised of the nature (or seeming nature) of her own current poise over an action space. An action space, as it figures in this account, is a matrix of possibilities for goal-directed undertakings. To be apprised of one’s poise over an action space is to know what one can do. Blindsight, and certain other pathologies of conscious experience, thus emerge as failures of knowledge and representation, rather than as failures to be acquainted with mysterious ‘qualia’. Agents thus impaired are
unaware (or only indirectly aware) of the space of actions that their current sensory contact with the world might otherwise enable.

If this kind of story is on track, then the existence of the various empirically suggested links between experience, reason, and planning is both predicted and explained. For experience depends on knowing what you can do, and to know what you can do just is, in the right circumstances, to be able to put sensory information in contact with open-ended forms of deliberation and intentional action. If this is correct, then strong sensorimotor models err by positing direct constitutive links between perceptual experience and world-engaging behaviour. Such links, we suggest, obtain rather between perceptual experience, reason, and planning. If we are right, the links with action emerge as intimate but indirect. Knowing what you can do is knowing how you can act: but it is the knowing, not the acting (far less the moving), that bears the explanatory weight.

References

Jacob, P. (2006). Why visual experience is likely to resist being enacted, PSYCHE 12/1.

Myin, E. & O’Regan, J.K. (In Press). Situated perception and sensation in vision and

Other sensorimotor treatments include Hurley (1998), O’Regan and Noë (2001) and Myin and O’Regan (in press). We think that the criticisms of the sensorimotor account in the following sections apply to all these treatments with the possible exception of Hurley’s. Hurley argues that perception and action are co-dependant, emphasizing dependencies both of possible perception on actions, and of possible actions on perception. We acknowledge that both dependencies obtain, but argue in what follows that the latter is of primary importance for understanding conscious perception. Hurley’s emphasis on both directions of dependence makes the question of whether her view is compatible with the account we develop an open one, which we do not pursue here.

The views of Matthen (2005) also seem to belong in this camp.

The appeal to action also admits of different construals. We might choose to emphasise the relations of the outputs of some subpersonal module to perception, in either of the above senses. Alternatively, we might emphasise the relations of personal-level, intentional actions to some sense of perception. Or we might think that appreciating the interrelations between some or all of these levels are key to understanding perception.

Note that the account provided here is not intended as a complete explanation of how adaptation occurs. Such an account would presumably consist partly in a subpersonal account of the changing ways in which optical information is processed over the stages of the experiment. Our account in this section implies that once the goggles are donned, optical information is processed in a way that enables poise over an appropriate space of actions with respect to colour after adaptation, but not before. But we are not concerned
here with providing an account of such processing change that constitutes a full explanation of adaptation. We aim only to show that the action-space theorist can give a cogent account of the relevant changes and invariants over the stages of Kohler’s experiment that is unavailable to the sensorimotor theorist.

6 For the nuances, see Jeannerod and Jacob (2005), Clark (2007). Nothing in what follows is affected by these (important) nuances, so we shall assume (for simplicity) the fairly strong version outlined by Goodale and Milner (2005).

7 It’s worth emphasising that, unlike some commentators (Block (2005), Jacob (2006)) we do not think that the sensorimotor theory is incompatible with the DVS results. For this to be so, sensorimotor theory would have to claim that perceptual experience was somehow constituted by the use it was put to in the sorts of guidance of movement which is the province of the dorsal stream. But the sensorimotor theorist emphasises the way perception depends on movement, not the way that movement depends on perception.

8 We are, of course, far from infallible about this. For example, human subjects routinely overestimate what is within reach from a fixed position. This is probably because when we are not in a fixed position we make whole trunk movements that bring much more into range.

9 The notion of an enabled action here is, roughly, the notion of something you might try to do. Thus you might try to raise the beer glass, or to raise it level with a certain mark, or to raise it using a fancy grip. All these acts are, however, to be understood as coarse-
grained in that they can be carried out in many ways that differ in fine sensorimotor detail.

10 Our proposal here has strong affinities with Gibson’s (1986) ecological approach to visual perception, especially with his emphasis on perceivers’ direct sensitivities to the affordances of their environment. The action-space account can be understood as claiming that the content and character of a conscious experience is determined by the range of currently perceived affordances which are apt to be factored in to an agent’s ongoing practical reasoning.

11 For example, the way in which a perceiver entertains the possibility of an action, the satisfaction of a goal, or the relations between those actions and goals and the perceiver’s higher-level plans and projects, might fail to meet Evans’ generality constraint (Evans (1982)). An agent’s perceptual sensitivity to a visually presented fruit might enable them to grasp that the fruit affords eating, whilst being unable to grasp that other objects to which they are perceptually sensitive do or do not afford eating, or that the satisfaction of other of their goals is or is not afforded by the fruit. For a discussion of such context-bound and nonconceptual abilities, see Hurley (2006).

12 It might be objected that the discriminations and classifications to which we appeal here are not ‘actions’ in a sufficiently robust sense of the term; rather, they are the automatic results of subpersonal processes. There is a sense in which we wish to grant this – a subpersonal operation by the early visual system is not a personal level action by the agent. Thus, qua subpersonal processes, such discriminations and classifications are not actions. But the action-space account does not appeal to such discriminations and classifications qua subpersonal processes. We claim that such subpersonal operations
only contribute to the content and character of a conscious experience when the personal-level abilities they enable are apt for integration with the agent’s ongoing practical reasoning. Subpersonal processing, we claim, is only relevant to experience insofar as it enables the personal-level abilities to discriminate and classify to which the action-space account appeals.

13 What follows is a greatly reduced version of the argument presented in Clark (2000). For the fleshed-out version, with replies to a range of obvious worries and objections, we refer the reader to that treatment.

14 Of course, this view of matters is not incompatible with representationalism if the new property picked out is understood to be Mary’s property of being in a state with a certain representational content. But so long as representationalism is consistent with physicalism, this can’t be the sort of acquaintance with a new property the advocate of the knowledge argument has in mind if the argument is to work against physicalism.

15 ‘Enactivist’ because perceptual experience, on such accounts, is said to be enacted (Varela, Thompson and Rosch (1991)) via skilled worldly activity.

16 This problem for action-oriented theories of consciousness has been noted by Bermudez & Macpherson (1998), para. 32.