
Extending Correlation in Branch Prediction Schemes

Lucian N. VINTAN*), Colin. EGAN**)

*)
University “L. Blaga”, Dept. of Comp. Sc., ROMANIA, E-mail: vintan@cs.sibiu.ro

**)
University of Hertfordshire, Dept. of Comp. Sc., UK, E-mail: c.1.egan@herts.ac.uk

Abstract

The main aim of this research is to propose a new
Two-Level Adaptive Branch Prediction scheme, based
on additional correlation information. Conventional
two-level adaptive branch prediction exploits the
correlation between the outcome of a branch and the
path followed through a program to reach the branch.
Typically the program path is identified by recording
whether each branch on the path is taken or not taken.
Unfortunately, this limited information is insufficient to
allow one path to a branch to be distinguished from
other potential paths to the same branch. In this paper,
we explore the benefits of adding sufficient information,
in the form of successive branch addresses, to uniquely
identify each program path. We use trace-driven
simulation to compare our modified branch prediction
scheme with a conventional GAp two-level predictor and
demonstrate that our new predictor performs better than
the conventional GAp scheme at the same level of
hardware complexity.

Key Words Branch prediction, Two-Level Adaptive
Branch Prediction, Trace driven simulation

1. Introduction

As the average instruction issue rate and depth of the
pipeline in multiple-instruction-issue (MII) processors
increase, accurate dynamic branch prediction becomes
more and more essential. Very high prediction accuracy
is required because an increasing number of instructions
are lost before a branch misprediction can be corrected.
As a result even a misprediction rate of a few percent
involves a substantial performance loss.

If branch prediction is to improve performance,
branches must be detected within the dynamic
instruction stream, the direction taken by each branch
must be correctly predicted and the branch target address
must be correctly predicted. Furthermore, all of the
above must be completed in time to fetch instructions
from the branch target address without interrupting the

flow of new instructions to the processor pipeline. A
classic Branch Target Cache (BTC) [Hen96] achieves
these objectives by holding the following information
for previously executed branches: the address of the
branch instruction, the branch target address and
information on the previous outcomes of the branch.
Branches are then predicted by using the PC address to
access the BTC in parallel with the normal instruction
fetch process. As a result each branch is predicted while
the branch instruction itself is being fetched from the
instruction cache. Whenever a branch is detected and
predicted as taken, the appropriate branch target is then
available at the end of the instruction fetch cycle, and
instructions can be fetched from the branch target in the
cycle immediately after the branch itself is fetched.
Straightforward prediction mechanisms based on the
previous history of each branch give a prediction
accuracy of around 80 to 95% [Hen96]. This success
rate proved adequate for scalar processors, but is
generally regarded as inadequate for MII architectures.

The requirement for higher branch prediction
accuracy in MII systems and the availability of
additional silicon area led to a dramatic breakthrough in
the early 90s with branch prediction success rates as
high as 97% [Yeh92] being reported. These high
success rates were obtained using a new set of prediction
techniques known collectively as Two-Level Adaptive
Branch Prediction that were developed independently by
Yale Patt’s group at the University of Michigan [Yeh91]
and by Pan, So and Rahmeh from IBM and the
University of Texas [Pan92]. Two-Level Adaptive
Branch Prediction uses two levels of branch history
information to make a branch prediction. The first level
consists of a History Register [HR] that records the
outcome of the last k branches encountered. The HR
may be a single global register, HRg, that records the
outcome of last k branches executed in the dynamic
instruction stream or multiple local history registers,
HRl, that record the last k outcomes of the specific
branch being predicted. The second level of the
predictor known as the Pattern History Table (PHT)
records the behaviour of a branch during previous
occurrences of the first level predictor.

It consists of an array of two-bit saturating counters, one
for each possible entry in the HR. 2k entries are
therefore required if a global PHT is provided, or many
times this number if a separate HR and therefore PHT is
provided for each branch PC. Although a single term is
usually applied to the new predictors, this is misleading.
Since the first level predictor can record either global or
local branch history information, two distinct prediction
techniques have in fact been developed. The global
method exploits correlation between the outcome of a
branch and the outcome of neighbouring branches that
are executed immediately prior to the branch. In
contrast, the local method depends on the assertion that
the outcome of a specific instance of a branch is
determined not simply by the past history of the branch,
but also by the previous outcomes of the branch when a
particular branch history was observed.

The main aim of this paper is to propose an improved
global Two-Level Adaptive Branch Prediction scheme.
Conventional global Two-Level Adaptive Branch
Predictors [Pan92] exploit the correlation between the
outcome of a branch and the dynamic path followed
through a program to reach the branch. The program
paths are identified by recording in the HRg whether
each branch on the path is taken or not. Unfortunately,
this information is insufficient to uniquely identify a
program path. In our branch predictor we therefore
record both the outcome and address of each branch on a
program path. This additional information makes it
possible to retrace the path taken to reach a branch and
therefore identifies a unique path through the code. We
use trace driven simulation to compare our improved
predictor that uses this additional path information with
a conventional global predictor.

2. An Improved Branch Predictor

Two-level adaptive branch prediction significantly
reduces the number of incorrect branch predictions.
Unfortunately, however, some branches are still difficult
to predict correctly. For example, in the Stanford
benchmarks there are a significant number of “hard-to-
predict” branches whose direction cannot be determined
by examining either the HRg or HRl bit patterns. In
these cases, with identical HR values, the branch is
almost equally likely to be taken or not taken.
Furthermore, increasing the length of HR has little
impact.

In theory, the adaptive nature of two-level adaptive
branch prediction should help. Ideally, with a given HR
pattern the predictor should correctly predict taken in
some phases of the program and then adapt to predict
not taken in other phases. Unfortunately, in practice, the
extent of this dynamic adaptation appears to be minimal.
As observed by Sechrist et al [Sec95], “The role of
adaptivity at the second level of two-level branch

prediction schemes is more limited than has been
thought.” It therefore appears that in these difficult-to-
predict cases insufficient correlation information is fed
to the predictor.

Earlier, we observed that the values stored in HRg do
not identify a unique program path leading to each
branch. Suppose, for example, that the final bit in HRg
is set to logic “1”, indicating that the branch executed
immediately before the branch being predicted was
taken. This final bit only indicates that one of perhaps
several branches targeting the basic block containing the
next branch has been taken. Since only the fall-through
path from the immediately preceding basic block has
been eliminated, the actual program path is
indeterminate. As a result multiple program paths can
map into a single HR bit pattern.

The correlation information available can be
improved by recording not only the outcome of each
branch but also the address of each branch instruction.1

In this way additional correlation information can be
provided for the predictor. Note that simply recording
the address of each branch executed is insufficient to
uniquely identify each path as can be seen from the
following simple example:

Bcc label
:

label: Bcc loop

Providing there are no intervening branches, the
outcome of the first branch must also be recorded if the
path is to be correctly identified.

Our improved branch predictor (MPAg), shown in
Figure 1, makes full use of improved path information.
A single global History Register (HRg) records both the
outcome and the address of the last k branches; however,
only the eight least significant bits of each PC are
recorded to save bits. A fully associative Pattern History
Table (PHT) is accessed by concatenating the PC
address with the HRg. Each PHT entry holds the branch
target address, prediction bits in the form of a two-bit
saturating counter and LRU (Least Recently Used) bits
used by our replacement algorithm.

A conventional two-level adaptive predictor would
use the PC plus HRg to directly index a PHT consisting
of an array of two-bit counters. Not surprisingly, the
size of these PHT arrays is often excessive. With HRg
extended to record full path information, the size of such
a PHT would have been prohibitive. We have therefore
chosen to implement our PHT as a fully-associative
cache. As a result, although the size of each individual
entry is increased, the total cost of the PHT is
significantly reduced. Clearly a direct-mapped or a set-

1 Alternatively, the requirement to also store the branch outcomes can
be removed by saving the address of the instruction executed
immediately after each branch instead of the actual branch address.

associative implementation would have been equally
appropriate.

Figure. 1 A fully associative modified GAp
(MGAp) scheme

We have implemented an MPP (Minimum
Performance Potential Replacement) replacement
algorithm similar to the one presented in [Per93]. The
algorithm replaces the entry having the minimum
product of the probability of reference, as given by the
LRU field, and the probability of the branch being taken,
as given by the prediction counter. As a result branches
that are predicted as “not taken” tend to be replaced.
Since any branches not held in the PHT is predicted as
“not taken” by default, the effect is to minimise
mispredictions caused by PHT replacements.

We compare our modified predictor (MPAg) with a
conventional two-level adaptive scheme (Figure 2).
This predictor would be classified as a GAp predictor in
the Patt classification [Yeh92]. Again to reduce the size
of the PHT and to provide a realistic comparison we
have chosen to implement the PHT as a fully-associative
cache.

Figure. 2 A fully associative GAp scheme

3. Evaluation of Branch Predictor Schemes

3.1 Benchmark Programs

Our simulation work uses the Stanford integer
benchmark suite, a collection of eight C programs
designed by Professor John Hennessy to be
representative of non-numeric code, while at the same
time being compact. The benchmarks are
computationally intensive with an average dynamic
instruction count of 273,000. About 18% of the
instructions are branches of which around 76% are
taken. Some of the branches in these benchmarks are
known to be particularly difficult to predict; see for
example Mudges’ detailed analysis [Mud96] of the
branches in quicksort.

The benchmarks were compiled using a C compiler
developed at the University of Hertfordshire the HSA
(Hatfield Superscalar Architecture) [Ste97]. Instruction
traces were then obtained using the HSA instruction-
level simulator, with each trace entry providing
information on the branch address, branch type and
target address. These traces were used to drive a
standalone branch predictor developed at the University
of Sibiu that was used to simulate the branch predictors
investigated in this paper. The trace-driven simulator is
highly-configurable, the most important parameters
being the number of HRg bits and the size of the PHT.
As output the simulator generates the overall prediction
accuracy, the number of incorrect target addresses and
other useful statistics; see for example Table 1.

3.2. Simulation Results

First, we evaluated our MGAp predictor using a
fully-associative PHT with 100 entries; see Table 1.
HRg records the history of from one to five branches (k
= 1 to 5). Since a total of nine bits are used to record
each branch - eight bits for the least significant bits of
the PC address and one bit to record the branch outcome
- the size of HRg varies from 9 to 45 bits. As well as
recording the number of correct and incorrect branch
predictions, Table 1 also records the number of
mispredictions caused by incorrect branch targets. This
source of mispredictions could be almost completely
eliminated by adding an address stack [Kae91] to hold
the return addresses for subroutine return instructions.
The last column in Table 1 records the total number of
replacements, NR, that have taken place in the PHT
during each simulation run. NR is a useful metric of
branch interference within the PHT. Not surprisingly
NR increases as the number of branch patterns recorded
in the PHT increases. As more branches are added to
each path, the number of paths associated with each
branch increases. This in turn increases the pressure for
entries in the PHT and the total number of replacements.

Table 2 is derived from Table 1 and records the most
successful configuration for each benchmark. The
average prediction accuracy, using the most successful
configuration in each case, is 87.12%, a figure that rises
to around 90% if incorrect branch targets are removed.
Interestingly, with three exceptions, the highest success
rates are obtained with paths consisting of only a single
branch (k=1). Furthermore, in all cases the highest
prediction accuracy is achieved in the absence of a large
number of replacements (NR), and in all but two cases
with an NR of zero.

Two opposing factors are at work here. First, the
misprediction rate would be expected to fall as the
length of the path recorded is increased. However, as
path lengths are increased, more entries are required in
the PHT. As a result more paths are evicted, and the
number of mispredictions increases. This explanation is
strongly supported by our results. In general, as the path
length is increased the prediction success rate improves
until the number of replacements in the PHT becomes
significant. For example, permute experiences no PHT
replacements and is the only benchmark to achieve its
highest prediction accuracy with a path length of five.

We repeated our simulations with a conventional
GAp prediction scheme (Table 3). In order to compare
configurations with identical hardware costs, the length
of HRg was increased in increments of nine bits rather
than one. The average prediction success rates for the
two predictors are compared in Table 4. The MGAp
scheme achieves a maximum average success rate of
86.03% with a path length of two, while the
conventional GAp scheme achieves an 83.74% success
rate with a path length of one. Furthermore at every
level of hardware complexity, the MGAp scheme
outperforms the GAp scheme.

In our second set of experiments we concentrated
exclusively on those branches in the Stanford
benchmarks that are inherently “difficult to predict.”
We consider a branch to be difficult to predict if both the
local and global branch contexts used in conventional
two-level predictors provide insufficient information to
avoid a high misprediction rate. By the local context we
mean HRl or the previous history of the branch being
predicted while by the global context we mean HRg or
the history of the branches executed immediately prior
to the branch being predicted. Consider, for example, a
specific branch from the program perm (Table 5). Here
neither the local context, HRl, or the global context,
HRg, provide sufficient information to allow accurate
prediction. In general we consider branches that are
mispredicted at least 20-30% of the time by
conventional two-level techniques to be difficult to
predict.

In Figure 3 to Figure 10 we compare the performance
of the two predictors, GAp and MGAp, on the difficult-
to-predict branches using seven of our benchmarks. The

eighth benchmark matrix is excluded since it contains no
difficult-to-predict branches. In the case of our MGAp
predictor, the index in each figure represents the number
of branches (PC + outcome) that make up the path
recorded in HRg. In contrast, in the case of the
conventional GAp predictor, k represents 9 bits of
branch history information. As can be observed from
the figures, our MGAp scheme generally outperforms
the conventional GAp predictor that has identical
hardware costs.

4. Conclusions and Discussion

In this paper we have simulated the performance of a
modified GAp branch predictor based on complete
program path information. Complete path information
allows the branch predictor to uniquely identify the
program path used to reach each branch and therefore
potentially reduces the number of mispredictions.

Conventional two-level adaptive branch predictors
implement the PHT as an array of two bit counters that
increases exponentially in size as the length of HRg is
increased. In many configurations this can leads to very
large storage arrays. For example, using an 18 bit HRg
and the 8 least significant bits of the PC address would
require a PHT size of 2 ** 26 or over 64 million entries.
By configuring our PHT as a cache rather than as a huge
array, we significantly reduce the cost of the whole
branch predictor. Furthermore, our configuration makes
it possible to utilise full-path information at a reasonable
cost, since the length of HRg is no longer the critical
factor in determining the size of the PHT. Instead the
size of the PHT is largely determined by the number of
distinct program paths that must be stored to ensure
accurate branch prediction. Finally, the more precise
full path information, should allow different paths to be
identified using a smaller number of distinct bit patterns
in HRg.

The preliminary results presented in this paper are
most encouraging, with our modified predictor generally
outperforming the conventional GAp predictor. The
prediction accuracies are smaller than those observed by
other researchers using the Spec benchmarks. There are
two reasons for this. Branches in very large benchmarks
such as Spec tend to suffer a smaller percentage of
mispredictions while the predictor is being trained.
Furthermore, other researchers postulate unrealistically
large PHT arrays, while the associative PHT simulated
in this paper has only a hundred entries.

Particularly useful information has been gleaned
regarding the interaction between path length and the
number of replacements required in the PHT. The next
stage of our research is to investigate our MGAp
predictor using a wider range of parameters in our trace
driven simulator and, in particular, to investigate

increasing the size of our PHT to reduce the number of
entry replacements.

References

[Hen96] Hennessey, J. L. and Patterson, D. A. Computer
Architecture: A Quantitative Approach, Morgan
Kaufmann, 2nd ed., 1996.

[Kae91] Kaeli, D. R. and Emma, P. G. Branch History
Table Prediction of Moving Target Branches Due to
Subroutine Returns, ISCA-18, May 1991, pp34-42;

[Mud96] Mudge T.N., Chen, I. K. and Coffey, J. T. Limits
of Branch prediction, Technical Report, Electrical
Engineering and Computer Science Department, The
University of Michigan, Ann Arbor, Michigan, USA,
January 1996, pp16.

[Pan92] Pan S.T., So K. and Rahmeh J.T. Improving the
Accuracy of Dynamic Branch Prediction Using
Branch Correlation, ASPLOS V Conference,
Boston, October 1992, pp76-84.

[Per93] Perleberg C. and Smith A. J. Branch Target Buffer
Design and Optimisation, IEEE Transactions on
Computers, No. 4, 1993.

[Sec95] Sechrest S., Lee C. and Mudge T. The Role of
Adaptivity in Two-Level Adaptive Branch Prediction,
Micro-28, Ann Arbor, Michigan, November 1995,
pp264-269.

[Ste97] Steven G. B., Christianson, D. B., Collins, R.,
Potter, R. and Steven, F. L. A Superscalar
Architecture to Exploit Instruction Level Parallelism,
Microprocessors and Microsystems, Vol. 20, No 7,
March 1997, pp391-400.

[Yeh91] Yeh T. and Patt Y. Two-Levels Adaptive Training
Branch Prediction, Micro-24, Albuquerque, New
Mexico, November 1991, pp51-61.

[Yeh92] Yeh T. and Patt Y. Alternative Implementations of
Two-Level Adaptive Branch Prediction, ISCA - 19,
Gold Coast, Australia, 1992, pp124-134.

Acknowledgements

This work was supported in part by the Romanian
Ministry of Research and Technology grant MCT No.
4086/1998 and by the Romanian National Council of
Academic Research grant CNCSU No. 391/1998.

Table 1. Modified GAp Predictor (MGAp - 100 entries)

Benchmark HRg Number Prediction Incorrect Incorrect Not Number of
of Accuracy Predictions Branch Taken Replacements
Branches Targets Branches (NR)

sort 9 12601 9441 (74.92%) 2929 (23.24%) 231 (1.83%) 4414 (35.03%) 0
sort 18 12601 9031 (71.67%) 3325 (26.39%) 245 (1.94%) 4414 (35.03%) 862
sort 27 12601 8590 (68.17%) 3849 (30.55%) 162 (1.29%) 4414 (35.03%) 2493
sort 36 12601 8234 (65.34%) 4277 (33.94%) 90 (0.71%) 4414 (35.03%) 3380
sort 45 12601 7935 (62.97%) 4619 (36.66%) 47 (0.37%) 4414 (35.03%) 3989

bubble 9 41216 35174 (85.34%) 6042 (14.66%) 0 (0.00%) 10140 (24.60%) 0
bubble 18 41216 35109 (85.18%) 6107 (14.82%) 0 (0.00%) 10140 (24.60%) 0
bubble 27 41216 35107 (85.16%) 6116 (14.84%) 0 (0.00%) 10140 (24.60%) 0
bubble 36 41216 34520 (83.75%) 6696 (16.25%) 0 (0.00%) 10140 (24.60%) 0
bubble 45 41216 34478 (83.65%) 6738 (16.35%) 0 (0.00%) 10140 (24.60%) 44

matrix 9 21341 20607 (96.56%) 733 (3.43%) 1 (0.00%) 703 (3.29%) 0
matrix 18 21341 20601 (96.53%) 739 (3.46%) 1 (0.00%) 703 (3.29%) 0
matrix 27 21341 20595 (96.50%) 745 (3.49%) 1 (0.00%) 703 (3.29%) 0
matrix 36 21341 20589 (96.48%) 751 (3.52%) 1 (0.00%) 703 (3.29%) 0
matrix 45 21341 20583 (96.45%) 757 (3.55%) 1 (0.00%) 703 (3.29%) 0

perm 9 54819 42828 (78.13%) 5272 (9.62%) 6719 (2.26%) 10862 (9.81%) 0
perm 8 54819 47857 (87.30%) 5282 (9.64%) 1680 (3.06%) 10862 (19.81%) 0
perm 27 54819 48010 (87.58%) 5129 (9.36%) 1680 (3.06%) 10862 (19.81%) 0
perm 36 54819 49303 (89.94%) 3417 (6.23%) 2099 (3.83%) 10862 (19.81%) 0
perm 45 54819 50321 (91.79%) 2316 (4.22%) 2182 (3.98%) 10862 (9.81%) 0

tower 9 37930 33043 (87.12%) 1305 (3.44%) 3582 (9.44%) 9153 (24.13%) 0
tower 18 37930 32778 (86.42%) 1315 (3.47%) 3837 (10.12%) 9153 (24.13%) 0
tower 27 37930 32701 (86.21%) 1265 (3.34%) 3964 (10.45%) 9153 (24.13%) 0

tower 36 37930 32622 (86.01%) 1280 (3.37%) 4028 (10.62%) 9153 (24.13%) 0
tower 45 37930 32694 (86.20%) 1302 (3.43%) 3934 (10.37%) 9153 (24.13%) 44

queens 9 38462 30511 (79.33%) 7932 (20.62%) 19 (0.05%) 19181 (49.87%) 0
queens 18 38462 31074 (80.79%) 7369 (19.16%) 19 (0.05%) 19181 (49.87%) 0
queens 27 38462 31075 (80.79%) 7368 (19.16%) 19 (0.05%) 19181 (49.87%) 158
queens 36 38462 29061 (75.56%) 9391 (24.42%) 10 (0.03%) 19181 (49.87%) 4612
queens 45 38462 26521 (68.95%) 11931 (31.02%) 10 (0.03%) 19181 (49.87%) 8709

tree 9 32887 28122 (85.51%) 3510 (10.67%) 1255 (3.82%) 8721 (26.52%) 0
tree 18 32887 28188 (85.71%) 3477 (10.57%) 1222 (3.72%) 8721 (26.52%) 0
tree 27 32887 28216 (85.80%) 3547 (10.79%) 1124 (3.42%) 8721 (26.52%) 37
tree 36 32887 27922 (84.90%) 3876 (11.79%) 1089 (3.31%) 8721 (26.52%) 548
tree 45 32887 26016 (79.11%) 5848 (17.78%) 1023 (3.11%) 8721 (26.52%) 3309

puzzle 9 204527 193579 (94.65%) 10946 (5.35%) 2 (0.00%) 18576 (9.08%) 13
puzzle 18 204527 193183 (94.45%) 11342 (5.55%) 2 (0.00%) 18576 (9.08%) 3322
puzzle 27 204527 190037 (92.92%) 14488 (7.08%) 2 (0.00%) 18576 (9.08%) 7349
puzzle 36 204527 187417 (91.63%) 17109 (8.37%) 1 (0.00%) 18576 (9.08%) 10576
puzzle 45 204527 185285 (90.59%) 19241 (9.41%) 1 (0.00%) 18576 (9.08%) 13074

Table 2. Modified GAp Predictor (MGAp) - best predictions

Benchmark HRg Number Prediction Incorrect Incorrect Not Number of
of Accuracy Predictions Branch Taken Replacements
Branches Targets Branches (NR)

sort 9 12601 9441 (74.92%) 2929 (23.24%) 231 (1.83%) 4414 (35.03%) 0

bubble 9 41216 35174 (85.34%) 6042 (14.66%) 0 (0.00%) 10140 (24.60%) 0

matrix 9 21341 20607 (96.56%) 733 (3.43%) 1 (0.00%) 703 (3.29%) 0

perm 45 54819 50321 (91.79%) 2316 (4.22%) 2182 (3.98%) 10862 (9.81%) 0

tower 9 37930 33043 (87.12%) 1305 (3.44%) 3582 (9.44%) 9153 (24.13%) 0

queen 18 38462 31074 (80.79%) 7369 (19.16%) 19 (0.05%) 19181 (49.87%) 0

tree 27 32887 28216 (85.80%) 3547 (10.79%) 1124 (3.42%) 8721 (26.52%) 37

puzzle 9 204527 193579 (94.65%) 10946 (5.35%) 2 (0.00%) 18576 (9.08%) 13

Table 3. Conventional GAp Predictor - 100 entries

Benchmark HRg Number Prediction Incorrect Incorrect Not Number of
of Accuracy Predictions Branch Taken Replacements
Branches Targets Branches (NR)

sort 1 12601 9354 (74.23%) 3027 (24.02%) 220 (1.75%) 4414 (35.03%) 0
sort 9 12601 7924 (62.88%) 4569 (36.26%) 108 (0.86%) 4414 (35.03%) 3390

bubble 1 41216 35166 (85.32%) 6047 (14.67%) 3 (0.01%) 10140 (24.60%) 0
bubble 9 41216 33499 (81.28%) 7717 (18.72%) 0 (0.00%) 10140 (24.60%) 2640

matrix 1 21341 20613 (96.59%) 725 (3.40%) 3 (0.01%) 703 (3.29%) 0
matrix 9 21341 20577 (96.42%) 763 (3.58%) 1 (0.00%) 703 (3.29%) 0

perm 1 54819 36998 (67.49%) 6060 (11.05%) 11761 (21.45%) 10862 (19.81%) 0
perm 9 54819 48188 (87.90%) 2331 (4.25%) 4300 (7.84%) 10862 (19.81%) 0

tower 1 37930 33432 (88.14%) 1419 (3.74%) 3079 (8.12%) 9153 (24.13%) 0
tower 9 37930 32923 (86.80%) 1348 (3.55%) 3659 (9.65%) 9153 (24.13%) 0

queen 1 38462 3033 (78.88%) 8101 (21.06%) 22 (0.06%) 19181 (49.87%) 0
queen 9 38462 26903 (69.95%) 11546 (30.02%) 13 (0.03%) 19181 (49.87%) 7508

tree 1 32887 28027 (85.22%) 3617 (11.00%) 1243 (3.78%) 8721 (26.52%) 0
tree 9 32887 25308 (76.95%) 6400 (19.46%) 1179 (3.59%) 8721 (26.52%) 3890

puzzle 1 204527 192455 (94.10%) 12070 (5.90%) 2 (0.00%) 18576 (9.08%) 0
puzzle 9 204527 182695 (89.33%) 21832 (10.67%) 0 (0.00%) 18576 (9.08%) 15059

Table 4 Conventional GAp versus MGAp

HRg
length

Conventional GAP
Average Prediction
Success Rate (%)

Conventional GAP
Average Prediction
Success Rate (%)

1 83.74 -
9 81.43 85.19
18 74.43 86.03
27 66.15 85.39

Table 5 The behaviour of branch 35 belonging to “perm” benchmark

HRg HRl Taken (%) Not taken (%)
101 10 1680 (67%) 839 (33%)

11101 10 1680 (67%) 839 (33%)
11111101 10 840 (59%) 579 (41%)
01011101 10 840 (76%) 260 (24%)

bubble

75

85

95

1 2 3 4 5 6

K

Pr
e

d
ic

tio
n

A
c

c
ur

a
c

y

MGAp
GAp

Figure 3. MGAp vs. GAp

perm

50
60
70
80
90

100

1 2 3 4 5 6

K

P
re

di
ct

io
n

A
cc

ur
ac

y

MGAp
GAp

Figure 4. MGAp vs. GAp

sort

55

65

75

1 2 3 4 5 6

K

P
re

di
ct

io
n

A
cc

ur
ac

y

MGAp
GAp

Figure 5. MGAp vs. GAp

queens

40

50

60

70

80

1 2 3 4 5 6

K

P
re

di
ct

io
n

A
cc

ur
ac

y

MGAp
GAp

Figure 6. MGAp vs. GAp

tower

75

85

95

1 2 3 4 5 6

K

P
re

di
ct

io
n

A
cc

ur
ac

y

MGAp
GAp

Figure 7. MGAp vs. GAp

tree

60

70

80

1 2 3 4 5 6

K

P
re

di
ct

io
n

A
cc

ur
ac

y

MGAp
GAp

Figure 8. MGAp vs. GAp

puzzle

55

65

75

85

95

1 2 3 4 5 6

K
P

re
di

ct
io

n
A

cc
ur

ac
y

MGAp
GAp

Figure 9. MGAp vs. GAp

Figure 10. MGAp vs. GAp

Averages Figs 3 - 9

60

70

80

90

1 2 3 4 5 6

K

P
re

di
ct

io
n

A
cc

ur
ac

y

MGAp
GAp

