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Abstract Biological neural networks do not
dlow the synapses to choose their own sign:
excitatory or inhibitory. The consegquences of
imposing such a sign-constraint on the weights of the
standard Hopfield associative memory architecture,
trained using perceptron like learning, are examined
in this paper. The capacity and attractor
performance of these networks is empirically
investigated, with sign-constraints of varying
correlation and training sets of varying correlation.
It is found that the specific correlation of the signs
affects both the capacity and attractor performancein
asignificant way.

1 Introduction

Neural networks designed to function as
associative memories are usually based around the
standard Hopfield architecture. It has been known
for some time (Abbott, 1990) that a variety of local
learning rules can produce models with much better
performance than the original rule proposed by
Hopfield. It is also thought that networks that purport
to biological plausibility should adhere to Dale€’s law
(Dale, 1935), which suggests that neurons either
make exclusively excitatory, or inhibitory,
connections. In al the learning rules, mentioned
above, the weights in the resulting network have no
such restriction. However, it has been demonstrated
that for perceptron type learning rules, it is possible
to constrain the signs of the weights, so that they
adhere to Dae€e's law, whilst still producing
convergence on suitable training data. In this paper
we examine the performance of such learning rules
in terms of their capacity and capabilities as effective
associative memories, in relation to random data
with varying degrees of correlation

2 Network Dynamics

All the high capacity models studied here are
modifications to the standard Hopfield network. The
net input, or local field, of a unit, is given by:
h = & w;S; where w; is the weight on the
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connection from unit j to uniti. The dynamics of the

network is given by: the standard update: S¢=Q (h;),
where Q is the heavyside function. Unit states may
be updated synchronously or asynchronously. Here
we use asynchronous, random order updates. A
symmetric weight matrix and asynchronous updates
ensures that the network will evolve to a fixed point.

If atraining pattern g‘u is one of these fixed points
then it is successfully stored. A network state is
stable if, and only if, al the local fields are of the
same sign as the corresponding unit, equivalently the
aligned local fields, h; S, should be positive.

3 Sign Constraints

A possible difficulty with the normal perceptron
learning rule is that weights can (and do) change sign
during the learning process. The biologica
equivalent of this would be for a synapse to change
from excitatory to inhibitory or visa versa. This is
not thought to happen, and indeed Dal€’ s rule (Dale,
1935) states that al the efferent synapses from a
given neuron are al either excitatory or inhibitory.
For a neura network this is equivalent to requiring
that all outgoing weights from a given unit have the
same sign, and this cannot change over time. There
are now known to be exceptions to this picture, so
that, for example, the sign of the synapse may be
determined by properties of the post-synaptic cell
(Wong and Campbell, 1992). A genera sign
constraint mechanism consists of a matrix of signs,
g; = *1, corresponding to each weight in the
network, together with requirement that: g;w; >0.

The sign-bias of these weights is the ratio of positive
to negative weights.

The effect of imposing a sign constraint on every
connection in a standard Hopfield network was first
investigated in 1986 (Sompolinsky, 1986) where it
was shown that the capacity (the ratio of the
maximum number of random patterns that the
network can store to number of units in the network)
only fallsfrom a = 0.14 to a = 0.09, for uncorrelated
patterns. Later Amit et al. (Amit et a., 1989b)
showed that the perceptron learning rule could also
be effective under such a constraint. They also
showed that the theoretical maximum capacity of a
sign constrained network was exactly half that of the



unconstrained version, namely a = 1.0 for signed
netsand a = 2.0 for unconstrained nets (Amit et al.,
1989a). This is a surprising result as the volume of
weight space that the network may use is reduced by
a much higher proportion. They aso showed that
this capacity (for unbiased patterns) is independent
of the particular sign constraint used. However the
presence of correlated training data will make the
capacity of the network sensitive to the specific sign-
bias.

Viswanathan (Viswanathan, 1993) studied the
special case of networks which strictly adhered to
Dale's rule, so that al the outgoing weights at a
given neuron had the same sign, "i,i¢ gj = G-
The results showed that the theoretical capacity of
such networks was aways greatest when the number
of excitatory and inhibitory neurons was equal,

(gi i ) = 0. Moreover when the training data becomes

increasingly correlated the theoretical capacity
increases, so that with the optimal sign constraint
((gij) = Q) theinitial capacity for unbiased data of a
= 1.0 would increase as the data correlation
increased.

The dynamics of the network is also affected by
the sign bias. Wong and Campbell (Wong and
Campbell, 1992) showed that in a diluted network,
with any sign constraint that had a non-zero bias of
positive or negative weights, developed a new form
of attractor: the uniform state (all +1/-1). As the
sign-bias increases then the uniform state becomes
progressively more likely to attract other states. It is
likely that this behaviour would extend to fully
connected networks, since for example, in a network
with positive weights only, the energy function
E{S}=-28 wSS. will have aglobal minima at

i
the uniform, +1, state. A consequence of the
increasing influence of the uniform attractor could be
to decrease the attractor basin size of the stored
patterns.

1.1 LearningRules

In the late 1980s it was demonstrated that
perceptron like learning could be applied to
associative memory networks to produce much
higher capacity than the basic model. In fact as
Gardner (Gardner, 1988) showed a Hopfield type
network of N units could store up to 2N uncorrel ated
patterns, with this optimal capacity increasing for
correlated patterns. Learning rules of this type are
designed to drive the aligned local fields of patterns
in the training set over a threshold value, T. As
shown in Section 2 above, a necessary and sufficient
condition for the training patterns to be learnt is that
T is non-negative, and often, for ease of training, a

value of 1 (or even 0) is taken. Nevertheless
increasing T may improve the attractor performance
of the network (Abbott, 1990). Some care must be
taken though, since if we consider a network in
which al the training patterns are stable, that is
hg >T for al patterns €, and units, i, then any
uniform, upward scaling of the weight matrix will
increase the aligned local fields, but will obviously
not increase the attractor performance. In fact the
optimal attractor performance is achieved when the
threshold is maximised with respect to the size of the
weights. For this reason the relevant characterization
is the normalised stability measure, defined as:

vi= Dl\/%ll- where W, is the incoming weight vector to

unit i. The minimum of all the y, therefore gives a
measure of the likely attractor performance (Kepler
and Abbott, 1988) and wetakek =min(y ).
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Perceptron learning for training these networks
was proposed by Diederich and Opper (Diederich
and Opper, 1987), who denoted the method local
learning (LL). As the units in the network are
treated independently the resulting weights are not
symmetric. However Gardner (Gardner, 1988)
showed that symmetry could be maintained if weight
changes to w; were always mirrored by changes to

wj; . Surprisingly this does not decrease the capacity

of the network (Nardulli and Pasquariello, 1991),
and we denote this rule as symmetric local learning
(SLL).

Amit et a (Amit et al., 1989b) suggest how a
learning rule based on standard perceptron learning
can be modified to comply with a particular sign
constraint. The idea is straightforward: whenever a
weight change is proposed that will result in a
violation of the sign constraint, the change is not
made. Specifically, given a particular sign-bias,
g; = *1, and an initialisation of zero weights the
Signed version of LL, Sgned-LL, can be formally
stated as:

Repeat until all local fields are
correct

Set the network state to one of the EgP
For each unit, i, in turn:

Calculate hPEP. If this is less than
T then change the weights to unit i

PP
Wﬂ::Wij +EIpEJ

N
the resulting weight neets the sign
constraint, g;wg>0, otherw se |eave
t he wei ght unchanged

according to: whenever

Of course weight symmetry can aso be
maintained for signed networks, by first requiring
that the sign constraints are symmetric, g;; = g;; and



secondly by using SLL modified to adhere to the
sign constraint, as above. This learning rule is here
denoted as Sgned-SLL. The only change in the
above algorithm is that the weight change is now
given by:

Ps-P p
55 WE =wji +EL§L

Asiswell known, normal perceptron learning

will converge on a solution, if one exists, since the
weight changes always move the weight vectors
towards ones that embed the training vectors. With
the sign constrained version it is also possible to
show (Amit et al., 1989a) a similar result.
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4 Analysing Performance

We use, R, the normalised mean radius of the
basins of attraction (Kanter and Sompolinsky, 1987),
as a measure of attractor performance in these

networks. It isdefined as: R= <<i—:1h>> where m,

is the minimum overlap an initial state must have
with a fundamental memory for the network to
converge (in the sense described above) on that
fundamental memory, and m, is the largest overlap
of the initial state with the rest of the fundamental
memories. The angled braces denote a double
average over sets of training patterns and initial
states.

As one of the learning rules used here can produce
non-symmetric weights it is interesting to examine
the symmetry of the weight matrix that results.

To this end the symmetry measure of Krauth,
Nadal and Mezard (Krauth et al., 1988) was applied
to the resulting weight matrices. It is defined as:

_‘é'wijwji
o= "'é = For a symmetric matrix this takes the
U]
]
vaue +1. For an anti-symmetric matrix it takes the
value —1 and for a random set of weights it will be
roughly zero.

5 Results

In the following tests randomly created training
sets are used. Correlation within the training sets is
varied by biasing the patterns: the bias of a training
set is the probability that an individua bit in a
pattern is +1, so a bias of 0.5 corresponds to
uncorrelated data.

5.1 Capacity

The first set of results measures the capacity of
signed networks trained using Signed-LL, varying

both the bias of the training sets, and the weight
sign-bias. The actual capacity can only be estimated;
an incremental search was undertaken for the first
point a which the network failed to learn five
different sets of random patterns. The highest
loading for which this was possible was taken as the
capacity of the network.
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Figure 1: Capacity of 100 unit networks, trained
using Signed-LL, with varying degrees of Sign Bias
and with different correlations within the training
sets (data-bias 0.5t0 0.9).

In Figure 1 it can be seen that when the patterns
are not correlated (data-bias = 0.5) the capacity is
independent of the specific sign bias, as expected.
However this capacity is significantly less than the
theoretically predicted one of 100 patterns in a 100
unit network. As the training sets become more
correlated, an increasing sign bias causes the
capacity to fall considerably. Thisisin accord with
the theoretical prediction of  Viswanathan
(Viswanathan, 1993) for the special case of networks
that adhere to Dale’s law. The exception is with
highly correlated patterns (data-bias = 0.9) where
capacity is very low whatever the sign bias. Itisalso
noteworthy that the networks can withstand some
bias in the signs: with these networks capacity was
maintained reasonably up to asign bias of 0.8.

The second of Viswanathan's theoretical
predictions, that increasing correlation should
increase capacity is however, not confirmed for the
generd sign bias studied here.

5.2 Basins of Attraction and Symmetry of
Weights

Here the mean normalised radii of the basins of
atraction, R, associated with fundamental memories
is estimated. The minimum of the normalised
stability factors, k, and the symmetry of the weights
s, is also reported. All three sets of results are with
15 random patterns in 100 unit networks, with results
averaged over 50 runs. This loading is chosen as, in
most cases, it is well within the capacity of the
networks. Considering the results in Table 1, where



it can be seen that the signed networks show
progressively poorer performance (R values) as the
sign of the weights becomes more correlated. This
confirms the increasing importance of the uniform
attractor, as the sign of the weights become similar.
However for each sign-bias the k values of each type
of network are very similar so that the normal
relation between R and k is broken; we have never
come across this behaviour in this type of network
before.

It is aso interesting to note that the non-
symmetric version of the signed nets, Signed-LL,
performs better than the symmetric version, Signed-
SLL. Normally the symmetric weight models are
preferred, as they have simpler dynamics, and it is
particularly unusua that networks with a relatively
low degree of symmetry (s = 0.41), asin the case of
the 0.50 sign-bias version of Signed-LL should
perform so well.

As the sign bias increases the weights become
progressively more symmetric, so that at a Sign-Bias
of 1.00 the weights are very nearly symmetric. s =
0.95. Thisisnot unexpected: asthesign bias of the
weights increases the more likely it is that two
weight pairs,w; and wj;, will have the same sign
and can therefore take similar values.  For
comparison the unrestricted learning rule SLL isaso
included and it can be seen that it attains a k value
roughly twice that of the signed networks. Thisisin
accord with the theoretical prediction: for any given
kappa the maximum theoretical capacity of a signed
net is half that of its unsigned counterpart (and vice-
versa)

Network Sign-Bias R k S

0.50 0.78 0.99 0.41

Signed-LL 0.75 052 | 098 | 054

1.00 0.23 1.00 0.95

0.50 0.65 0.95 1.00

Signed-SLL 0.75 0.39 0.95 1.00
1.00 0.20 0.94 1.00

SLL 0.96 1.84 1.00

Table 1: Uncorrelated Data (bias 0.5). Attractor
Performance, R, k and s for three different types of
network. Each result isfor 100 unit networks trained
with 15 patterns averaged over 50 runs.

6 Conclusions

Complete freedom in assigning weights to
connections may not be an adequate model of
biological systems, where amongst other constraints,
connections may be only excitatory or only
inhibitory. The proportion of signed to unsigned
weights in a network, its sign-bias, may affect the
behaviour of the network. One of the important

results here is that the actual capacity of a sign
constrained network is a lot less than the theoretical
maximum.  The presence of correlation in the
training data decreased the capacity, contrary to both
the behaviour of unsigned nets and the theoretical
prediction of Viswanathan (Viswanathan, 1993).

The degree of correlation in the signs of the
weights was shown to affect the dynamics of the
trained networks, so that the best attractor
performance (R values) was attained with neutral
sign correlation, where the uniform attractor was not
significant. It was also observed that with sign
constrained networks, the normal static measure of
likely performance, the smallest normalised stability
measure, was not a good predictor of performance.

The specific sign bias of these networks is
important in attaining good performance and it
suggests that in biologica systems the ratio of
excitatory to inhibitory synapses will not be
accidental.
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