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Abstract- High information redundancy and strong correlations in face images result in inefficien- 
cies when such images are used directly in recognition tasks. In this paper, Discrete Cosine Transforms 
(DCTs) are used to reduce image information redundancy because only a subset of the transform coeffi- 
cients are necessary to preserve the most important facial features, such as hair outline, eyes and mouth. 
We demonstrate experimentally that when DCT coefficients are fed into a backpropagation neural net- 
work for classification, high recognition rates can be achieved using only a small proportion (0.19%) 
of available transform components. This makes DCT-based face recognition more than two orders of 
magnitude faster than other approaches. 

Keywords- Face recognition, neural networks, feature extraction, discrete cosine transform, data 
pre-processing. 

1 Introduction 
Performing face recognition, identification and classification tasks directly using raw images is an inefficient 
strategy due to high information redundancy in face images. To overcome this difficulty, a computational 
model is typically designed to transform pixel images into face features, and these features are then used for 
analysis and recogniti~n[~I. One exemplar neural network approach was developed by Lawrence et al. in [9] 
who used the self-organising map (SOM) as a feature extractor. The self-organised features were exploited 
as the input to a convolutional neural network for recognition, whose architecture was similar to that of 
neocognitron["]. A weakness of this approach is that training either SOMs/convolutional neural networks 
can be tremendously computationally expensive. 

Most facial feature extraction approaches however rely only on localised features, which can be ill-posed 
and may be brittle subject to  variations of illumination, scale and orientation. Due to the difficulty of 
selecting a representation that can robustly capture features, some researchers tend to  avoid the feature 
extraction procedure by passing the pixel images directly to neural networks, using neural networks as 
information processing tools["? l41. In principle, neural networks can be used to map the pixel face images 
directly onto the target output values. However, in practice, such an approach will typically generate poor 
results due to high information redundancy and strong correlations present in face images. These problems 
can be accommodated by pre-processing the raw face images, reducing the dimensionality of the working 
space[']. The choice of pre-processing algorithms can therefore be one of the most significant factors in 
determining the performance of the final recognition system. 

A well-known and widely used statistical technique for dimensionality reduction is Principal Component 
Analysis (PCA), or the equivalent Karhunen-Lokve or Hotelling transforms[8]. PCA is the optimal linear 
transform in an information packing sense['], which can combine inputs in high dimensional space and 
generate a smaller set of features. Due to the fact that PCA is a linear technique, it may however be 
inappropriate to use it for modelling nonlinear deformations and correlations, such as bending[2]. To overcome 
such limitations of linear PCA, several variants have been proposed12,6,7]. However, in general, PCA is data 
dependent and obtaining the principal components is a nontrivial task. Other limitations of PCA-based face 
recognition techniques are that large memory resources are required to store the components of images and 
an exhaustive search is needed to identify the closest match to an unknown face. Alternatively nonlinear 
dimensionality reduction can also be performed by multi-layer neural networks['> 13, 141. Again training the 
multi-layer neural networks can be computationally expensive[']. 
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In this paper we present a new approach which addresses the two issues of feature extraction and infor- 
mation packing of face images using the Discrete Cosine Transform (DCT) for neural network processing. 
The DCT is investigated here since its basis functions are input independent and its information packing 
ability closely approximates the optimal PCAi51. Furthermore computationally efficient algorithms exist to 
compute 2D DCTd41. The DCT hence provides a good compromise between information packing ability and 
computational complexity. 

Another advantage of the DCT is that most DCT components from real world images are typically very 
small in magnitude because most of the salient information exists in the coefficients with low frequencies. 
Truncating, or removing these small coefficients from the representation thereby introduces only small errors 
in the reconstructed images. Hence, a limited number of DCT components are sufficient to preserve the 
most important facial features such as hair outline, eyes and mouth['l]. By presenting these components to 
a classifier, here we use a feed forward multi-layer neural network, high recognition rates can be achieved, 
whilst the training and recognition speeds of the system are dramatically faster than other comparable 
approaches. 

2 From Pixel to Digital 
2.1 Discrete Cosine Transform 
The DCT of an N x M image f ( z , y )  is defined by 

for U = 0,1 ,2 , .  . . , N - 1, v = 0,1 ,2 , .  . . , M - 1, and the inverse transform is defined by 

1 
for z = 0 ,1 ,2 , .  . . , N - 1, y = 0 ,1 ,2 , .  . . , M - 1; where o(w) = - for w = 0 and otherwise a ( w )  = 1. 

The role of the DCT used in this paper is to  reduce the dimensionality of the working space. The 
dimension of the original space is determined by the maximum number of DCT coefficients (see (1)). Hence, 
in order to  reduce the dimensionality, a selection of coefficients should be omitted. 

To decide which components should be retained for the classification task in hand, let us denote the 
kernels of the 1-D DCT in (1) by 

v5 

a(.) . cos [ (2y ;$*I [ ;;)Un], g(y, .) = - ' 
2 2 

m h(U,I)  = - . .(U). cos 
v% (3) 

for u = O , l , . . .  ,N- 1,1= 0 , 1 , . . .  , N  - 1 and 21 = 0 , 1 , . . .  , M -  1,y  =0,1,... , M -  1. 
Note the kernels h(u, z) and g(y, U) in (3) depend only on the locations I, y,  U, v and not on the image 

(i.e., the values of f (x ,y)) .  Therefore, they can be viewed as a set of basis functions of the DCT. Based on 
this interpretation, the DCT C = ( C ( U , V ) ) ~ ~ ~  of image F = ( f ( ~ , y ) ) ~ ~ ~  can be expressed in matrix 
form as 

C = H . F . G  (4) 
and its inverse transform can be expressed as 

F = H T .  C .  GT (5) 
where H = ( h ( u , ~ ) ) ~ ~ ~  is the 1-D transform along the column of image F and G = (g(y,v))Nx, is the 
row transform; HT and GT are the transposes of unitary matrices H and G,  respectively. 

If we now define a masking function 

0, if C(U,IJ) is omitted; 
1, otherwise. 

m(u, v) = 

for U = 0 ,1 , .  . . , N - 1,. = 0,1,. . . , M - 1. m(u ,v)  is employed to eliminate DCT components, i.e., 
coefficients not selected to  reconstruct the image. The reconstructed image F can be obtained from 

where C = ( C ( u , v ) . m ( ~ , v ) ) ~ ~ ~ .  
$'= H T .  C .  GT (7) 
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2.2 Feature Selection 
Now consider a whole set of n images (F1 , Fa, . . . , Fn}. From all of their DCT features (i.e., DCT compo- 
nents), we wish t o  select the most informative components for our task. To achieve this, we try to minimize 
the reconstruction error for the selection scheme m(u, w). Using the previous notations, the mean-square 
reconstruction error between the images (F1, F2, . . . , F,} and their approximations (F1, Fz, . . . , Fn} can 
then be estimated as 

A A  

~ N - l M - 1  n 

. N-1 M-I 
1 =- E{C2(U, U ) }  . [l - m(u, U ) ]  

u=o u=o 
M N  

where E{ C2(u, U ) }  is the expectation of DCT components a t  location ( U ,  U). The first simplification is due 
to  the orthonormal nature of the matrices HT and G T .  

If we denote F as the mean of the image set (F1, F2,.  . . , F,} and replace Fi with Fi-F and F i  with Fi-F 
in equation (8) ,  then the mean-square reconstruction error between the images (F1 - F, F2 - F, . . . , Fn@} 
and their approximations {Fl - F, F2 - F , .  . . , Fn - F} can then be decided as 

- n - N - l M - 1  

where u & ~ , ~ )  is the variance of DCT components at location ( u , ~ ) .  This equation holds because the pixels 
of the images Fa - F can be regarded as being generated by a random process with zero mean and known 
variance. We know from equation (9) that the total mean-square reconstruction error is thus equal to the 
average of the variances of the discarded transform components (i.e., the components for which m(u, w )  = 0). 
In this paper, DCT features are selected to minimize the mean-square reconstruction error in equation (9) 
(see also (111 in which a zonal selection scheme was used). Furthermore, DCT features (or components) 
addressed thereafter are the DCT coefficients of the difference F -  F between an image F and the average 
image over the training set F-  @. 

2.3 Normalisation of Features 
The feature selection scheme (i.e., the number and locations of transform components) is determined based 
on analysis known images (i.e., training images) to minimize the mean-square error E,,,. The chosen 
features are then fixed within the recognition system and applied to  unknown images. Selected components 
are arranged in one dimensional format based on the order of magnitude of their variances. Since DCT 
components in different locations usually have different orders of magnitude, we need to  estimate the upper 
bound and the lower bound of DCT components for all images to convert the components into [-1, 11 (bipolar 
activation functions are used in our classifier[”]). 

Suppose ~ 1 ,  x2,. . . , x, are the components retained from the feature selection procedure and 
{ (xp), r?),. . . , xi)); j = 1 , 2 , .  . . , p }  are the corresponding components retained from the training images, 
where n is the number of DCT components retained and p is the number of training images. Then the upper 
bounds (b,) and lower bounds (a,) can be estimated by 

b, = B . max{ 1, z:l), . . . , x!’)}, i = 1 , 2 , .  . . , n; (10) 
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and 

ai = ~ . m i n { - l , z ~ l ) , . . .  ,z!p)), i =  1 , 2 , . . .  ,n. (11) 

where p > 1 is a factor to extend the bounds. Then the input vectors { ( z p ) ,  z v ’ ,  . . . , z c ) ) ; j  = 1 , 2 , .  . . , p }  
to  the neural network can be determined by 

For an unknown image, the scaling factors obtained from the training set are applied to the selected DCT 
components to  obtain the input vector to a classifier. 

3 Simulations 
3.1 System Description 
The main idea of our approach is to  apply DCTs to reduce information redundancy in images and to use 
the packed information for classification. For a face image, the system first computes its DCT components 
(DCT coefficients of the difference image), then selects a fixed number of components before presenting them 
as inputs to  a classifier. The classifier used in our system is a multi-layer perceptron (MLP) with only one 
hidden layer, where the quick backpropagation algorithm (Quickprop) is used as the training algorithm. A 
block diagram of our DCT-based system for face recognition is shown in Figure 1. 

feature selection winner- t ake- all 
* classification 

Figure 1: A functional block diagram of our proposed DCT-based face recognition system. 
3.2 Experimental Setup 
In our experiments, the ORL database (available from www. cam-orl. CO .uk/f acedatabase. html) is used as 
a benchmark database. The database consists of 400 different face images, 10 for each of 40 distinct subjects. 
The size of each image is 92 x 112 pixels, with 256 grey levels per pixel. 

The weights and biases of the MLP used as the classifier are initialised to random values in the range 
[-0.5,0.5]. Three learning parameters, am ax re^, and decay, used in Quickprop are set to 0.02, 0.008, 0.0001, 
respectively. The maximum number of training epochs is 1000. The multiplication factor p in (10) and (11) 
is set to  1.1. No attempt was made to  optimise these parameters. To reduce the influence of the presentation 
order of training samples, the training samples were randomly shuffled after every training loop. For the 
ORL database, the number of outputs of the MLP was always 40 and a winner-take-all strategy was used 
for classification. 

To allow comparisons, the same training and test set sizes are used as in [9,12], i.e., the first 5 images 
for each subject are the training images and the remaining 5 images are used for testing. Hence there are 
200 training images and 200 test images in total and no overlap exists between the training and test images. 
Due to  the small size of the available data, a validation set was not used and the best-so-far recognition rate 
on test images is reported as the testing recognition rate. 

In each of the following statistical results, 30 separate runs were carried out with randomly initialised 
weights and biases for each MLP. The T-tests are based on the 0.05 (95%) level of significance, which means 
that the T-test statistic has to  exceed 1.645 for experimental results to be classified as statistically different. 

Figure 2 shows the proportion of total sample variance associated with sorted DCT components on the 
training images of ORL database. It is demonstrated that most DCT components are insignificant and with 
only 20 (0.194% of 10304=92 x 112 available) DCT components we can keep 55% of the total variance. 

3.3 Experimental Results 
Table 1 shows the recognition performances for different numbers of DCT components in conjunction with 
different numbers of hidden neurons in the MLP. Table 1 also records the T-test result on the 0.05 level of 
significance compared to  the best case (with 25 DCT components retained and 60 hidden neurons used in the 
MLP). It is demonstrated that the recognition rate decreases as more DCT components are retained. This 
is because by using more DCT components more person specific information is introduced which reduces 
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Figure 2: The proportion of total sample variance exploited by DCT components. 

T 
max min T-test 
(%) (%) statistic 

U 

Table 1: Recognition performance on test images versus number of DCT coefficients retained (#) and number 
of hidden neurons in the MLP (IC). The last column ( T )  shows the T-test result on the 0.05 level of significance. 
The best mean recorded performance is indicated in the shaded row. 

the generalisation capabilities of the classifier. The most important facial features for remembering faces are 
hair, face outline, eyes and mouth which can be perceived by components a t  lower spatial frequencies["]. 

The best average recognition rate is 94.15% obtained by retaining 25 DCT components and using an 
MLP with 60 hidden neurons. By comparison, for our earlier zonal selection scheme (111, the best mean 
recognition rate was 92.87% (where 35 DCT coefficients are retained and 75 hidden nodes are used in the 
MLP). The reason is that  the zonal selection strategy can miss a few features with large variance which 
unfortunately are not in the zonal area described in [ll]. A complete training run typically takes about 1 
minute on a Pentium I1 PC with a 450MHz CPU. The T-tests test the hypothesis that the recognition rate 
is statistically different from the configuration with the best mean recognition rate. 

3.4 
The ORL database has been used to test several face recognition 11, l2I. The recognition rates 
of the best models and the training/classification times (if available) are shown in Table 2. 

As shown in Table 2, the recognition rates of our DCT-based system are comparable to the best reported 
results (the Convolutional NN and the P2D-HMM) and better than that achieved by PCA. The relative recog- 
nition speeds given in Table 2 are extrapolated from benchmark evaluations using the MATLAB benchmark 
utility and the published SPEC CPUfp92 data (available from www. spec .  org). The relative speed calcu- 
lation was discussed in [ll]. Note that the classification time for our DCT-based method is around 600 
times faster than the convolutional neural network approach. The classification speed of the convolutional 
neural network (CNN) approach is itself about 200 times faster than the P2D-HMM approach (Lawrence 
et report CNN to  be 500 times faster than P2D-HMM, but their comparison ignores processor speed 
differences). Furthermore] for the above comparison, input images to the CNN and the MLP were a quarter 
of full resolution. For N x N images, the computational cost of these approaches is proportional to O ( N 2 )  
while the computational complexity of fast DCT is only O ( N  log N) when N is a power of 2. 

Comparison of Different Recognition Approaches 
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recognition rate 
approach best 1 mean I cl 

*relative recognition speed, see text for details. 
ton a Sun Sparc I1  workstation, p.92 of [12],‘--’ means data  not available. 
*not included in the calculation of the mean and standard deviation (personal communication). 
gaverage of 3 simulations, the value of the standard deviation is from a personal communication. 
Ton an SGI Indy MIPS R4400 lOOMHz system. 
lion a 450MHz IBM compatible PC with 128M RAM. 
Table 2: Performance comparison of different approaches to recognition applied to the ORL database, 

relative 
speed* training time recognition time 

4 Conclusions 
Reducing the dimensionality of face images simplifies neural network based recognition systems. In this 
paper, dimensionality reduction is achieved by applying a DCT to the face images and truncating unim- 
portant features. The importance of DCT features can be determined by their variance over the training 
images. Selected transform features, rather than the raw pixel data, are used for neural network classifica- 
tion. Experiments demonstrated that for the ORL database, using less than 0.2% ***correct?*** of all the 
available DCT features, our DCT-based approach produces a recognition rate comparable to  the best results 
reported to date while recognition speed is more than 2 orders of magnitude faster. Since DCTs (unlike 
the popular dimensionality reduction technique Principle Component Analysis) are data independent and 
obtaining DCT components is much less computationally expensive than PCA, our DCT-based approach to  
face recognition is much faster than other comparable methods. 
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