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Abstract— This work proposes an initial memory model for a
long-term artificial companion, which migrates among virtual
and robot platforms based on the context of interactions with
the human user. This memory model enables the companion to
remember events that are relevant or significant to itself or to
the user. For other events which are either ethically sensitive
or with a lower long-term value, the memory model supports
forgetting through the processes of generalisation and memory
restructuring. The proposed memory model draws inspiration
from the human short-term and long-term memories. The
short-term memory will support companions in focusing on
the stimuli that are relevant to their current active goals within
the environment. The long-term memory will contain episodic
events that are chronologically sequenced and derived from the
companion’s interaction history both with the environment and
the user. There are two key questions that we try to address
in this work: 1) What information should the companion
remember in order to generate appropriate behaviours and
thus smooth the interaction with the user? And, 2) What
are the relevant aspects to take into consideration during the
design of memory for a companion that can have different
types of virtual and physical bodies? Finally, we show an
implementation plan of the memory model, focusing on issues of
information grounding, activation and sensing based on specific
hardware platforms.

I. INTRODUCTION

Memory is essential to any social being. The same ar-
gument applies to artificial companions1 that could estab-
lish long-term relationships with human users. One usual
problem in the interaction with artificial companions is that
users tend to lose interest rapidly due to lack of ‘life’
and unmet expectations of the companion’s intelligence and
responsiveness. User motivation for interaction decreases
with time as companions continue to perform pre-defined
rigid sets of repetitive behaviours, leading to user frustration.

This problem must be tackled in order to prolong and
produce a more engaging and natural interaction between
the artificial companion and the user. From the perspective
of social intelligent companions or agents, Dautenhahn [1]
argues that the better computational agents can meet our
human cognitive and social needs, the more familiar and
natural they are, and the more effectively they can be used as
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1In this paper the general use of the term ‘artificial companion’ refers to
both virtual companions and robot companions.

tools. Hence, we believe that memory is vital if the artificial
companion is to be capable of learning and adapting itself
to the environment.

Modelling a human-like memory has always fascinated AI
researchers and led to various memory models contributing
to the understanding of human cognition [2]. In the earlier
years, modelling the major characteristics of these memories
allowed intelligent programs to remember situations as cases
and, most importantly, extracting reasoning rules from these
cases stored in a database to extract (see [3] for an overview).
‘Scripts’ from Schank and Abelson [4], also captures two
important aspects of human memory in the perspective of
developmental psychology for it represents everyday events
and activities, and it has social and cultural components. In
particular, recent research emphasising the role of episodic
memory on a cognitive robot [5] and on simulated agent [6],
[7] architectures have achieved fruitful results through the
learning of temporally sequenced episodes/events, or remem-
bering the ‘significance’ of events (through creating impact
to agent’s internal states).

In addition to modelling the cognitive aspect of human
memory, the embodiment of an artificial companion must
also be taken into account while developing the memory ar-
chitecture. Nowadays artificial companions can be embodied
in real social environments with different types of innovative
technologies (e.g. physical robots, social toys or graphical
synthetic characters) with which users can interact daily. This
had led to research in which an artificial companion can
migrate seamlessly among these potentially useful platforms
in order to maintain the best companionship with the user,
reducing the user’s cognitive load in adapting him/herself
towards these technologies [8], [9].

Following these research directions, here we propose an
initial memory model for a long-term artificial companion
that can potentially 1) migrate between virtual and robotic
embodiments and 2) preserve a long-term relationship with
individual users in order to provide coherent interaction
without loss of consistency or continuity.

There are two key questions that we try to address in this
work. First, what information should an artificial companion
remember in order to generate appropriate behaviours and
thus smooth the interaction with the human user? To the
best of our knowledge, a second question has not yet been
proposed in the area of human-robot interaction. It concerns
the potential migrating nature of an artificial companion and
how to design a generic memory model for a companion
which can have different types of virtual and physical bodies.

The rest of this paper is organised as follows: first



we will discuss relevant background research into human
memory, specifically the nature of remembering and forget-
ting processes. Next we will review literatures on existing
computational models of human short-term and long-term
memory, in particular autobiographic memory. Following
that we will illustrate the proposed initial memory model
for artificial companions that we are currently developing in
the LIREC2 project. Finally we will discuss issues relating to
the migration process allowing companions to be embodied
in various virtual and robotic platforms, and the grounding
of experiences for robot companions.

II. M ODELS OFHUMAN MEMORY

The human memory works on the basis of three different
processes. First, information from the external and internal
sensory system of the organism is encoded. Second, the in-
formation is stored either in the short-term memory (STM) or
long-term memory (LTM), as will be further described later
in this section. Finally, the information can be remembered
or retrieved (if it has not been forgotten). Note that it is as
yet unclear and controversial among scientists, how exactly
human memory works [10], [11], [12].

A. Short Term Memory (STM)

Providing an interface between perception, LTM and ac-
tion, STM is a limited capacity system, which temporar-
ily maintains and stores information perceived from the
surrounding environment. In recent years STM has been
considered an important component to model to enhance
the ability of a software companion or physical robot to
learn new skills and tasks through utilising past short-term
experiences. There are two complementary approaches that
make use of the characteristics of STM:

• Control of attention in memory: focusing on the most
relevant features of the current task and allowing for
more robust behaviour in the presence of distracting or
irrelevant events. This was shown to be an effective way
of limiting the search space for perceptual systems [13].

• Utilising STM contents in similar ways to those orig-
inally developed for LTM: supporting learning that
generalises across different tasks. STM can retain a
limited amount of information in a temporal sequence
for a rehearsal process to determine whether an item is
to be remembered [14], [15]. This can avoid the ‘out
of sight, out of mind’ problem caused by immediate
occlusions or confusions.

B. Long-term Memory (LTM)

LTM keeps a large quantity of information for potentially
a very long time. Information stored in LTM can be of very
different types. According to one of the existing models of
the human memory [16], LTM can be divided into declarative
and procedural memory. The declarative memory is formed
of a semantic and an episodic memory. Autobiographic
memory (AM), which is the focus of our research, is a

2The LIREC Project (LIving with Robots and InteractivE Companions),
http://www.lirec.org/

specific kind of episodic memory that contains significant
and meaningful personal experiences for a human being [17],
[18]. The organisation of a human AM has a hierarchical
structure, in the sense that memories of single events are
nested within larger cognitive structures [19], [20]. Life
events [18] together with events associated with emotions,
indicate that central knowledge structures relating to the self
have been employed in representing AM. It is believed that
AM serves a central function in providing the basis for social
interaction, and maintenance of a dynamic self-concept as
well as the representation of the meaning of concepts [21].

Moreover, two features of autobiographic memory are
generally defined and accepted by researchers in psychology,
as pointed out by Conway et al [22]:

• AMs are mental constructions of the self.
• They very often feature imagery while simultaneously

containing abstract personal knowledge [18], [23], [24].

C. Remembering and Forgetting

As already stated, the three main activities related to
memory modelling are: encoding, remembering and for-
getting [25]. Information from STM is encoded in LTM
through repeated exposure and generalisation. Remembering
or retrieval involves recall and recognition while forgetting
may be caused by several processes [26].

Forgetting, in particular, is essential and useful for if we
were to record every bit of incoming information, we would
have information overload, difficulty in organizing it and in
focusing on one piece of information at a time. Hence, a
number of theories of forgetting have been developed by
neuroscientists and psychologists, which aim at explaining
these mechanisms, and thus why we forget. The most rel-
evant for our investigation purposes are trace or functional
decay theory and repression.

Functional decay theory [27] has been found to be useful
in making quantitative predictions for human performance
in dynamic task environments. It suggests that encoding and
decay are critical to maintaining situational awareness in an
environment where tasks change continually. The cognitive
system must be prepared to forget so that resources can be
concentrated on the current state of the world. The core idea
of this theory is that the most recent information must be the
most active in memory to allow reliable and fast retrieval.
As the current task decays, retrieval becomes more difficult.
However, decay through use is minimal, in other words, the
more active an item, the more accurately and quickly it can
be retrieved from memory. The amount of time invested
during encoding determines the amount of decay during use.

Repression occurs when memories are unconsciously
blocked from our awareness. It could be seen as the purpose-
ful but subconscious block of memories. These strategies
to ‘forget’ disturbing experiences have been researched in
psychoanalysis as defence mechanisms, strategies that serve
to protect the self from situations and emotions with which
one cannot cope [28]. In case of these unconscious or
conscious strategies of motivated forgetting, remembering,
discussing or rehearsing memories are important techniques



to strengthen the retrieval of the suppressed or repressed
memories. Similarly, forgetting details of disturbing events
might also be due to the fact that disturbing events are simply
less often discussed and rehearsed than positive memories.

In our proposed memory model, it is envisage that an
artificial companion will have the capability to remember and
forget information perceived from its interaction environment
so that it can update and adapt its memory accordingly. By
constantly reconstructing memory, e.g. using remembering
and forgetting mechanisms, the companion will be able to
learn to behave in an appropriate way because its attention
can be focused on important information relevant to the
current interaction situation.

III. ROBOTS AND V IRTUAL CHARACTERS AS

COMPANIONS

So far, the idea of a robot or a virtual character companion
has not been widely accepted and sometimes not even
considered or imagined. Several matters should be addressed
in order to facilitate long-term human interaction with virtual
or robot companions. Among these we can highlight ethical
issues, grounding problems and potential migration concerns.

A. Ethical Issues

Long-term interaction with virtual or robot companions,
which involves data storage of personal information, nat-
urally raises ethical issues as a primary concern. In a
previous work Vargas and collaborators [26] focused on
what the artificial companion should and should not forget
and its consequences when taking into consideration ethical
concerns. The authors suggested the creation of a master
Roboethical [29] theory, which would encompass all positive
features of each type of ethical theory. In our model we
attempt to follow these guidelines towards the conception of
a Roboethical memory.

B. Grounding Problem

The problem of grounding has been a difficult problem
existing in the research field of embodied AI for decades.
In the LIREC project, our main concern is what defines an
experience for an embodied companion.

Any embodied companion, in particular a robot com-
panion, situated and acting in an environment will have
many sensors through which it can receive information
about itself and its environment. Some of them sense the
external environment (e.g. visual, infra-red, sonar sensors),
while others sense the internal environment and body (e.g.
motor position, internal temperature sensors, gyroscopic ac-
celerometers) and yet others still sense internal variables (e.g.
variables that simulate motivational or affective states). A
number of these quantities are naturally discrete, like buttons
and switches. However, in general the observed quantity is
continuous and in current robotic systems the sensor maps
the continuous values into discrete observations to some level
of precision [30].

C. Migration

Some researchers have explored artificial companions that
can migrate their ‘minds’ through different bodies. Ono et
al [31] proposed the termcompanion migrationand they ex-
perimentally verified the process for smooth communications
between humans and robots. In a later work, Ono and his
colleagues extended the design to create the ITACO system
which aims at achieving companion’s ‘ubiquitous cognition’
and does support a wider variety of human robot interaction
(HRI) contexts (e.g. in [32], [8]).

Similar to the ITACO system but with the mixture of
virtual and robotic companions, companion Chameleons [33]
simulates the environment and behaviours of a chameleon
and illustrates companions that migrate and mutate within
and between robotic and virtual platforms.

One of the important aspects of agent migration is the
ability of the agent to maintain its ‘identity’. To investigate
this, Koay et al [9] carried out an experiment on the visual
realisation of migration process – whether the users believe
that they are still interacting with the ‘same agent’ even after
it migrates from a humanoid robot to a zoomorphic robot
platform.

The memory design for companions migration remains
unexplored as the previous studies have not included the
notion of long-term interaction– therefore LTM was not
considered as part of their research and related experiments.

IV. RELATED WORK

Computational models of AM have not so far adequately
accounted for its hierarchical organisation and nested struc-
ture or fully exploited these characteristics. According to Ho
et al. (2008), so far a comprehensive model of autobiographic
memory has not been implemented and tested thoroughly in
believable and possibly conversational graphical companions,
not to mention real robot companions.

In recent years, the use of temporal sequences of episodic
events has been rapidly growing in both robot and virtual
companions’ research areas. For example, by collecting rel-
evant events stored in episodic memory, an exploration robot
is able to reduce its state-estimate computation in localising
itself and building a cognitive map in a partially observable
office environment [34]. Also, long-term episodic memory
with attributing emotions may help a virtual robot to predict
rewards from human users, thus facilitating human-robot
interactions in a simple Peekaboo communication task [35].

Mirza et al [36] uses the concept of interaction histories,
defined as the “temporally extended, dynamically constructed
and reconstructed, individual sensori-motor history of an
companion situated and acting in its environment including
the social environment”. This work is strongly inspired by
dynamical systems approaches to memory and sensori-motor
coordination.

The current research trend towards modelling a complete
human episodic memory, e.g. episodic memory in Soar [6]
and a generic episodic memory module [37], establishes
a common structure that consists of context, contents and



outcomes/evaluation for companions to remember past expe-
riences. These models were created to focus on the following
three different aspects:

1. Accuracy – how relevant situations can be retrieved
from the memory

2. Scalability – how to accommodate a large number of
episodes while not decreasing significantly the performance
of the system

3. Efficiency – how to optimise the storage and recall of
memory contents

Brom et al [38] attempted to create a full episodic
memory storing more or less everything happening around
the companion for the purpose of storytelling. The authors
claimed that the modelled episodic memory can answer
specific questions from human users in real time regarding
the companion’s personal histories. With the story scenario
which was used in their paper, this memory allowed an
companion to describe past actions in time. Forgetting pro-
cesses were also partially implemented in their work - in
the companion’s LTM records, less emotionally interesting
records were deleted.

Furthermore, previous research in [7] aimed at modelling
the psychological concept of AM computationally and in-
tegrated it into a synthetic companion architecture. With
this memory included, companions are not only capable of
recognising and ranking significant events which originate in
the companions’ own experiences, but can also remember,
recall and learn from these experiences. Thus companions’
believability can be increased and the interactivity of the
software can be more fulfilling for the user [7].

Different types of computational memory architectures for
Artificial Life autobiographic companions have also been de-
veloped and experimentally evaluated in other works. For an
overview, see [39], [40]. These architectures include typical
human memory modules which are commonly acknowledged
in psychology: short-term, long-term and positively and
negatively categorised memories.

Forgetting has also been adopted in many learning algo-
rithms. Ishikawa applied structural learning with forgetting
[41] to two of three phases: 1) learning with forgetting,
2) hidden units clarification and 3) learning with selec-
tive forgetting. In the first phase, connection weights are
constantly decayed so that unnecessary connections can be
eliminated and a skeletal network emerges. However, this
step may result in a mean square error that is larger than
that by back propagation learning. Therefore, in the learning
with selective forgetting phase, only the connection weights
whose absolute values are below a certain threshold are de-
cayed. The summation is restricted only to weak connections
making the mean square error much smaller than that in
learning with forgetting. The determination of the amount of
forgetting is important to ensure efficient learning because if
it is too large, even necessary connections fade away while
if it is too small, unnecessary connections remain, resulting
in a network far from skeletal.

Koychev [42] utilises a gradual forgetting method in learn-
ing drifting concepts by applying a time-based forgetting

function. The idea is comparable to functional decay theory
that suggests the most recent information is the most active
in memory. Some changes are required to existing induction
learning algorithms (eg. NBC, ID3) that treat all training
examples as equally important to include a weight for the
examples according to its occurring time. By doing so,
the last observations become more significant for learning
algorithms than the old ones. The result of experiments
showed an improved predictive accuracy and adaptability
of the systems that adopt learning algorithms with gradual
forgetting.

V. I NITIAL MEMORY MODEL

In this section we propose our design of an initial mem-
ory model for migrating artificial companions. Taking into
account different aspects from the existing computational
memory models, here we aim at addressing the adaptability
of an artificial companion to preferences of the user as well
as the dynamic environment, thus facilitating the long-term
interaction.

By modelling certain features, which reflect on the general
characteristics of human autobiographic memory and general
event representation (GER), our memory model covers dif-
ferent aspects of information processing from low-level to
high-level for artificial companions.

The remainder of this section introduces the features of
each component separately and discusses in detail the low-
level design which supports the migrating process for this
memory model.

A. High-Level Design

Computationally, memory can be modelled as a succession
of three different stores, one for the sensory information, the
second for STM, and the last for LTM; the above described
processes, encoding, storing, and retrieving, work on these
three entities.

Figure 1 shows an overview of the complete memory
model. The model consists of components of LTM, STM,
Reasoning and Action Selection, Actuation and Sensing.

To facilitate the long-term interaction between the artificial
companion and the user in scenarios within the LIREC
project, the memory model needs to capture the user’s
everyday routine activities as well as the knowledge about
the environment for the processes of goal formulation and
accomplishment. Moreover, the enhanced LTM and STM in
our model are able to cope with ‘organic’ developmental
processes, such as learning new behaviour and attributing
emotions to its LTMs for significant events.

Based on the memory model illustrated in Figure 1, an
individual companion can create different behavioural or
conceptual meanings for an action or object in its LTM,
depending on the way it interacts with the user and the
environment.

1) Short-Term Memory:STM can be modelled compu-
tationally to maintain an companion’s current focus on its
interaction world and activated goals that guide behaviour
generated by the Reasoning and Action Selection component.



Fig. 1. A generic memory model for migrating artificial companions, with
arrows showing the transition of information among different components.
Note that italic labels indicate the effect of forgetting.

In Figure 1 we illustrate the goal management in STM, and
how different types of information can be retrieved from
other components as well as the influences STM can bring to
them. Moreover, STM holds all active information relevant
to the companion’s current and recent goal processing to
ensure effective and appropriate reactions to its immediate
circumstances.

With the sensory data derived from the fusions of compan-
ion’s sensors, STM maintains three different types of goals,
namely active, completed and violated goals. In order to
ensure the adaptation of the companion to the environment,
these goals are processed, updated and verified with knowl-
edge supplied continuously from the LTM. Therefore, the
goal structure directs the companion’s behaviour in a way
that complements the companion’s previous understanding
of the environment.

• Active goals: Active goals are formulated in real-time
by General Event Representations (GERs) and sup-
ported by World Knowledge (WK) modules from LTM
(see next sub-section for details of GERs and WK).
They are goals that a companion needs to achieve in a
given situation so as to complete a task or satisfy its
own motivational states.

• Completed goals: Every active goal is continuously
monitored in STM and updated with sensory input.
Once the conditions are met and an active goal is
achieved, this goal then becomes a completed goal. At
the same time this successful occurrence strengthens the
same type of goals in GERs - verifying a successful
goal will lead to the encoding and further consolidation
of the goal in GERs. Therefore, it results in the facts
that 1) this goal will be more likely to be chosen for
activation in the future, and 2) details of the completed
goal will be forgotten by the companion.

• Violated goals: In some cases there will be stimuli that

are unexpected or novel to the companion. These stimuli
may violate all active goals that the companion tries to
achieve currently. The violation of goals leads to the de-
mand for specific past experiences from Autobiographic
Memory (AM) in LTM. Since an companion’s AMs
are constructed from relatively distinctive and emotional
experiences in the past (see next sub-section for details),
reconstructing these experiences results in updating all
active goals in STM, impacting the companion’s current
emotional states and thus forcing a new regulation of
the companion’s current behaviour.

These three types of goals maintained by STM are de-
signed to form an iterative loop whose purpose is to reduce
the discrepancy between desired and actual goal states. As
aforementioned, in performing this discrepancy reduction the
behaviour is regulated. Newly activated goals that emerge
from AM can further guide selective attention and actions -
this process is necessary to sustain the goal structure.

When a goal is activated, the companion will construct
an appropriate plan to achieve that goal. It keeps track of
the progress of the plan and the state of the environment
to ensure that its plan is still valid. Sensory data brought in
by the component ‘Sensing’ contains the update of the com-
panion’s current environment. Outcomes of current actions –
success or failure – are noted and alternative actions or plans
are established whenever necessary. The companion’s current
affective states (emotions, mood and/or drives depending on
the companion’s emotional model) and its relationship with
other companions affect its goal activation.

2) Long-Term Autobiographical Memory:To develop ar-
tificial companions that interact with human users over a
long period of time, LTM is the most important component
in our model, ensuring that companions learn and adapt
socially over the long-term. Supported by the WK module3,
the features provided by AM and GERs are our main foci
in developing a comprehensive LTM in the LIREC project4.

Basically, General Event Representations (GERs) are goal
categories organised dynamically and based on the current
goal activity [43]. Their goal-oriented categories can be per-
ceived as memory schemata and scripts since they generally
encapsulate all of an companion’s knowledge of a particular
type of object in the world, or a sequence of perceptions
and actions of an event. Knowledge for digesting routine
goals (i.e. goals that are familiar and do not create emotional

3Artificial companions will need to be pre-installed (or personalised by
the user before starting the mutual interaction) a certain amount of semantic
world knowledge in the early stage of a given HRI scenario. This set of
semantic world knowledge is necessary to assist basic tasks or interactions
that a companion is going to perform, as well as to avoid a user teaching its
companion every basic fact of the world at the beginning of the interaction.
For instance, the knowledge includes date and time, seasons, user’s life
routine in different days of a week, objects and resources available in the
local environment.

4Note that our memory model does not aim at simulating all charac-
teristics of human long-term and autobiographic memory, but it captures
essential features from a number of well developed psychological models.
This model establishes the inter-relationship between AM, which provide
personal knowledge to support STM based on the given goal activity, and
GERs for handling routine and highly anticipated events for companions.



impact to the companion) is similar to human semantic
knowledge which is used to understand the world. Therefore
these event categories provide expectations about what the
companion will experience (e.g. seeing, hearing).

When a routine goal from STM is evaluated against
existing goals in GERs, if it does not differ from them,
it will be ‘absorbed’ into the GERs through rehearsing the
categories and its content details can be decay (be forgotten)
overtime. Therefore routine goals do not have great details
in GERs but their schematic structure and meaning are
preserved.

As discussed above, STM modulates a companion’s be-
haviour and supports LTM construction with knowledge
supplied by different modules in LTM. Since STM holds
a subset of LTM closely connected with the current goal
structure and it always monitors the goal accomplishment,
external stimuli perceived by an companion will be examined
through a ‘filtering’ process in the STM component. A
new goal category is created when a novel stimulus cannot
be absorbed into existing GERs in LTM - the stimulus is
‘incomprehensible’ by the existing goals and sub-goals in
GERs.

Furthermore, goal verification in STM is a critical and
dynamic process in maintaining the coherent behaviours
of companions, and it requires retrieving a considerable
amount of knowledge from AM based on the current ongoing
goal activity. Novel and unexpected stimuli, which can be
significant to the companion and may create a considerable
amount of discrepancy between the standard and current state
of the world, will affect the companion’s emotional states and
take part in forming particular sequence of event in AM.

For instance, in [44], significant events were indicated by a
substantial amount of change in companions’ internal phys-
iological variables. Moreover, WK also provides semantic
knowledge to support the constructions of important events
in AM. These features are illustrated in Figure 1.

Events retained in the AM differ in duration and com-
plexity and they can be seen as highly specific and unique
experiences. Unlike routine goals in GERs, they also act
as organising representations for memories of more specific
occurrences. Therefore knowledge constructing these specific
events constitutes a central feature in AM.

In summary, both AM and GERs for companion are
instrumental in the generation and maintenance of a goal
structure. They are also intended to reduce the quantity of
information that actually has to be stored and to facilitate
a more coherent ‘self’ for the companion to have more
consistent behaviour. In order to ensure that each significant
event in AM is meaningful and coherent, WK provides
semantic knowledge to support the formation of a complete
event.

3) Forgetting: Forgetting is useful to improve the ef-
ficiency, scalability and adaptability of cognitive systems
operating in dynamic task environments, such as a robot’s
interaction environment. The issue of privacy and social
desirability may also be addressed through these mecha-
nisms. Previous work on the issue of privacy in relation

to robot companions [45], [26] has suggested that while
there are clear concerns regarding privacy, potential users
of companions recognise the need for retention and retrieval
of information of a personal nature in order for the robot
to effectively perform as a companion. Participants pointed
towards mechanisms for ’forgetting’ as vital to address this
issue.

Therefore, in order to implement such control, our pro-
posed memory model should include forgetting mechanisms
by not only utilizing the trace or functional decay theory [46],
[47] for STM and LTM but also considering repression. It is
believed that these mechanisms will both address the issue
of social desirability as well as those of efficiency, scalability
and adaptability.

By utilising a decay theory, the idea is that memory traces
that are of the immediate past are denser than the old ones.
When information is perceived, it enters the STM. With
continuous activation through rehearsal or frequent recall
this memory may eventually become LTM. However, if the
information falls into disuse, the memory trace will start to
decay and eventually fade from memory.

The information that receives frequent attention will go
through reconstruction processes before it is consolidated as
LTM. This is part of the learning process where memory
structures are modified continuously based on incoming
information to ensure their currency with respect to the world
state. By being able to notice and recall differences in expe-
riences, the robot will be able to learn about its environment
more effectively. General structures will help the robot in
deciding what to pay attention to, and reminding forces it
to make use of prior knowledge to form expectations. Care
needs to be taken when generalising information to ensure
that particular differences that may be valuable are not lost.

A repression mechanism could be implemented in or-
der to allow the user to ‘repress’ any memory event that
might be considered inadequate for storage. Following these
guidelines, a robot’s memory can be personally tailored to
suit particular user needs while initialising the robot. The
same memory architecture, with different levels of forgetting
and repression mechanisms to handle sensitive contents, can
support various user groups with regards to personal privacy.

B. Low-Level Design

This sub-section addresses the coherence issue of the
companion’s memory encoding and retrieving processes as-
sociated with different embodiments.

While grounding symbols for robotic companions is a dif-
ficult challenge, dealing with companions’ migration across
different platforms is a further one – the user’s social en-
gagement must be maintained when an companion’s embod-
iment changes over time. In particular, when an companion
migrates, aspects such as affordances, interaction interfaces
and behavioural expressions may be affected.

As shown in the bottom part of the memory model in
Figure 1, the low-level symbolic translation process which
is platform-independent can be perceived as the first initial
step towards the answer of a partitioned memory. Here



Fig. 2. The low-level symbolic translation process proposed for the
initial memory model. Note that PeopleBotTMand PioneerTM robots were
developed by ActivrobotsR©. Kaspar is a child-size robot which is capable
of demostrating facial expression and expressive postures that was developed
by researchers at University of Hertfordshire, see [48] for details.

we pursue the ideas shown in Figure 1, ‘Actuation and
Sensing’, in which a specific embodiment of the artificial
companion represents a unique set of interaction histories
that the companion possesses.

Take ‘Sensing’ as an example; three main steps are in-
volved (Figure 2):

1. Identifying the type of sensors (S1, S2, etc) in each
hardware platform (companion’s embodiment)

2. Then defining sensory categories (C1, C2, etc)
3. Finally a backward mapping is done to physical em-

bodiment of the companion
Through creating ‘Sensing’ with these three steps, a

companion’s memory can be partitioned and incrementally
encoded based on the specific platform it has migrated to.
During the migration process, the companion embodies with
the new platform along with the complete memory, and then
it retrieves the right set of ‘Sensing’ from the embodiment to
start the encoding process as well as ‘Activation’ to execute
its planning with behaviours that the current embodiment can
support.

Multimedia content is thus addressed with ‘Activation’ and
‘Sensing’. However, as symbolic translations are carried out
locally in the specific platform and thus memory component
above ‘Activation’ and ’Sensing’ can process all types of
sensory input and actuator output as symbols, local symbolic
translations become a critical process to allow companions
to make sense of the surrounding environment as well as to
guide its behaviour in changing the environment.

VI. D ISCUSSIONS ANDFUTURE WORK

In this paper we have introduced a comprehensive and
generic memory model for artificial companions that adapt
to their environment and interact with human users for a long
period of time.

In our model, we use a top-down approach for repre-
senting the knowledge and its transfer between components.
Meanwhile from a bottom-up perspective we investigate the
grounding problem of creating meaningful experiences for
robots and how companions can maintain a consistent mem-
ory system while migrating from one platform to another.

Grounding allows symbols to have meaning for compan-
ions (usually robots) – symbols must be grounded in the
companion’s own interaction with the real world. Targeting
this issue, we first discuss how to create LTM in robots, and
then we propose a method to implement low-level memory
particularly for companions which can migrate to different
physical bodies.

Here we suggest starting by considering an companion’s
memory as a kind of interaction history, as defined in
Section II by Mirza [36]. In addition to address the grounding
problem, this definition has three key aspects [30]:

• Temporal extension: The overall horizon of an com-
panion’s experience extends into the past (including
previous experience available to the companion) and
also into the future in terms of prediction, anticipation
and expectation.

• Dynamic construction: This indicates that the history is
continually being both constructed and reconstructed.
Previous experiences are modified in both the processes
of ‘storage’ and recall, and potentially affect how new
experiences will be assimilated into the history in the
future.

• Remembering in action: The process of remembering
drives and shapes the choice of current and future
actions, while also, itself, dynamically re-shaping the
structures employed in remembering.

There is certainly much further low-level specification to
be carried out in the near future. Here we have illustrated,
in both LTM and STM components, the conceptual design
allowing companions to identify, characterise and distinguish
experiences for creating a coherent long-term interaction
history.

Memory models for virtual companions can be far more
sophisticated than those for robots since they have easy
access to knowledge about the companion’s environment, the
companion itself and other companions in the environment
(regarding their behaviour, internal states, goals etc.). Such
knowledge is not readily available to autonomous robots
which rely on their local perception and learning capabilities.
Hence, one of the key challenges for us will be to further
improve our memory model to accommodate both virtual
and robotic companions.

Finally we expect that LIREC artificial companions em-
bedded with this memory model will be able to draw on
past experiences to affect their future behaviour – thus will
be able to become more believable and affective companions.
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