
Avoiding Timing Anomalies using Code Transformations

Albrecht Kadlec, Raimund Kirner, Peter Puschner
Institut für Technische Informatik

Technische Universität Wien

Wien, Austria

{albrecht, raimund, peter}@vmars.tuwien.ac.at

Abstract— Divide-and-conquer approaches to worst-case
execution-time analysis (WCET analysis) pose a safety risk
when applied to code for complex modern processors: In-
terferences between the hardware acceleration mechanisms of
these processors lead to timing anomalies, i.e., a local timing
change causes an either larger or inverse change of the global
timing. This phenomenon may result in dangerous WCET
underestimation.

This paper presents intermediate results of our work on
strategies for eliminating timing anomalies. These strategies are
purely based on the modification of software, i.e., they do not
require any changes to hardware. In an effort to eliminate the
timing anomalies originating from the processor’s out-of-order
instruction pipeline, we explored different methods of inserting
instructions in the program code that render the dynamic
instruction scheduler inoperative. We explain how the proposed
strategies remove the timing anomalies caused by the pipeline.
In the absence of working solutions for timing analysis for these
complex processors, we chose portable metrics from compiler
construction to assess the properties of our algorithms.

Keywords-timing anomalies; worst case execution time
(WCET); worst case execution time (WCET) analysis; hard
real time; code transformations; compilers

I. INTRODUCTION

Safety-critical hard real-time systems have to guarantee the
timeliness as well as the correctness of their results under
allconditions. Hence worst-case execution time analysis is
employed to extract a safe upper bound of the program’s
WCET. Its quality is determined by its proximity to the real
WCET, the tightness.

To fight the complexity in the number of possible execution
paths, it is common for timing analysis to use a divide and
conquer strategy, analyzing parts of the control flow graph

(CFG) separately and combining the results. This strategy di-
rectly translates into the WCET compositionality requirement
[1], which states that it must be possible to combine the results
for subcomponents with simple computation recipes without
sacrificing too much of the timing analysis’ tightness.

Timing anomalies threaten the WCET compositionality.
For timing analysis, the term timing anomaly was coined by
Lundqvist and Stenström [2]. They describe timing anoma-
lies as counterintuitive timing behavior, where a local timing
change causes an either larger or inverse change of the global
timing.

Timing anomalies result from the timing interference of
functionally independent processor components and can be

accommodated for by overapproximation or by exhaustive
analysis of the state space [3]. The first leads to reduced
tightness and poor resource utilization, while the latter causes
problems in analysis complexity. By stressing one or the other,
the analysis can trade analysis time for tightness.

Timing anomalies eventually manifest as delay or early-out

of individual instructions within the processor pipeline. This
effect is more dramatic for out-of-order pipelines, but has also
been shown for in-order pipelines [4]. If this effect leads to
rearrangements in the issuing of succeeding instructions, the
size of the search space for timing analysis is multiplied.

To disburden the task of the real-time systems designer, who
needs safe, tight and fast timing analysis, faster timing analysis
or total avoidance of timing anomalies can be achieved in one
of the following ways:

• Simplified hardware avoids dynamic allocation but moves
the resource allocation problem to compile time, making
WCET analysis simpler.

• Hybrid hardware provides a ’disable switch’ for the dy-
namic optimizations and allows for a pragmatic hardware
implementation.

• Compiler transformations can transform the program in a
way, so that it is not sensitive to the dynamic optimiza-
tions. This avoids time-consuming and costly changes
to hardware, allowing the use of well established, thor-
oughly tested and hence trusted hardware.

There is a lot of work on hardware modifications [5], [6],
[7], and also a lot of work on thorough analysis of existing
hardware [8], [9], which trades analysis time to gain safety
and tightness. Our basic research is aimed to evaluate the less-
researched third option, especially compiler backend transfor-
mations for off-the-shelf hardware. This approach was so
far only briefly covered by the original work of Lundqvist
and Stenström [2] and by Rochange and Sainrath as an adap-
tation of a proposed hardware modification [10]. A further
motivation is, that the RAD750 [11], a space-hardened imple-
mentation of the PowerPC 750, is already used for satellite
applications, while the direct descendant, the PowerPC 755 has
been shown to expose timing anomalies [12]. Until suitable
hardware is widely available, a pure software solution could
bridge the gap.

In this paper we explain how rescheduling and insertion
of non-functional code can be used to avoid pipeline-based

timing anomalies. We present three compiler transformations
that achieve this goal of a pure software solution. We con-
duct measurements and describe the relative weaknesses and
strengths of the three approaches.

Together with implementation details, we describe an in-
terface to our code scheduler that allows the integration of
analysis results from separate analyses like e.g. data cache
analysis to improve the results.

II. TIMING ANOMALIES

Timing anomalies in the context of WCET analysis were
first described by Lundqvist et al. [2]. The general problem
with timing anomalies is that they do not permit efficient
timing analysis, since the local worst-case is not guaranteed
to be part of the global worst-case [13]. This is because timing
anomalies represent a kind of discontinuity of the hardware
behavior. Following the terminology in [14], we call it am-

plification timing anomaly, if there exist two different initial
states s1 and s2 with the same functional part but a different
non-functional part, such that between s1 and s2 the change of
the global timing is larger than the change of the local timing.
We call it inversion timing anomaly if between s1 and s2 the
change of the global timing has a different sign than the change
of the local timing.

Timing anomalies were originally known in the context of
timing analysis for composed instruction sequences, which are
called series timing anomalies. Recently, Kirner et al. have
shown that timing anomalies can also occur when combining
the timing results of multiple hardware analysis phases, which
they call parallel timing anomalies [14].

Performing efficient WCET analysis by composing timing
results is based on reasoning from the local worst case to the
global worst case. As such a reasoning is not valid in case of
timing anomalies, we work on code modifications to explicitly
avoid timing anomalies.

A. Motivating Example

To illustrate our approach of avoiding timing anomalies aris-
ing from dynamic scheduling including out-of-order execution
and data caches, we reuse the original timing anomaly example
given by Lundqvist, shown in Figure 1(a): Two separate depen-
dence chains are emitted sequentially by the code generator.
The data dependences have been added as red arrows.

If instruction A of the first sequence finishes early, instruc-
tion B is executed immediately afterwards, delaying the second
instruction sequence C-D-E because of resource contention in
the integer unit. If, however, A is delayed by a cache miss, B
cannot be executed because of the true data dependency and
the hardware instruction scheduler schedules C early, which
leads to more parallelism (B parallel to E) and thus a shorter
overall execution sequence.

This is a nice example of the interaction of dependences
with resource restrictions which is the overall cause of schedul-
ing anomalies with greedy scheduling algorithms.

BC

D E

Dispatch time

Reserv. station occupied

Func. unit occupied

cycles1 2 3 4 5 7 8 9 10

A B C D E

11 12 13 14

LSU

IU

MCIU

LSU

IU

MCIU

A

B C

D E

A

Cache
hit

Cache
miss

6

Label Disp. cycle Instruction

A 1 LD r4, 0(r3)

B 2 ADD r5, r4, r4
C 3 ADD r11, r10, r10

D 4 MUL r12, r11, r11

E 5 MUL r13, r12, r12

B 2 ADD r5, r4, r4B 2 ADD r5, r4, r4

A 1 LD r4, 0(r3)

B 2 ADD r5, r4, r4B 2 ADD r5, r4, r4

A 1 LD r4, 0(r3)

B 2 ADD r5, r4, r4

D 4 MUL r12, r11, r11

C 3 ADD r11, r10, r10

D 4 MUL r12, r11, r11D 4 MUL r12, r11, r11

C 3 ADD r11, r10, r10

D 4 MUL r12, r11, r11D 4 MUL r12, r11, r11

E 5 MUL r13, r12, r12E 5 MUL r13, r12, r12

D 4 MUL r12, r11, r11

E 5 MUL r13, r12, r12E 5 MUL r13, r12, r12

D 4 MUL r12, r11, r11

E 5 MUL r13, r12, r12

(a) Lundqvist’s original example from [2]
with dependencies added as arrows

A 1 LD r4, 0(r3)

C 2 ADD r11,r10,r10

D 3 MUL r12, r11, r11

E 4 MUL r13, r12, r12

B 5 ADD r5,r4,r4

(b) The equivalent code after instruction scheduling(b) The equivalent code after instruction
scheduling

Figure 1: Lundqvist’s original example revisited.

The timing anomaly can be avoided by rearranging the orig-
inal instruction sequence: An instruction scheduler that honors
the potential latency due to the cache miss will rearrange the
code as shown in Figure 1(b). A simple, also greedy compile-
time scheduler balancing the dependence-distance of each
instruction to the end of the sequence already does the trick
for this simple example: The look-ahead that is impossible for
the hardware scheduler delays the issuing of B to the end of
the sequence. This is sufficient to avoid the bad behaviour in
case of a cache hit, as shown at the top of Lundqvist’s example
in Figure 1(a). The general case is more difficult to handle, as
the processor state at the beginning of the sequence must be
considered.

B. Problem Setting

Timing anomalies result from the interference of indepen-
dent hardware accelerators that each try to improve the timing
behavior of the program while preserving the functional se-
mantics. The accelerators work with their individual local state
not exposed on the architectural level (hence: non-functional

state) and allocate resources according to predictions that
are based on the execution history. Thus they cannot avoid

2

unfortunate cases: In the best case, the program is accelerated,
in the worst case, the program is actually slowed down by
going for a local improvement that has adverse effects in the
future. The interactions and the use of runtime knowledge
makes the timing behavior difficult to predict.

The timing effects are exposed in the pipeline as delays,
i.e: delayed instructions or early-outs i.e: instructions finish-
ing early. For out-of-order pipelines, this leads to secondary
effects, as the instruction execution order can change: The out-
of-order pipeline is only bound by data and control depen-
dences to preserve functional semantics of the program. Apart
from these dependences it can freely reorder instructions to
better utilize the execution resources, which it will eagerly do
if an instruction is delayed or finishes early.

Thus timing analysis can no longer only analyze the in-
struction sequence given. It must instead analyze all possible
schedules of the corresponding dependence graph, i.e., all
valid reorderings of the original instruction sequence, or at
least all schedules possible for the given input states. The
maximum of the analysis results for the different schedules
is taken as the WCET result. Still, the schedule that is part
of the global WCET path does not need to be the same as
the local worst case schedule. Furthermore, abstractions on
the input states are involved, potentially introducing infeasible
combinations. Thus the analyzed WCET result is less tight
than it could be.

The sensitivity to the exact history and the actual algorithm
used also make up the difficulty of predicting them at compile
time. For a more detailed discussion of predictability see [3],
[15].

III. TERMINOLOGY

All processors since about 1985 use pipelining according to
Hennessy and Patterson [16].

Our out-of-order pipeline model is depicted in Figure 2: The
fetch stage feeds instructions from the cache or main memory
into the prefetch window, which effectively decouples the fetch
stage from the following pipelines.

The issue stage may select any ready candidate instructions
from the prefetch window for issuing to the individual exe-
cution unit pipelines. At the end of the pipelines, a common
reorder buffer (omitted) makes sure that the results are written
back in the right order. For in-order architectures, the fetch and
dispatch mechanisms directly feed the individual pipelines –
the prefetch window and reorder buffer are not present.

This issuing of instructions is also termed dynamic, run-
time, pipeline or hardware instruction scheduling. In contrast,
compile-time, static, software or compiler instruction schedul-
ing denotes the reordering of instructions at compile time
during code generation. We will use the terms compile-time

resp. hardware scheduling to distinguish the pre-runtime in-
struction scheduling mechanisms from the runtime instruction
scheduler.

Both types of schedulers have the job of allocating instruc-
tions to execution resources, while honoring the program-

Xor Ld Nop NopNopNopNopNop

Fetch Packet

Issue Packet

Prefetch Window

Pipelined
Execution units

Xor - Ld -

INT MINT LDST SYS

Xor Ld -

Xor Ld Nop Nop
Fetch Stage

Issue Stage

Figure 2: Our out-of-order pipeline model, showing the path
of the instructions through the out-of-order pipeline and the
relevant storage.

inherent dependences. Data dependences, also called true de-

pendences, denote dependences, where a definition is used by
a later instruction. Figure 1(a) shows the true dependences as
arrows for Lundqvist’s original timing anomaly example. Anti

dependences denote restrictions, where a data item must be
read by a previous instruction, before it may be overwritten by
a later one. Output dependences denote cases, where one write
must precede another, so that only the second value survives.

These individual dependences form dependence chains that
serialize the instructions within a chain, while the instructions
from different dependence chains can move freely against each
other. Dependences are represented in the data dependence

graph (DDG), which is a weighted unidirectional graph, where
the weight of each edge represents the (min/avg/max) depen-
dence distance. The dependences represent the fundamental
limitations on the execution order of the program’s instruc-
tions. The interaction of these dependences with the allocation
of the finite hardware resources is to a big part responsible for
timing anomalies.

Compile-time instruction scheduling takes place before tim-
ing analysis, so it is automatically covered by the analysis.
Hardware instruction scheduling, on the other hand, must be
anticipated by timing analysis.

IV. COMPILER COUNTERMEASURES

As stated in Section I we focus on compiler backend trans-
formations as a countermeasure to timing anomalies. For a
given program that suffers from timing anomalies, the goal is
to construct a functionally equivalent program that is not sus-
ceptible to timing anomalies and does not show the described
followup effects. Thus we have to move all scheduling deci-
sions from the hardware instruction scheduler to the software
instruction scheduler. As for every valid code transformation,
the functional semantics of the original code must not be

3

altered. Without assumptions about the input code sequence,
this only leaves insertion of functionally useless code as an
option. We will call this code non-functional. Even if that does
not seem much of an improvement, it still opens up a way
to exploit certain hardware limits: In the following, we will
describe three different approaches that insert non-functional

code to avoid timing anomalies in the out-of-order pipeline,
exploiting three different hardware limits. All three approaches
employ compile-time instruction scheduling to rearrange the
code according to a model of the hardware pipeline and mini-
mize the non-functional code needed.

A. Rate NOP Insertion

The first algorithm exploits the limited fetch width of the
pipeline: When implementing a CPU, this fetch width must
be selected as narrow as possible for memory bandwidth cost
reasons. On the other hand, it must be wide enough to sustain
the average issue rate and wide enough to recover from pipe
break instructions that reassign the fetch pointer in a late
pipeline stage, such as conditional jumps, calls, returns or
interrupts.

These restrictions on the design decisions lead to fetch
widths equal or just slightly larger than the average issue
width – rounded up to the next integer multiple of the basic
instruction size.

Thus there is a relatively small excess fetch width. If we
now – during compile-time instruction scheduling – add just
enough NOP instructions to fill the excess fetch width, then
there is never an excess instruction waiting to be executed,
provided that we start with an empty or flushed prefetch
window. This effectively disables the prefetch window, as it
at any time only holds the instructions that are ready to be
issued immediately. Since no spare instructions are waiting to
be executed, the hardware instruction scheduler does not have
any potential to issue a pending instruction, if any of the pre-
viously issued instructions finishes early. Thus no reorderings
of instructions can happen.

This approach very much resembles the “simplified hard-
ware” approach. By scheduling for the underlying VLIW
pipeline and by disabling the prefetch window, we essentially
simulate the “simplified hardware”. The main disadvantage is
the lack of architectural support for horizontal and vertical
NOP compression [5].

Figure 2 shows the path of the instructions through the
pipeline: The instructions for a cycle are padded with NOPs to
the size of a fetch packet. This packet is fetched to the prefetch
window and the instructions are issued immediately in the next
cycle, as no other instructions are available in the prefetch
window. As all useful instructions that entered the prefetch
window have been issued, the next packet is handled exactly
the same way.

Figure 3 shows Lundqvist’s example after rate NOP inser-
tion. However, the architectural parameters are consistent with
the evaluation for the second architecture in Section V and

ALU MINT LD/ST SYS

ADD r11,r10,r10 NOP LD r4, 0(r3) NOP

NOP MUL r12, r11, r11 NOP NOP

NOP NOP NOP NOP

NOP MUL r13, r12, r12 NOP NOP

ADD r5,r4,r4 NOP NOP NOP

Figure 3: Lundqvist’s example with rate NOP insertion

thus present a wider architecture, but with shorter miss and
multiplication latencies to keep the code examples short.

The lines represent issue cycles in our model, while the
columns represent the different execution units, i.e., the in-
structions in the same line are issued together to the individual
execution units in the same cycle.

Overhead: Formula 1 presents the instruction overhead
Oinstr for rate NOP insertion. It is the difference between
fetch width WF and average issue width of the concrete
program WI ,avg , multiplied with the number of cycles of the
code sequence Ncycles and divided by the size of a NOP SNop

to obtain the necessary number of NOP instructions.

Oinstr = WF−WI ,avg

SNop
· Ncycles (1)

This can be subdivided further by separating the constant
algorithm-inherent rate overhead per cycle from the program
dependent overhead. In Formula 2, the first term denotes
the impact of filling the difference of fetch bandwidth and
maximum issue bandwidth WI ,max with NOPs, thus giving
the architecture-dependent overhead. The second term denotes
the instruction level parallelism (ILP) penalty of the program
for that architecture: the number of NOPs that are needed to
fill the issue slots not used by the program.

Oinstr = (WF−WI ,max

SNop
+ WI ,max−WI ,avg

SNop
) · Ncycles (2)

The overhead is a tight bound and only the low-ILP
penalty part can be improved by ILP-enhancing compiler-
optimizations. It is sensitive to changes in fetch width, issue
width and to low ILP, but not to changes in the prefetch
window width.

B. Sparse NOP Insertion

This algorithm exploits the limited size of the prefetch
window. The algorithm does not always keep the prefetch
window in a mostly-empty state, but rather works in a sparse
way: After scheduling a variable-latency instruction for a
specific execution unit, it prevents successor instructions for
that execution unit and dependent instructions that execute in
any unit from entering the prefetch window until the worst case
execution time for that instruction has passed. This way the
succeeding instructions cannot be executed too early, should
the first instruction finish early, but can only execute in their
intended place and with their intended parallel instructions.

This algorithm has advantages for architectures that do not
expose many variable-latency instructions, as they do not have
to continuously pay the code size penalty of maintaining the
mostly-empty state, but rather only when actually using those
features.

4

ALU MINT LD/ST SYS

LD r4, 0(r3)

ADD r11,r10,r10 NOP NOP NOP

NOP MUL r12, r11, r11 NOP NOP

NOP NOP NOP NOP

NOP MUL r13, r12, r12 NOP NOP

NOP NOP NOP NOP

ADD r5,r4,r4

ADD r11,r10,r10 NOP NOP NOP

NOP MUL r12, r11, r11 NOP NOP

ADD r11,r10,r10 NOP NOP NOP

NOP MUL r12, r11, r11 NOP NOP

Figure 4: Lundqvist’s example with sparse NOP insertion

Figure 4 shows the code for Lundqvist’s example, after
sparse NOP insertion for the second architecture in Section V:
Triggered by the variable-latency load, the worst case is, that
the load is at the start of the prefetch window, when it is
issued: The prefetch window (grey area) and the fetch packets
loaded during the execution cycles of the variable-latency
instruction (following 3x4 instructions) must be kept free of
instructions issuing to the same unit or dependent from the
variable-latencyinstruction - in this case the final ADD. Note
how the add and multipies are used first to fill the distance.

Overhead: Formula 3 shows the overhead for sparse
NOP insertion, considering the described worst case:
The prefetch window (size=SPW) and the fetch packets
(width=WF) corresponding to the execution cycles of the
variable-latency instruction must be kept free of instructions
issuing to the same unit. Li,max denotes the maximum num-
ber of execution cycles for the individual variable-latency
instruction. The sum over all instructions with variable latency
(NIVL) then yields the overall overhead.

Oinstr =
NIVL∑

i=0

SPW + Li,max · WF

SNop
(3)

In reality the overhead is lower because independent instruc-
tions for other units are used by the instruction scheduler to
fill the prefetch window before NOPs are inserted as shown in
Figure 4. So the bound is not tight, but conservative and also
sensitive to low ILP as well as to large prefetch window sizes
and fetch widths.

C. Dependence Insertion

The third algorithm builds on the dependence checking done
in the issue stage of the pipeline: During compile-time in-
struction scheduling new artificial dependences are added after
each variable-latency instruction. These artificial dependences
eliminate any freedom to reorder successive instructions, thus
leaving no alternative choices to the hardware instruction
scheduler.

The list scheduling algorithm is extended to insert additional
dependences to all instructions in the ready set that could
be issued to the same execution unit as the just scheduled
variable-latency instruction. The same is done for all instruc-
tions that are unblocked by the execution of the variable-
latency instruction, regardless of the unit they execute in.

These dependences have to use an anti-dependence to a
source operand of the problematic instruction, so that they can
at the earliest execute in parallel. Then they have to supply a
data dependence to the instruction following the problematic

instruction in the same execution unit to keep this instruction
from getting ready. This creates a worst-case fixed-latency
dependence path to the followup instructions, thus hiding the
variable latency.

The requirements for the dependence code to be inserted
are:

1) anti dependence to variable-latency instruction
2) true dependence to successor instruction
3) executed in a different execution unit
4) constant execution time
5) no modification to any register

Requirement 5 can be fulfilled with identity operations like
moves or binary operations with the neutral element of the
operation as one argument. To fulfill requirement 4, we just
need to look at the shortest instructions of the architecture:
The simpler ALU instructions like moves and bit operations
execute in a single cycle on every architecture. This also fits
requirement 3 because the variable-latency instructions are
usually not ALU instructions.

Requirements 1 and 2 can only be fulfilled by a single sim-
ple instruction, if the registers that carry the dependence – let’s
name them ra and rb – are the same. In this case even a move
instruction would do. However, as these registers typically are
not identical, we have to connect them via instructions that
form the dependence, but without modifying their data. This
can be achieved by using two instructions, where the second
one does the inverse operation of the first. We chose the XOR
operation for dependence insertion: the neutral element is zero
and the inverse operation is an XOR with the same argument.
Furthermore the execution time of XOR does not depend on its
arguments. Thus it will be single-cycle on every architecture.

The dependence is built using the following code pattern
(C-style assembler notation):

..= ra; # the variable latency instruction

ra= ra ˆ 0; # anti- & true- dependence on ra

rb= rb ˆ ra; # connect ra dependence chain to rb

rb= rb ˆ ra; # undo rb- modification

..= rb ... # instruction using rb

As can be seen, the minimum latency of our inserted code is
three cycles, so two-cycle variable latency instructions will be
lengthened to three cycles. Longer latencies can be produced
by repeating the first XOR instruction.

In Lundqvist’s original example, there is no subsequent
load, but only an ADD with a true dependence, thus Figure 5
shows this special case. Note that an additional cycle is re-
quired, as there is a resource contention for the ALU, so the
first XOR follows the load, while it could actually be parallel
- the respective anti-dependence is shown as blue arrow. Alter-
natives in constructing the dependence could improve this.

Overhead: Formula 4 gives the overhead of the de-
pendence insertion algorithm: D is the set of variable-cycle
instructions and C(d) is the set of ready candidates unblocked
by scheduling d, unioned with the instructions available after
scheduling d, which can be scheduled to the same unit as d.
Ld is the maximum latency of d, but a minimum of 3 cycles,

5

ALU MINT LD/ST SYS

ADD r11,r10,r10 LD r4, 0(r3)

XOR r4, r4, 0 MUL r12, r11, r11

XOR r4, r4, 0

XOR r4, r4, 0 MUL r13, r12, r12

XOR r4, r4, 0

ADD r5,r4,r4

ADD r11,r10,r10 LD r4, 0(r3)

XOR r4, r4, 0 MUL r12, r11, r11

ADD r11,r10,r10 LD r4, 0(r3)

Figure 5: Lundqvist’s example with dependence insertion
(the XORs are the inserted dependence instructions)

due to the minimum number of instructions to generate the
dependence.

Oinstr =
∑

d∈D

Ld · |C(d)| (4)

This is a conservative upper bound for the overhead: the ac-
tual overhead is improved by reusing the first part of the depen-
dence chain, which only depends on the source instruction. If
more than one successor must be handled, a separate search for
the minimum set of source registers within these instructions
also enables reuse of the second part of the dependence chain.

Note that this approach also works for duplicated execution
units without inhibiting parallel execution in these. If every
instruction can only be executed in one type of execution unit,
which is not duplicated, then each variable-latency instruction
only needs to have a dependence to the next one, effectively
linearizing the variable-latency instructions for each execution
unit.

D. Implementation

As a test bed we used the LLVM compiler framework,
which supplies a configurable framework supporting several
backends. We implemented a meld list scheduler that tracks
resource usage and latencies over basic block boundaries [17].
This scheduler does a sweep over the Data Dependence Graph
(DDG), checking each ready instruction, whether it can be
executed with the currently available resources. If so, it is
issued. Then all its successors are checked whether they are
now ready and if so, are added to the ready set. In addition
to the DDG, ready set and the resource tables, a fourth data
structure was added to the scheduler, that keeps track of
the code distance for each execution unit to model the code
distance restrictions for the instruction fetch. The standard
list scheduling algorithm was extended to track the program
counter and distinguish between the cases where no resources

are available (checkResources) vs. all ready instructions are
disallowed (checkDistances). In the former case stall cycles
are inserted just like in traditional list scheduling, while in
the latter case size consuming NOP instructions are issued
without advancing to the next cycle immediately. The rate
algorithm always works in NOP-insertion mode, while the
sparse algorithm is triggered by variable-latency instructions.
For the dependence approach the NOP insertion is turned off,
and XOR dependence chains are inserted into the DDG for
each variable-latency instruction. The additions to the main
loop of the meld list scheduling algorithm are depicted in line
6 and 8-12 in Figure 6.

1 // Build Data Dependence Graph (DDG)

2 // Sweep DDG, keeping track of ready

3 // instructions, resources & size restrictions

4 while (unissued instructions left)

5 if exist ready instruction i so that

6 checkResources(i) & checkDistances(i)

7 issue(i)

8 if (isVariableLatency(i))

9 insertDependence2ReadySuccessors(i)

10 else if exist ready instruction i so that

11 checkResources(i) & !checkDistances(i)

12 issue(NOP)

13 else // no candidate

14 nextCycle()

Figure 6: The modified meld list scheduling algorithm,
extensions highlighted

The algorithm is adaptable to different architectures by
providing data about the variable cycle instructions. This
processor-implementation specific instruction data can be
overridden on an instruction-by-instruction basis by supple-
menting data from an external analysis: Data cache analysis,
for example, can thus mark the always-hit and always-miss
cases with the minimum and maximum latency respectively,
which reduces the amount of inserted code.

The scheduler is freely configurable for the relevant archi-
tectural implementation parameters like fetch width, prefetch
window size and number of instances of each execution unit.
Instruction insertion is done by virtual call interfaces into the
concrete architecture-specific code selector, so the scheduler is
highly portable.

Our scheduler is executed as the last stage of the compiler,
so that the output is exactly the code seen by the timing
analysis and the hardware.

V. EVALUATION

In our experiments we want to compare the timing-anomaly-
free code generated using the three different transformations to
the originally scheduled code that might have timing anoma-
lies, assessing the costs in size and execution overhead.

Our current analysis tool so far cannot handle the combi-
nations of branch prediction, speculation and caches that typi-
cally come with every out-of-order pipelined processor. In fact
this work was started to make such an analysis computationally
feasible for complex processors by eliminating as many timing
anomalies as possible using code transformations prior to
timing analysis. The reduction in analysis complexity (state
space) due to the elimination of timing anomalies should be
observable in the final tool set either as increase in precision,
as less abstraction and overestimation is required, or as faster
overall compile/analysis time. In the current work, the more-
than-linear reduction in analysis complexity is paid for by an
O(n) list scheduling pass during compilation plus any runtime
overhead of the modified code. The reduction in state space
will also result in less variations in execution time - remember:
the extreme case is single path code on a VLIW processor
without caches, where only one execution time exists.

6

Existing hardware with out-of-order pipelines of appropri-
ate complexity also has features like jump prediction, not
allowing to investigate pipeline timing anomalies alone. The
currently available configurable FPGA cores (NIOS II, Mi-
croblaze) do not have out-of-order pipelines, so cannot be
used. Thus we resorted to simulation and selected an architec-
ture resembling typical RISC architectures with a low amount
of idiosyncrasies and an easily extensible compiler: We chose
the LLVM compiler for the ARM architecture, which leaves us
the option to switch to the PowerPC backend, as soon as jump
prediction is supported.

Short of an end-to-end timing analysis we are more in-
terested in evaluating different settings for the current algo-
rithm, investigating the relevant architectural parameters like
fetch width, issue width, prefetch window size and number
of instances of each execution unit, evaluating out-of-order-
pipelines in separation.

For evaluation we chose evaluation metrics from portable
compiler backend construction, which are insensitive to hard-
ware implementation details, so that the results apply to a
broader range of typical RISC architectures with the selected
parameters: We use the number of statically inserted in-

structions (inserted instructions), i.e. the number of NOPs
or XORs inserted, to characterize the code size overhead
of our algorithms independently of instruction encoding is-
sues. We use the number of dynamically executed instruc-

tions (executed instructions) to capture the runtime instruction
traffic as seen by the cache or memory interface. We use
the number of static scheduling cycles (scheduling cycles) to
reason about whether the inserted instructions induce addi-
tional execution cycles, i.e. increase execution time, or rather
just execute in parallel to instructions of the original code,
i.e., fill up previously unused issue slots in already existing
execution cycles. Neither the executed instructions nor the
scheduling cycles alone can capture the dynamic runtime
overhead: The executed instructions does not account for par-
allelism in the instruction pipeline and the scheduling cycles

is a static measure of cycles without taking execution weights
into account. If, however, the scheduling cycles remain un-
changed, we know that a code insertion strategy does not
change the dynamic run time of the code. Taken together these
metrics can thus adequately express the dynamic impact of our
algorithms, while being easy to obtain for different settings of
the basic architecture parameters. These metrics are also very
portable, as the results apply to all architectures with the same
fundamental architectural parameters.

Using the software-only approach, we can model various
hardware features by assuming the corresponding variable
pipeline timing for the respective instructions. This variable
latency triggers the emission of NOPs, which are statically
counted during generation and then dynamically counted dur-
ing simulation without the need of special simulators. This
allows for a fair evaluation of size and cycle effects of our
algorithm for different hardware parameters.

The measurements for the three algorithms presented in

Section IV for two different architectures are presented in
Figure 7 and Figure 8. The architectural parameters are given
in number of instructions. The variable latency instructions
are the loads and stores. Lacking a dedicated cache analysis,
we excluded load-immediate instructions that load from local
instruction memory. These are the typical way to load 32
bit literals on ARM - other RISCs use explicit load-literal
instructions - the data usually already resides in the instruction
cache, so assuming a long latency would make our findings
inapplicable to actual RISC architectures. The same was as-
sumed for stack-pointer loads and stores – again a real cache
analysis would find out that the stack area resides in the
cache. We simply marked these instructions as constant latency
through our interface for external analyses.

For our evaluation we assumed that loads take up to four
cycles, branches always take two cycles, multi-cycle integer
instructions take two cycles and simple integer instructions
always take one cycle.

As benchmark set we used the freely available Mälardalen
WCET benchmark suite.1 We fixed the benchmarks to return
their specific results indicating success. Only those bench-
marks were omitted, that could not produce such a character-
istic return value indicating correctness.

A. Results

The general pattern shown in Figure 7 is an increase in
code size, but a very modest increase in runtime: Despite the
increases in executed instructions the moderate increase in
scheduling cycles reflects, that the actual runtime on the de-
sired target configuration did not increase much – or not at all
for the rate approach. Still, because the inserted instructions
of the rate algorithm is that high, the dependence algorithm
provides the better code size vs. execution time trade off.

This effect is best observable with the memory-intensive
insertsort benchmark: The rate approach shows 580% code
size overhead including low-ILP penalty, the rate overhead
without low-ILP penalty is 226%, the sparse algorithm
has 255% and the dependence approach shows 112%. The
executed instructions for the three algorithms reflect, that
the overhead code was also inserted into the frequently ex-
ecuted code regions: the numbers go hand in hand with
the code size figures- from 466% down to 119%. However,
the scheduling cycles show a totally different picture: The
rate algorithm shows zero overhead, while the sparse al-
gorithm shows the maximum of 38% on this benchmark.
The dependence approach features below 7% execution cycle
overhead, which is quite acceptable considering it also has the
lowest code size impact.

The general picture mostly follows this extreme case, but
shows overall lowest code size impact for the sparse algo-
rithm, but with much higher fluctuations than the dependence
algorithm, which is a close second in code size and insensitive
to increases in fetch width, issue width, or prefetch window

1http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

7

0%

100%

200%

300%

400%

500%

600%

 executed

 instructions

bs

bs
or

t1
00

cn

t

co
m

pr
es

s

co
ve

r
cr

c
du

ff
ed

n

ex
pi
nt

fa

c
fd

ct

fft
1

fib
ca

ll fir

in
se

rts
or

t

ja
nn

e_
co

m
pl
ex

jfd
ct
in
t

lcd
nu

m

lu
dc

m
p

m
at

m
ul

t

nd
es

ns

ns
ic
hn

eu

pr
im

e

qs
or

t-e
xa

m

qu
rt

re
cu

rs
io
n

se
le
ct

sq
rt

st
at

em
at

e ud

whe
t

SU
M

dependence

sparse

rate

0%

10%

20%

30%

40%

scheduling

cycles

bs

bs
or

t1
00

cn

t

co
m

pr
es

s

co
ve

r
cr

c
du

ff
ed

n

ex
pi
nt

fa

c
fd

ct

fft
1

fib
ca

ll fir

in
se

rts
or

t

ja
nn

e_
co

m
pl
ex

jfd
ct
in
t

lcd
nu

m

lu
dc

m
p

m
at

m
ul

t

nd
es

ns

ns
ic
hn

eu

pr
im

e

qs
or

t-e
xa

m

qu
rt

re
cu

rs
io
n

se
le
ct

sq
rt

st
at

em
at

e ud

whe
t

SU
M

dependence

sparse

rate

0%

100%

200%

300%

400%

500%

600%

inserted

instructions

bs

bs
or

t1
00

cn

t

co
m

pr
es

s

co
ve

r
cr

c
du

ff
ed

n

ex
pi
nt

fa

c
fd

ct

fft
1

fib
ca

ll fir

in
se

rts
or

t

ja
nn

e_
co

m
pl
ex

jfd
ct
in
t

lc
dn

um

lu
dc

m
p

m
at

m
ul

t

nd
es

ns

ns
ich

ne
u

pr
im

e

qs
or

t-e
xa

m

qu
rt

re
cu

rs
io
n

se
le
ct

sq
rt

st
at

em
at

e ud

w
he

t

SU
M

dependence

sparse

rate-overhead

rate

Figure 7: Architecture 1: fetch width: 3 instructions, issue width: 2 instructions, prefetch window size: 6 instructions

0%

100%

200%

300%

400%

500%

600%

700%

executed

instructions

bs

bs
or

t1
00

cn

t

co
m

pr
es

s

co
ve

r
cr

c
du

ff
ed

n

ex
pi
nt

fa

c
fd

ct

fft
1

fib
ca

ll fir

in
se

rts
or

t

ja
nn

e_
co

m
pl
ex

jfd
ct
in
t

lcd
nu

m

lu
dc

m
p

m
at

m
ul

t

nd
es

ns

ns
ic
hn

eu

pr
im

e

qs
or

t-e
xa

m

qu
rt

re
cu

rs
io
n

se
le
ct

sq
rt

st
at

em
at

e ud

whe
t

SU
M

dependence

sparse

rate

0%

10%

20%

30%

40%

scheduling

cycles

bs

bs
or

t1
00

cn

t

co
m

pr
es

s

co
ve

r
cr

c
du

ff
ed

n

ex
pi
nt

fa

c
fd

ct

fft
1

fib
ca

ll fir

in
se

rts
or

t

ja
nn

e_
co

m
pl
ex

jfd
ct
in
t

lcd
nu

m

lu
dc

m
p

m
at

m
ul

t

nd
es

ns

ns
ic
hn

eu

pr
im

e

qs
or

t-e
xa

m

qu
rt

re
cu

rs
io
n

se
le
ct

sq
rt

st
at

em
at

e ud

whe
t

SU
M

dependence

sparse

rate

0%

100%

200%

300%

400%

500%

600%

700%

800%

inserted

instructions

bs

bs
or

t1
00

cn

t

co
m

pr
es

s

co
ve

r
cr

c
du

ff
ed

n

ex
pi
nt

fa

c
fd

ct

fft
1

fib
ca

ll fir

in
se

rts
or

t

ja
nn

e_
co

m
pl
ex

jfd
ct
in
t

lc
dn

um

lu
dc

m
p

m
at

m
ul

t

nd
es

ns

ns
ich

ne
u

pr
im

e

qs
or

t-e
xa

m

qu
rt

re
cu

rs
io
n

se
le
ct

sq
rt

st
at

em
at

e ud

w
he

t

SU
M

dependence

sparse

rate-overhead

rate

Figure 8: Architecture 2: fetch width: 4 instructions, issue width: 3 instructions, prefetch window size: 8 instructions

8

size, thus offering the best overall performance. For extremely
tight cases, it may be interesting to also evaluate the sparse
variant and use the one with the better results. The recursion

benchmark is one example, where this is beneficial.

Figure 8 shows the results for a wider architecture with
larger fetch and issue widths and a larger prefetch window.
Except for some scaling, the numbers follow exactly the trend
for the narrower architecture, except for one exception: The
non-zero increase in scheduling cycles for the benchmark fac
shows an off-by-one cycle count for this very short bench-
mark, which results from a different heuristic selection of the
scheduling candidates.

B. Discussion

Our measurements demonstrate, that it is viable to elimi-
nate pipeline timing anomalies by software countermeasures:
They show quite acceptable properties for the dependence
approach, though there is still potential for improvement for
the individual approaches.

The high code size of the rate approach is an artefact of
the very low-ILP code that the compiler generates and the
sensitivity of the metric to the ILP: The rate algorithm needs
to fill all previously unused issue slots in the already existing
issue cycles with NOPs, before it can fill the excess fetch slots.
If only one of four slots was used, filling the other three with
NOPs yields 300% overhead. Longer latencies without inde-
pendent filler instructions lead to the high numbers observed.
If three of the four fetch slots can be populated with useful
instructions (perfect ILP), then the overhead falls to 33%.
Consequentially, the values for rate-overhead (low-ILP NOPs
ignored) in Figure 7 and Figure 8 all lie between 100% and
200%, memory-intensive insertsort being the only exception.
They differ more than 1% between the two architectures in
only three cases. This is a result of the low ILP of approx-
imately one: in each cycle there is one mandatory fetch-rate
NOP, but on average only one useful instruction. The multi-
cycle load and store instructions every few cycles worsen that
ratio further, if no independent instructions are available.

The high number of inserted NOPs will definitely impact the
instruction cache. However, the current WCET benchmarks
are all small, wholly fitting into any reasonable instruction
cache. As a result, only the compulsory (initial) misses are
increased by the increase in code size. Conflict misses are un-
changed as are capacity misses. As our transformations do not
change the locality of the code, only diluting it, only capacity
misses are expected to increase for bigger benchmarks.

The current LLVM-ARM target compiler does not make
any effort to increase the ILP. This is reflected by the fact
that the number of cycles needed by the compiler’s instruction
scheduler to schedule the code does not decrease for wider
architectures. This means either a different, better parallelizing
compiler must be adapted (e.g.: from the VLIW domain),
or the current compiler must be reorganized to expose more
parallelism. Possible improvements range from addressing
anti-dependences stemming from the phase ordering problem

of register allocation and scheduling by adding a prepass
scheduler, up to high level vectorization and software pipelin-
ing. Higher ILP will enable reasonable evaluation for wider
architectures.

Thus, the rate algorithm is only acceptable, if the ILP is
improved significantly. Then, however, the non-intrusiveness
in terms of worst-case runtime is the great benefit of the rate
algorithm.

The sparse and dependence algorithms suffer less from the
low ILP, because they do not have to maintain the empty state
of the prefetch window. Still they would benefit as well from
a higher ILP, as more independent parallel instructions would
be used instead of NOPs, or would do useful work in parallel
to the artificial dependence chains.

Our three algorithms are implemented in a simple meld
list scheduler without sophisticated heuristics for candidate
selection. Improving on those heuristics is beneficial, once the
ILP is raised: For example, it is well known that scheduling
instructions with high potential latency as early as possible
decreases the overall number of cycles. This will in turn
improve the performance of all three algorithms.

The effectiveness of the heuristics can be improved further
by better guidance: The insertion of NOPs and XORs currently
takes place on the fly. They are not accounted for in the
dependence graph, so they do not contribute to the dependence
height, a metric commonly used by heuristics to reduce the
number of total cycles. If they are represented in the DDG,
height-based heuristics will benefit and improve the result.

Decreasing the number of variable-latency instructions to
handle improves the performance of all three algorithms. Thus,
a separate cache analysis should be employed, marking the
always-hit and always-miss instructions as constant-latency
through our external analysis interface. The same can be done
for branch prediction analysis.

VI. RELATED WORK

Of the few contributions in the complex subject of code-
based countermeasures against timing anomalies, the closest
related ones are the original work of Lundqvist and Stenström
and the work of Rochange and Sainrat.

The program modification method of Lundqvist and Sten-
ström [2] used the PowerPC-specific sync instruction with its
high associated runtime costs of full serialization. In com-
parison, our three approaches should require less run time
increase, since less costly and more portable NOPs and XORs
are used for partial sequentialization, which mainly populate
unused slots in already existing cycles - the rate algorithm not
introducing further cycles by design.

The most closely related approach of Rochange and Sainrat
[10] already used NOPs for counter measures to pipeline
effects in out-of-order processors – the so-called long timing

effects, but without handling cache effects or jump prediction
effects. They require these units to be perfect. However, as
their method has been developed out of a suggested hardware
solution, they did not control the pipeline on instruction to

9

instruction level, but used separating blocks consisting of
NOPs to let the pipeline run empty on basic block boundaries.
In the absence of effects from caches and jump prediction,
this eliminates long timing effects over basic block boundaries,
but it does not eliminate timing effects within each basic
block. Hence timing analysis still has to consider all possible
schedules. The maximum over all possible schedules is at least
as big as any specific schedule, thus the result is costly in both
analysis-time and tightness. Also for long basic blocks as in
the innermost loop body of jfdctint, they experience a buildup
of effects within the 255-instruction-block, that then needs 649
padding instructions to settle. These NOPs drastically lower
the effective ILP.

In contrast, we control the pipeline on instruction granu-
larity to select a single schedule and explicitly model cache
effects for loads and stores. We also cannot avoid the cache
hits or misses and jump mispredictions, but we eliminate the
secondary effects on the pipeline - the variable instruction
latencies - that create timing anomalies. Further we do offer
an interface for separate analyses to improve the performance
of our algorithms.

VII. CONCLUSION

Timing anomalies pose a problem to the designer of safety-
critical hard real-time systems, in that they compromise the
safety or at least the tightness of the WCET analysis.

We concentrate on the less-researched software-only coun-
termeasures to timing anomalies, in the first step investigating
the instruction pipeline.

We presented three solutions for the elimination of timing
anomalies that insert NOPs or XORs that limit the usable fetch
width or the usable prefetch window size, or introduce new
artificial dependences. This eliminates the dynamism from
the instruction pipeline, enabling tighter and faster timing
analysis.

The solutions using NOP insertion suffer from the low in-
struction level parallelism generated by the compilation frame-
work, leaving dependence insertion as acceptable compromise
in terms of size- and run-time overhead. However, even small
improvements in ILP drastically reduce the size overhead of
rate NOP insertion, making its invariance in execution cycles
more attractive.

Acknowledgments

This work has received funding from the Austrian Sci-
ence Fund within the research projects “Compiler-Support for
Timing Analysis” (CoSTA, http://costa.tuwien.ac.at, contract
P18925-N13) and “Sustaining Entire Code-Coverage on Code
Optimization” (SECCO, contract P20944-N13).

REFERENCES

[1] P. Puschner, R. Kirner, and R. G. Pettit, “Towards composable
timing for real-time software,” in Proc. 1st International
Workshop on Software Technologies for Future Dependable
Distributed Systems, Mar. 2009.

[2] T. Lundqvist and P. Stenström, “Timing anomalies in dynam-
ically scheduled microprocessors,” in Proc. 20th IEEE Real-
Time Systems Symposium, Dec. 1999.

[3] L. Thiele and R. Wilhelm, “Design for timing predictability,”
Real-Time Systems, vol. 28, no. 2-3, pp. 157–177, 2004.

[4] I. Wenzel, “Principles of timing anomalies in superscalar
processors,” Master’s thesis, Technische Universität Wien,
Vienna, Austria, 2003.

[5] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Com-
puting - A VLIW Approach to Architecture, Compilers and
Tools. Morgan Kaufmann Publishers, Inc., 2005.

[6] L. Wehmeyer and P. Marwedel, “Influence of onchip scratch-
pad memories on WCET prediction,” in Proc. 4th Int’l
Workshop on WCET Analysis, Catania, 2004.

[7] A. Arnaud and I. Puaut, “Dynamic instruction cache locking
in hard real-time systems,” in Int’l Conf. on Real-Time and
Network Systems (RTNS), Poitiers, France, May 2006.

[8] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm,
“Reliable and precise WCET determination for a real-life
processor,” in Proc. of the 1st Int’l Workshop on Embedded
Software (EMSOFT), Tahoe City, CA, USA, Oct. 2001.

[9] X. Li, Y. Liang, T. Mitra, and A. Roychoudury, “Chronos: A
timing analyzer for embedded software,” Science of Computer
Programming, vol. 69, no. 1-3, 2007.

[10] C. Rochange and P. Sainrat, “Code padding to improve the
WCET calculability,” in Int’l Conf. on Real-Time and Network
Systems (RTNS), May 2006.

[11] “Rad750 family of radiation-hardened products,” Web page
(Dec 2009): http://www.baesystems.com/BAEProd/groups/
public/documents/bae publication/bae pdf eis rad750.pdf.

[12] J. Schneider, “Combined schedulability and WCET analysis
for real-time operating systems,” PhD Thesis, Universität des
Saarlandes, Saarbrücken, Germany, Dec. 2002.

[13] J. Reineke, B. Wachter, S. Tesing, R. Wilhelm, I. Polian,
J. Eisinger, and B. Becker, “A definition and classification
of timing anomalies,” in Proc. 6th Int’l Workshop on Worst-
Case Execution Time Analysis, Dresden, Germany, July 2006.

[14] R. Kirner, A. Kadlec, and P. Puschner, “Precise worst-case
execution time analysis for processors with timing anoma-
lies,” in Proc. 21st Euromicro Conf. on Real-Time Systems.
IEEE, July 2009.

[15] A. Kadlec and R. Kirner, “On the difficulty of building
a precise timing model for real-time programming,” in 14.
Kolloquium Programmiersprachen und Grundlagen der Pro-
grammierung, Timmendorfer Strand, Germany, Oct. 2007.

[16] J. L. Hennessy and D. A. Patterson, Computer Architecture
- A Quantitative Approach 3rd Edition. Morgan Kaufmann
Publishers, Inc., 2003.

[17] S. G. Abraham, V. Kathail, and B. L. Deitrich, “Meld
scheduling: Relaxing scheduling constraints across region
boundaries,” IEEE/ACM Int’l Symp. on Microarch., 1996.

10

