

 1

Software Process White Box Modelling for FEAST/1

P Wernick and MM Lehman

Department of Computing
Imperial College
180 Queen’s Gate
London SW7 2BZ
England

tel.: +44 (0) 171-594 {8216 8214}
fax: +44 (0) 171-581 8024

{pdw1 mml}@doc.ic.ac.uk

Abstract

This paper describes a high-level system dynamics model of a real-world software evolution
process. This process is implementing embedded software elements of a defence system
composed of hardware and software components. The model is one of the outputs of the
FEAST/1 project, which is investigating the role and effect of feedback in the global software
process. The simple feedback-based model, which has resulted from a top-down modelling
approach, demonstrates the influence of the global process on the evolution of the software
specification and implementation. Model outputs closely simulate actual and expected metrics
for the real-world project. It is concluded inter alia that feedback external to a software
production process may significantly influence that process.

Keywords

Laws of software evolution, system dynamics, software process, modeling, simulation, feedback,
FEAST, E-type systems

1. Background and Context
As part of a continuing investigation into the role and impact of feedback on the long-term
evolution trends of software systems, models of several current real-world software processes are
being built. The current FEAST/1 investigation (Lehman and Stenning, 1996) is intended
initially to find support for, and later to examine the implications of, the VIIIth Law of Software
Evolution (Lehman and Ramil, 1999). This states that:

‘E-type evolution processes constitute multi-level, multi-loop, multi-agent
feedback systems and must, in general, be treated as such to achieve significant
process improvement for other than the most primitive processes.’

System Dynamics (Forrester, 1961) (SD) is being used to explore the dynamics of the long-term
software process, with the Vensim environment being employed to construct and run executable
models. The objective of this work is to examine the evolution over many software releases of a
number of real-world software products, each in its environment of developers, managers, field
testers, vendors, users, and others.

The SD model described here has been developed to simulate the evolutionary influences arising
during the development of a new software product forming part of a larger, also new, hardware
and software system. The time covered in the simulation runs from the start of software

 2

development to the completion of a final pre-production prototype of the complete system. The
model focuses on the evolution of the software specification during the software system’s
development, and the convergence of the implementation towards that specification. This
evolution reflects the clarification of possible and/or desirable product performance and other
attributes as knowledge and understanding increase.

Results from parallel ‘black box’ studies (Lehman et al., 1997) are being used inter alia to
provide data for testing and validating these models. By considering product metrics taken from
a sequence of software releases as abstract numeric indicators, the black box studies are seeking
evidence of feedback-related software evolution phenomena and of consistency with phenomena
previously observed in other systems and encapsulated in Lehman's Laws of Software Evolution
(Lehman et al., 1997, 1998). The aim of these studies is the building of interpretable
mathematical models replicating actual observed behaviour (Turski, 1996). The SD models are
providing suggestions both for new analytical strategies and for new metrics to examine in
current and future black box studies.

For this software evolution study, the process examined is viewed as a long-term multi-release
software evolution process, with total system integrators and external trials teams being the
customers for releases of the software product in the world outside the software development
environment. The information received by the software developers from trials is seen here as
feedback from outside the software production process.

2. The Process Described

2.1. The Software Process and its Context
The industrial process whose software element is considered here is typical of those employed
for the development of defence systems and their support equipment by the organisation
concerned. In general, such systems comprise both hardware and software components. The
developments are each undertaken for a specific customer under a development contract usually
lasting several years. In these contracts, the price and timescales are both initially fixed in
relation to an agreed, predefined, initial product specification. As noted previously, these will
inevitably lead to changes in specification due to learning during the development process. The
costs of these changes are generally absorbed by the developers. The contract price and/or
timescale may, however, be modified if warranted by, for example, development progress, trial
results or changes in the customer’s requirements or operational domain.

The software development process includes decomposition of the specification into functional
areas, design of an implementation using both known and innovative mechanisms,
implementation and unit testing of that design, and integration testing of the implementation in
its hardware environment in test rigs designed to exercise both software and hardware
components. The culmination of each design, implementation and testing cycle is the preparation
of a software release which is integrated with hardware elements to form a prototype of the
complete system. This prototype is then subjected to a field trial, which tests the behaviour of the
some or all of the complete system against parameters set in the specification and/or the
development contract. The information fed back to the software developers from each field trial
includes reports of changes needed in the specification, and consequently in the implementation,
in order to meet the product integrators’ or customer’s view, changed to reflect the trial’s results,
of the final system.

The minimum functional content of the software to be released for integration and testing in each

 3

trial, and the trials timetable which sets the time allowed to develop each software release, are
outside the control of the software development managers. In the process being modelled,
implementation of approximately 95% of the original specification was needed by the time of the
first field trial to provide sufficient functionality for that trial to proceed. The first trial occurred
after about 30% of the contracted project time. The software development work has therefore
been heavily front-end loaded. As the project progresses, field trials become more frequent, and
software development cycles shorter.

Progress payments of commercially significant amounts are made to the system’s developers at
predetermined milestones during the contract time, conditional on successful field trial
completion. The over-riding commercial imperative for software development managers is
therefore to complete the functions required for a trial in agreement with the current specification
by the pre-trial software completion deadline. According to these managers the consequence of
this pressure is that under all but the most extreme circumstances the software development
required for a trial is completed by the deadline, regardless of the number of staff-hours required.
To ensure that completion occurs, overtime is usually worked in the period leading up to a field
trial. If the resources available are still insufficient to meet the deadline, additional staff with
suitable skills are employed as required on short-term contracts.

The schedules of software development and trials requirements are not perfectly aligned. Work
on successive software releases tends to overlap, due to the implementation of some functions
requiring more time than one release and field trial cycle to complete. Work on some functions is
therefore expected to span more than one cycle. Also, functions ready before their scheduled
delivery dates may be included in a trial in addition to the functionality scheduled for that trial, in
order to obtain earlier feedback from the trials process than would otherwise be the case.

2.2. The Process and other Software Evolution Processes
The software evolution process described above differs in a number of respects from other
processes being studied for FEAST/1, and from commercial software evolution processes in
general. What is represented here is the ab initio evolution of a new system, including
preliminary releases of development versions for external testing in predefined field trials. This
may be contrasted with the development of new software functions as an evolutionary response
to feedback generated by software product releases fielded to many users for use in a number of
environments.

These differences, which are not directly reflected in the model described here, but which have
been made more apparent by the construction of the model, specifically include:

• the project having only one customer. This simplifies the feedback mechanisms affecting the
product’s evolution;

• product performance and functionality being tested by a single sequence of field trials,
resulting in a single stream of feedback information from outside the software production
process. This contrasts with the multi-stranded feedback paths of a product whose many
customers use it simultaneously. This single sequence eliminates the need for software
developers to co-ordinate, reconcile, prioritise and react to numbers of feedback messages
provided asynchronously by many users;

• progress payments, depending on successful field trial completion. These trials are therefore
more financially significant in funding product development than is the case in typical

 4

commercial software development contexts;

• a fixed project timescale, with penalties for later delivery larger than those normal for
commercial fixed-price contracts; and

• a greater degree of risk in the project than may be typical for commercial projects, due to the
leading-edge nature of the development work.

These differences have the consequence that processes described here, the issues affecting (and
affected by) long-term software product evolution, and models intended to represent those
processes and issues, may differ from those relevant to a commercially-distributed software
product. However, despite these differences the process described here may bear similarities to
commercial software processes during which iterated user-based prototyping is used to learn
and/or to check users’ and developers’ understanding of the problem and the feasibility of
proposed solutions.

3. The Model Described

3.1. Model Features
The main structure of the model is illustrated in Figure 1. It simulates the software production
process, the field trialling of the software implementation as integrated into complete system
prototypes, and changes made to the software specification as a result of feedback from the
production process and from field trials.

As part of the model-building process the software specification has been abstracted into a
number of arbitrary-sized ‘units’. Each of these can be considered as the specification of some
attribute(s) of the software product. The simulated implementation is also measured in these
units, each of which represents in this case the coded, tested and documented implementation of
one unit of specification. The process of implementation and initial testing is represented by a
single time delay function,1 which moves these units continuously from a stock of units awaiting
implementation to one of units which are believed to have been implemented successfully, but
have not yet been field trialled. This process is successfully completed for most units. Others are
scheduled to take more than one cycle to complete, as noted above, or are delayed beyond their
initially planned completion date due to their taking more time to implement than expected.
Finally, a small proportion of units is found not to be implementable as originally or currently
specified. These are eliminated from the specification, but may be replaced in the specification
by new or changed equivalents. The rate of completion of successfully implemented units is
represented in the model by multiplying the rate at which work on specification units is
completed (whatever the outcome) by a ‘success percentage’ parameter which remains constant
throughout the simulated project.

A further source of changes to the specification at this stage is that work leading to the successful
implementation of a specification unit may itself result in the identification of changes or
additions to the specification. The flow through this feedback path is also represented by a

1 The delay used is a third order delay, a built-in function of SD environments, which is often used to represent

the time delays caused by some entity passing through the (abstracted) stages of a process made up of a
sequence of sub-processes, each of which depends for its input on the output of the previous sub-process. This
description fits the technical software process. The same delay function has been used in other FEAST/1
software process SD models to represent the technical software process (Chatters et al., 1998)

 5

constant proportion of the successful implementation flow. It will be observed that feedback
within the software process is present, and affecting the specification, before the first field trial
occurs.

Following the first field trial, additional feedback paths come into play. The information from
each field trial may result in a need to re-examine and possibly modify parts of the specification.
Elements of the latter may be found to be wrong or unnecessary, and must be removed from the
system. New elements may need to be added to the specification. Each of these drivers of
specification change is reflected in information feedback paths in the model, again calculated as
constant proportions of the successful implementation flow.

The current model represents the sequence of field trials after the first as a continuous process,
abstracting out the actual trial dates. The reduction in interval between trials as the project
progresses and the consequent shortening of software development lead times is simulated by a
progressive reduction in the time delays in the feedback paths of trial results to software
developers, and in the time allowed for implementation work to be started and completed on a
unit of specification.

The model also incorporates an ability to reflect exogenous changes made in the specification
during the project. These structures are not shown in Figure 1.

3.2. Simplifications in the Model
The emphasis in FEAST/1 model building has been on simplicity. The objective has been to
achieve an initial model which reflects that aspect of the development process behaviour under
investigation. Such an approach will make it easier to use the models to initiate the process of
identifying feedback patterns, determine their impact on the software production process and its
products. It will also facilitate the process of model calibration and validation. Given a successful
first step, the model can then be refined as required.
The underlying approach to model construction has therefore been top down. The initial model
presented here reflects a very high level view of the process and high level process behaviours.
Future plans include the refinement of the model to enable it to simulate more detailed aspects of
real-world behaviour (see Section 8 below).
This approach has resulted in the following features of the real-world process being simplified or
abstracted in the initial model described here:
• resource: Resource provision, management and limitations have been ignored as factors

affecting the progress of the project since, as noted in Section 2.1 above, resources are made
available as required to meet project deadlines;

• pre-trial testing: The effects of pre-field trial testing procedures, in terms of the resulting
information fed back to the software developers and any necessary rework or additional
work, are abstracted within the calculation of the flows of specification units successfully
implemented ready for field trial, of new units arising from that successful implementation,
and of units either delayed to later field trial cycles, or abandoned and replaced;

• continuous development: As previously stated, all development after the first field trial is
represented by a single continuous activity spread over the time remaining to complete the
contract. This continuous mechanism abstracts discrete timings of individual events such as
individual field trials, the generation of feedback from those trials and its use by the software
development team;

 6

• the learning process: As a first approximation, the current model makes no provision for
efficiency gains during the process as software developers learn about the process or product;

• bug fixing: It is assumed that the resources provided to complete software development on
time include provision for the fixing of implementation faults. It is further assumed that
implementation fault-related activities are not allowed significantly to slow down overall
progress towards completion. Implementation fault rework mechanisms have therefore been
excluded from the model. The feedback path designated in the model as ‘rework’ therefore
refers only to the information flow needed to correct faults in the specification;

• fixed final timescale: Though project timescales may be renegotiated during the project time
(see Section 2.1 above), the model’s calculations are predicated on the initially fixed
completion time for the project remaining unchanged. This is a reasonable simplification
when no significant changes are demanded by the customer during the project’s progress;
and

• process context: The model describes a software process which is itself only a part of a much
larger software and hardware product development process. These higher level aspects have
been abstracted in the model described here. A model of this software process which includes
aspects of the wider environment has been previously reported (Lehman and Wernick, 1998).

4. Results Obtained from the Model
Good agreement between the behaviour of outputs under varying simulated conditions of a
model, and that of the real-world system which the model seeks to represent, increases the
probability that the model will provide a sound basis for investigations. For the long-term goals
of the work reported here, these investigations are to include examinations of predicted changes
in behaviour of the real-world process in pursuit of global feedback process optimisations, and
will be performed by changing model parameters and/or structure. After successful model
calibration, such investigations can be performed with greater confidence in their predicted
outcomes. The process of calibration of itself also provides increased understanding of the
modelled process.

For all of these reasons it has been essential to calibrate the model presented here against actual
or estimated data. The following subsections describe the means by which input parameters
needed to calibrate the model have been obtained, and quantitative and qualitative2 results of
simulations exercises.

4.1. Calibrating the Model Inputs
In order to support model-based simulation exercises, it is necessary to obtain accurate, or at
least realistic, values for the model’s input parameters. The process under examination here is
currently a little over half-way through the expected project time, and little hard data has been
collected for model parameters such as time delays, implementation completion success rates
and trial feedback factors. Values for these and other parameters have therefore been obtained
primarily from estimates provided by collaborator experts for this and similar projects within the
same organisation. These experience-based quantitative estimates are being used to provide
initial assurance that the model is behaving in a reasonable fashion. As more actual data become

2 i.e. trends over time in model outputs and real-world process or product metrics, without exact quantitative

agreement

 7

available for the project, and as experience grows in collecting this data, more accurate values
taken from actual experience are expected to replace some or all of the experts’ estimates.

This informal approach to model calibration has proved particularly effective in the industrial
environment being examined, since it has been possible to obtain useful results from the model
cheaply and quickly. A more detailed approach to the problem of calibration might have failed in
such an environment due to the need to expend time and resource before the model could
demonstrate its usefulness.

4.2. Comparing Models Outputs with Real-World Values
Figures 2 and 3 show respectively model outputs simulating the change in size of the product’s
specification and implementation over the project, and the effort employed over the project. For
the purposes of presentation, results are shown for a fictional project with values of 1000
specification units for the initial specification, and 100 time units for the contract time.

For the same reasons as described for input parameter calibration, actual data from which to
distil reference modes3 against which to check the model are incomplete or unavailable. It has for
instance not proved possible to obtain actual figures for changes in the size of the software
specification, since the documentation, in its current form, is not amenable to such an analysis.
Reference modes for development progress and growth in specification size over the project
have therefore been generated on the basis of project managers’ and expert developers’
judgement, their analogies with previous similar projects, and their expectations of the current
project. Data is available for some of the project time on the effort expended on software
development, measured in person-hours. This has been used, in normalised form, for the
calibration of the simulated output for effort expended.

4.2.1. The Specification and its Implementation
Model outputs reflecting rising trend in the size in specification units of the implemented
software as the system grows towards its final implementation, and the slight growth in that
specification over the project from its initial value, are shown in Figure 2. The model output
simulating the current size of the implementation shows fast growth until the time of the first
field trial. After this trial, there is a slight dip in implemented system size as some of the
specification as originally implemented is invalidated by field experience. This is followed by a
slower rate of growth in the size of the successfully trialled implementation, gradually
converging with the size of the specification. By the conclusion of the contract, the flow of
information feedback of learning from field trials will have died away and the specification and
implementation will be of the same size, reflecting the need for the implementation to be an
accurate reflection of the specification at the end of the project. The plot also reflects the
expected slight net growth in the specification itself over the project due to learning during
implementation and trials. This increase is however too small to be observable in Figure 2.

The trends displayed by the model in both specification growth and the rate of implementation
are in accordance with the expectations of the collaborator’s experts for projects of this type
within their organisation, although they may not be generalisable to other software development
product types, organisations or contexts.

3 This is a pattern of expected or actual behaviour of a modelled output over time, used to check the operation

and dynamic behaviour of SD models.

 8

4.2.2. Effort Expended
Figure 3 shows the simulated value for effort expended in developing the software (the smooth
line) plotted against the actual trend in effort for the project to date (the jagged line, indicating a
moving average of normalised values of person-hours charged).

The calculation of simulated effort is based on the collaborator experts’ view that new
specification units generated during the development process require more effort to implement
than elements of the original specification. This increased effort per unit is due to aspects such as
the replacement by more complex solutions of simpler original assumptions shown to be
unfeasible during the development process. It also reflects the growing difficulty in this
environment of fitting new functions into the existing implementation. As work progresses,
increasing areas of the design have been successfully trialled and signed off, resulting in
significant resistance to changes which would ease the task of implementing new functions.
Units which require more than one cycle to complete are also assumed to be more difficult to
implement than those elements of the original specification which can be implemented in one
cycle, due both to their inherent complexity and to the fact that the system specification which
they assume to be static may change as a result of a field trial occurring during the
implementation process.

The simulated value shown in Figure 3 reflects all of these elements of increased difficulty, and
therefore cost, by weighting the effort calculation for generated and each cycle of multi-cycle
work according to the square of the current size of the implementation. This derives from the
belief that the growth in the complexity of the existing implementation, which as stated is a factor
in making the addition of the next increment of implementation more difficult, is reflected by
changes in the square of the size of that implementation. The calculation also recreates the
expected trend of continually increasing difficulty over the project timescale in implementing
each newly-started specification unit in the context of an increasing body of successfully trialled,
and therefore effectively unchangeable, code.

The average of the weighting factor used for Figure 3 is close to project experts’ estimates of the
average relative implementation costs of multi-cycle or generated specification units against
initial specification units implemented over a single cycle. Since the appropriate information is
not available, it has not been possible to calibrate the model to reflect actual numeric values.
Nevertheless, the model demonstrates high-level dynamic behaviour very close to that of the
(normalised) actual data.

5. Sensitivity Analysis
The model described above has been subjected to an initial sensitivity analysis to determine
whether it exhibits realistic behaviour under anomalous conditions, and to identify model
parameters or structures which have a major effect on model behaviour and thus possibly on
real-world project behaviour. The effects on simulation outputs of changing individual input
parameters have been shown to correspond to what would be expected from equivalent changes
in actual projects. This demonstrates that, from a phenomenological viewpoint, the model is
realistic.

An extreme example of this is provided by increasing the feedback additional work generation
factors until they are greater than one. This results in a simulated pattern of specification unit
completion against new unit generation which, instead of converging to a point at which all of
the specified work has been completed and trialled, diverges increasingly, and eventually

 9

exponentially, as the end of the project approaches. This is due to the increasing inability of the
implementation and trialling procedures to keep pace with the generation of new work, since that
new work is being generated at a faster rate than existing work is (or can be) done. Such a
divergence would therefore be expected for a real-world project under these circumstances,
resulting in a project which can never be successfully completed but which continues to consume
resource at an ever-growing rate whilst growing ever further from its goal of a completely
implemented specification. This situation parallels the instabilities previously found in OS/360
evolution after Release 20 (Lehman and Belady, 1985). The collaborator experts’ response to
this model behaviour was that they had known of a real-world project which had behaved in this
fashion, and that their advice had been to cancel the project immediately since no successful
outcome was foreseeable.4

6. Conclusions and Implications of the Model Building and Simulation Process
Conclusions and implications related to the software process which have been drawn so far from
developing and calibrating the model include the following:
• a simple model of the software process can simulate behaviour patterns of the real-world

process. This simple model has also successfully reproduced situations under which
problems arise with a project, such as the behaviour identified in Section 5 above. Together
these suggest that the model structure may reflect real-world high-level processes rather than
merely comprising an abstract mechanism which produces ‘correct’ outputs;

• the ability of a feedback-based model to reproduce real-world behaviour trends lends support
both to the hypothesis that feedback is an important influence on projects such as that
examined here, and more generally to the VIIIth Law of Software Evolution (Lehman and
Ramil, 1999);

• real-world trends in software evolution can be simulated by a model which abstracts some
activities and aspects of great importance to the long-term survival of a software product. In
the example presented here, these abstracted activities and aspects include the processes and
costs of implementation fault identification and correction, and the peaks arising in required
work rate as release deadlines approach. It should, however, be noted that the change in inter-
release interval over time is significant in determining this model’s dynamic behaviour. The
successful calibration of a model which abstracts these activities and aspects also suggests
that they may have only second-order effects on project trends, since they appear not to
constrain the high-level project specification and implementation trajectories;

• the successful calibration of the model suggests that, at this level of abstraction, resources
will be provided to complete implementation work if the demand for this work, or the cost of
not having them, is sufficient to support a business case for the expenditure concerned.
Resource provision can thus be seen in this instance largely as a direct effect rather than as a
cause of evolutionary pressures. This viewpoint is supported by the collaborator;

• this model, calibrated with constant input parameters, demonstrates reasonable simulation
behaviours, implying either that these parameters are constant over the project or that
changes in them during the project may have little impact on high-level specification
evolution trends. This further suggests that stable dynamics for the project can be established

4 It should be noted that the project under investigation is not suffering like this, and the example of such a

failure noted by the expert was not in a project being undertaken by the FEAST/1 collaborator.

 10

at a very early stage, a conclusion supported by FEAST/1 statistical studies (Lehman et al.,
1997), and may allow future project progress to be estimated from early results; and

• whilst the stress in the current FEAST work has been towards process improvement through
the management of the feedback process, the dynamic behaviour identified may also explain
the success of cost estimation and planning tools such as COCOMO (Boehm, 1981;
COCOMO II, 1998). Once a project and its organisational context have been established,
their dynamics are likely to be sufficient to determine project characteristics such as duration
and cost.

In addition, the need in building this model to make explicit the differences between the type of
software process described here and the evolution process of a commercial software product (see
Section 2.2 above) has also raised the question of whether, and if so at what level of abstraction,
all software evolution environments can be considered to be equivalent. It exemplifies the fact
that not all software evolution environments are equivalent at the detailed level. It may be asked
whether there exists some higher level of abstraction corresponding to a baseline at which these
environments are all equivalent. This issue is to be explored in more depth in follow-on projects,
by extracting common model concepts, structures and elements from models built for the current
project’s industrial collaborators (Lehman, 1998).

Looking to a wider context than the software process, since the software production process in
this successfully calibrated model has been reduced to a single delay function of a type used in
SD models to abstract a variety of production processes and human activity systems, a model of
the global product evolution process has been developed whose structure may not be confined to
software processes. At the level of abstraction of this model, similarities between software
production processes and other processes may be greater than is sometimes claimed, and models
of the type described here may well assist in the identification and exploitation of these
similarities. It also suggests that the software production process may act in a manner very
similar to that of other human activity systems which are constrained by similar external
feedback systems.

7. Related Work
The SD model of the software process presented here differs significantly from those of others
researchers. These differences have arisen from a desire to understand the software production
process within its wider context, resulting in a concentration on the high-level feedback elements
surrounding the software production process and the deliberate abstraction of that process. The
approach underlying the this model can be contrasted with that of those who have modelled large
areas of the internal structure of the software production process, such as Abdel-Hamid and
Madnick (1991), or specific aspects of that process, as exemplified by Madachy’s (1996) work
on inspections.

Powell and Mander (1999) also consider the internals of the software production process, in
order to examine concurrent development within a cycle and optimise the total cycle time and
process stage concurrency. A reduction in development cycle time would be reflected in the
model presented here only by a shorter implementation delay, since the simple calculation of the
delay in this model abstracts the very aspects of the process with which Powell and Mander are
concerned. At the next higher level of abstraction, the concurrent development of software
elements is implicit in this model.

Williford and Chang (1999) take a similar long-term, high level view of the software process as

 11

that taken here. Their objectives are also similar, in that they seek to optimise their corporate
response to the demands of the global software process. However, their focus on the prediction
of future staffing requirements has necessitated their adding to their process simulation details of
resource aspects which have been abstracted in this work.

8. Next Steps
The model presented here forms the first step in a long-term, more widely-based examination of
the role and impact of feedback in the global software process. It is therefore seen as a tool to be
used in that examination. As a result, future work planned on the model will not be restricted to
refining the current model but includes extending it to help meet the wider research agenda. In
particular, it is intended that, at a later stage, this model, or its results in terms of deeper
understanding of the long-term software process be incorporated into more broadly-based SD
models of the global software process (Lehman and Wernick, 1998).

To enable the model to simulate detailed project behaviour more accurately and to provide better
understanding of issues currently implicit in the model, investigations will be undertaken into the
causal mechanisms affecting model elements identified in extended sensitivity analyses as
having significant impact on model output trends. By directing future work on the model towards
adding detail in parts of the model which appear to be most influential in the software evolution
process, this will also provide a basis for identifying likely areas for potential real-world
improvements in the process in general and improved feedback control in particular.

The scope of the current model will also be extended in exercises intended to calibrate it for
other projects within the same organisation by changing only the input parameters. The objective
of this work will be to determine whether such models encapsulate regularities or patterns of
organisational behaviour across projects. Similar work will be undertaken for equivalent projects
in other organisations, to ascertain whether the model also reflects regularities beyond those of
one development organisation. In addition, consideration will be given to the potential generic
applicability of this model to user prototyping-based commercial software processes.

Consideration of the wider research issues raised by the development and calibration of the
model may also lead to investigations into issues such as the nature and effects of any identified
underlying differences between defence-related research-oriented projects, as modelled here, and
commercial long-term software evolution processes.

9. Summary
The model presented here has been developed as part of an examination of the effects of the
surrounding feedback system on trends in a software process. It demonstrates that a very simple
model, with few feedback paths and with the software production process reduced to a single
step, is capable of simulating high-level behaviours of the global process. This suggests that
influences outside that production process have an important effect on process and product
trends, and that these influences must be taken into account when seeking to improve that
process.

10. Acknowledgements
Gratitude is expressed to the FEAST/1 industrial collaborators (Matra BAe Dynamics, ICL,
Logica and MoD DERA), and particularly to Mike Atterton, Les Barker, Bob Born, Paul Gilbert,
Dave Nuttall and Rob White of Matra BAe Dynamics for help in developing the model described
here. Thanks are also due to the other FEAST/1 team members: Dewayne Perry, Juan Ramil and

 12

Wlad Turski, and further thanks to Juan Ramil for commenting on an early draft of this paper.
Since October 1996 this work has been supported by EPSRC grants GR/K86008, GR/L07437
and GR/L96561.

References
Abdel-Hamid T. and Madnick S.E., Software Project Dynamics – An Integrated Approach, Prentice-Hall,

Englewood Cliffs, NJ (1991)
Boehm B.W., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ (1981)
COCOMO II, home page, on-line at <http://sunset.usc.edu/COCOMOII/cocomo.html> (August 1998)
Chatters B.W., Lehman M.M., Ramil J.F. and Wernick P., Modelling A Software Evolution Process, submitted to

21st International Conference on Software Engineering (ICSE ’99), Los Angeles, May 1999 (1998)
Forrester J.W., Industrial Dynamics, Productivity Press, Cambridge, MA (1961)
Lehman M.M. and Belady L.A., Program Evolution - Processes of Software Change, Academic Press, London

(1985)
Lehman M.M. and Stenning V, FEAST/1: Case for Support, ICSTM – DoC EPSRC Proposal (March 1996)
Lehman M.M., Perry D.E., Ramil J.F., Turski W.M. and Wernick P., Metrics and Laws of Software Evolution - The

Nineties View, Proc. Metrics '97, Albuquerque, NM, 5–7 Nov. 1997 (1997)
Lehman, M.M. FEAST/2: Case for Support : Part 2. ICSTM – DoC EPSRC Proposal (July 1998)
Lehman M.M., Perry DE. and Ramil J.F., On Evidence Supporting the FEAST Hypothesis and the Laws of Software

Evolution, Proc. Metrics ’98, Bethesda, Maryland, Nov. 20-21, 1998 (1998)
Lehman M.M. and Wernick P., System Dynamics Models of Software Evolution Processes, Proc. International

Workshop on the Principles of Software Evolution, ICSE 20, Kyoto, Japan, April 1998, 6–10 (1998)
Lehman M.M. and Ramil J.F., The Impact of Feedback in the Global Software Process, keynote address, ProSim

‘98, International Workshop on Software Process Simulation Modeling, June 22–24, 1998, Silver Falls,
Oregon, USA; to appear in Journal of Systems and Software (1999)

Madachy R.J., System Dynamics Modeling of an Inspection-Based Process, Proc. ICSE 18, IEEE, 376–386 (1996)
Powell A and Mander K., Strategies for Lifecycle Concurrency and Iteration – a Systems Dynamics Approach,

presented at ProSim ‘98, International Workshop on Software Process Simulation Modeling, June 22–24,
1998, Silver Falls, Oregon, USA; to appear in Journal of Systems and Software (1999)

Turski W.M., Reference Model for Smooth Growth of Software Systems, IEEE Transactions on Software
Engineering, 22 (8), 599–600 (1996)

Williford J. and Chang A., Modeling FedEx’s IT Division: A System Dynamics Approach to Strategic IT Planning,
presented at ProSim ‘98, International Workshop on Software Process Simulation Modeling, June 22–24,
1998, Silver Falls, Oregon, USA; to appear in Journal of Systems and Software (1999)

 13

Figure 1 : Outline of the Model Structure

released specification unit falsification rate

specification unit growth and rescheduling rate

Specification unit deferral and abandonment rate

Specification unit completion rate Specification Units
Believed

Implemented

new specification unit generation rate arising from field trials

Post release specification unit rework rate

Specification Units
to be Processed

New specification unit arrival rate

 14

Figure 2 : Specification and Implementation Growth Over Project

.
1,200

900

600

300

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Time (Time Unit)

Specification Units Believed Implemented
Specification Units to be Implemented

 15

Figure 3 : Effort Expended in Project (Square of size based factor)

.
.85 .
60 .

.6375 .
45 .

.4250 .
30 .

.2125 .
15 .

0 .
0 .

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Time (Time Unit)

Actual Effort : moving average .
Square Calculated Normalised Effort .

