
 

   
AbstractData in most of the real world applications are 

high dimensional and learning algorithms like neural 
networks have problems in handling high dimensional data. 
However, the Intrinsic Dimension is often much less than the 
original dimension of the data. Here, we use a fractal based 
method to estimate the Intrinsic Dimension and show that a 
nonlinear projection method called Curvilinear Component 
Analysis can effectively reduce the original dimension to the 
Intrinsic Dimension. We apply this approach for 
dimensionality reduction of the face images data and use 
neural network classifiers for Gender Classification.  

 
Index TermsCurvilinear Component Analysis, 

Dimensionality Reduction, Gender Classification, Intrinsic 
Dimension, Principal Component Analysis. 

I. INTRODUCTION 
High dimensional data usually contain redundancies and 
may have many irrelevant variables. Classifiers like neural 
networks may need huge networks, with many free 
parameters, to cover the high dimensional data. Networks, 
on such datasets, even if successfuly trained, often perform 
badly on their test sets. This bad generalization may be due 
to the large number of free parameters representing 
irrelevant information. To learn relevant information from 
such datasets, a large number of datapoints would be 
needed, which is often impractical, and the training time 
needed for learning also increases to a great extent. This 
problem with high dimensional data is often referred in the 
literature as “curse of dimensionality” [1].  
The intrinsic dimension which is the true dimension, of the 
data may be much smaller than the original data dimension. 
The problem with high dimensional data can be 
circumvented by reducing the data to its Intrinsic 
Dimension.  
Principal Component Analysis (PCA) [2], [3] and 
Independent Component Analysis (ICA) [4] are linear 
projection methods and are the most popular statistical 
methods for dimensionality reduction. Being linear 
methods, they work perfectly well on the linear data. 
However real world data are often nonlinear, in which case 
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linear techniques are not appropriate. Here, we will use a 
powerful recent nonlinear projection method, Curvilinear 
Component Analysis (CCA), for dimensionality reduction 
and show that it is possible to reduce the data to its Intrinsic 
Dimension. We apply this technique on face images data 
and use two classifiers, Multi Layer Perceptron (MLP), and 
Support Vector Machine (SVM) with a linear kernel, for 
Gender Classification. 

II. INTRINSIC DIMENSION 
Intrinsic Dimension (ID) can be defined as the minimum 
number of free variables required to define the data without 
any significant information loss.  
Due to correlations among the data, linear and nonlinear, a 
D dimensional data may actually lie on a d dimensional 
manifold (D > d) and the ID of such data is said to be d. For 
example a plane embedded in a three-dimensional space, as 
shown in Fig. 1(a) has an ID of 2, as two axes are linearly 
dependent. Fig. 1(b) shows the well known three 
dimensional horseshoe data distribution. However any 
point in the data can be defined by a linear axis and a 
curvilinear axis, indicating that it’s ID is 2. 

 
Fig. 1. (a) A two dimensional plane embedded in a three dimensional 
space has an ID value of 2. (b) Three dimensional horseshoe data 
distribution with an ID value of 2. 

A. ID Estimation 
Dimension reduction algorithms, reduce the data to a user 
defined dimension but do not inform about the number of 
dimensions the data should be reduced to. ID estimation 
can be a prior step to dimensionality reduction. There are 
few methods in the literature, for estimating the ID, which 
are mainly fractal based. As the name suggests a fractal 
dimension can be a non integer value. Here, we use a 
fractal based dimension called Correlation Dimension [5]. 
This method assumes that the data is spatially correlated 
and a measure of this property is called the Correlation 
Integral and can be calculated by (1). 
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Where N is the number of data points, l is the length 
variable and X

jid ,  is the Euclidean distance between points 

iX  and jX  in dataset X. The idea is that in a d dimensional 
dataset, the total number of pair wise points closer to each 
other than length l is proportional to l raised to d. From this 
assumption the Correlation Dimension d can be calculated 
from (2). 
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The above equation can be approximated by calculating the 
slope of the graph plotted of the logarithmic values of the 
Correlation Integral and length l. 
Fig. 2(a) shows the Correlation Dimension plot of a 2000 
data point horseshoe distribution. The correlation 
Dimension shown in Fig. 2(b) is the slope of the linear part 
of the curve shown in Fig. 2(a), and is calculated at 1.8768. 
 

 
Fig. 2. (a) Correlation Dimension plot of the horseshoe data. (b) The 
Correlation Dimension is calculated as the slope of the linear part of the 
curve. 
 
Accurate ID estimation for most real world data, including 
our face images data, is difficult because of the availability 
of only relatively few data points and noise in the data. 
However a rough estimation of ID can be done by the 
above method. Subsequently a few dimensions near to the 
estimated ID can be tried and the dimension which gives 
the best result can be considered as the true dimension of 
the data. 

III. DIMENSIONALITY REDUCTION 
Many techniques for dimensionality reduction have been 
proposed in the literature. However, Principal Component 
Analysis (PCA) and recently Independent Component 
Analysis (ICA) are the ones mostly used. PCA, especially, 
is a well known technique in the field of Face Recognition 
[6], [7]. These are linear techniques and look for linear 
dependencies in the data. They work perfectly on the data 
shown in Fig. 1(a), but fail on the data shown in Fig. 1(b). 
Nonlinear methods such as Nonlinear Multidimensional 
Scaling [8] and Sammon’s Nonlinear Mapping [9] have the 
ability to reduce the dimensionality of nonlinear data. 
However, these methods suffer from huge computational 
costs and the inability to unfold strongly nonlinear data 
[10]. We use a recent algorithm called Curvilinear 
Component Analysis (CCA) proposed by Demartines and 
Herault [10], which overcomes some of the shortcomings 
of the other mentioned methods and has the ability to 
reduce the dimensionality of strongly nonlinear data. 

A. Curvilinear Component Analysis 
The structure of the CCA network consists of two layers, 
the first one of which performs vector quantization on the 
dataset and the second layer called the projection layer 
performs a topographic mapping of the structure obtained 
by the vector quantization layer. The projection layer is a 
free space, which takes the shape of the submanifold of the 
data.  
While dimensionality reduction methods reduce the 
dimension of the data, vector quantization methods reduce 
the number of data points. The main purpose of vector 
quantization in CCA is to reduce the computational cost. 
As our face images dataset is relatively small (400 faces), 
we do not perform vector quantization and hence we 
discuss, here, only the projection part of the CCA. 
The idea of CCA is to preserve distances in the input and 
output spaces; all the possible distances between points in 
the input space should match the respective distances in the 
output space. However, preservation of larger distances 
many not be possible in the case of nonlinear data, as a 
global unfolding of the manifold is required to reduce the 
dimension. In this case, it is important that at least local 
(smaller) distances should be preserved. For this, CCA uses 
a neighbourhood function which ensures the condition of 
distance matching is satisfied for smaller distances while it 
is relaxed for larger distances. Preservation of smaller 
distances (local mapping), may then lead to the stretching 
of larger distances (global unfolding). 
The projection layer of CCA minimizes an error function 
which is given as  
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Where X

jid ,  and Y
jid ,  are the Euclidean distances between 

points i and j in the input space X and output space Y 
respectively. ( )Y

jidF ,λ  is the neighbourhood function, 
selected such that it favours smaller distances over larger 
ones. Minimizing the error function with respect to the 
point iY  in the output space by a normal stochastic gradient 
would give the following update rule. 
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)(tα , the learning rate, and the neighbourhood function 

( )Y
jidF ,λ  can be time varying. 

The stochastic gradient update method of (4) can be 
conceived as selecting a point Yi in the output space, while 
the remaining points are pinned. The selected point is 
moved (updated) according to the average influence of all 



 

 the pinned points. This method of updating has the 
following drawbacks [10]. 

• The computational cost is of the order of O(N2) as 
all the possible N(N-1)/2 distances need to be 
calculated at each time step. 

• The sum of all influences may lead to an 
averaging effect, which leads to a small update 
amount resulting in slow convergence. 

 
For these reasons CCA uses a different update method, 
where the selected point is pinned while the remaining 
points are moved according to its influence. Then, by 
ignoring the derivative part of (4), the update rule of CCA 
can be written as: 
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The algorithm for projection of the training data can be 
summarized as follows. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mapping of a new point (test data) from the input space X 
to the output space Y, in CCA, involves reducing the error 
function of (3) and is iterative in the same sense as the 
actual learning process. However, the update rule is the 
stochastic gradient of (4) without the derivative part. The 
algorithm for projecting a new point can be summarized as 
follows. 
 
 

 

 

 

 

 

 

 
 

We use the first few variables obtained by the PCA 
projection, for initialization of the points in the output 
space. This initialization, rather than a random one, induces 
some prior information about the submanifold of the data. 
The learning rate and the neighbourhood width are 
calculated as an exponential decay. 

B. Projection Evaluation 
The quality of a projection can be evaluated by the “dy-dx” 
representation [10]. It is a plot of all the possible distances 
in the input space, dx’s, versus their respective distances in 
the output space, dy’s. For a linear projection the “dy-dx” 
plot should be linear. Fig. 3(a) shows the projection of the 
plane in a three dimensional space, of Fig. 1(a), in a two 
dimensional space. This “dy-dx” plot, shown in Fig. 3(b) 
indicates a linear projection as the dy’s and dx’s are 
proportional at all scales. However, for a nonlinear 
projection a complete distance match at all scales may not 
be possible. Fig. 4(a) shows the projection of the horseshoe 
data, of Fig. 1(b), in a two dimensional space. The 
projection is nonlinear with only small dy’s matching dx’s, 
shown in Fig. 4(b). Unfolding can be observed as (dy > dx) 
occurring for larger distances. 
 

 
Fig. 3. (a) Projection of Fig. 1(a) from a three dimensional space to a two 
dimensional space by CCA (b) The “dy-dx” representation indicates a 
complete linear projection with no unfolding. 

 
Fig. 4. (a) Projection of the horseshoe data of Fig. 1(b) from a three 
dimensional space to a two dimensional space by CCA (b) The “dy-dx” 
representation indicates a nonlinear projection with unfolding (dy > dx) 
occurring at higher scales. 

IV. GENDER CLASSIFICATION 

A. Datasets 
Two different datasets are used. The first one consists of 
100 distinct adult, frontal face grey scale images (50 male 
and 50 female). The face images are from the following 
databases: AR [11], FERET [12], and JAFFE [13]. The 
dataset consists of faces of different races and age groups, 
taken under different lighting conditions. Some examples 
are shown in Fig. 5. 
 

Calculate the Euclidean distances 
between all pairs of points in the 
input space. 
Initialize the points in the output 
space randomly or using PCA. 
Initialize epoch t=0 
For each epoch t, 
Begin 
  Calculate α(t) and λ. 
  For each point jY  in the output   

  space, 
  Begin 
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  End 
  Increment t 
End 

Calculate the Euclidean distances 
between the new test point and all 
the training points. 
Initialize the test point in the 
output space randomly or using PCA. 
Initialize epoch t=0. 
For each epoch t, 
Begin 
  Calculate α(t) and λ.          
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  Increment t 
End



 

 
Fig. 5. Examples of the raw face images of dataset1 
 

Taking the midpoint of the two eyes as a reference point a 
60 × 90 part is extracted from each of the 128 × 128 face 
images. Histogram equalization is applied on the extracted 
images to normalize for different lighting conditions. Some 
of the extracted and histogram equalized faces are shown in 
Fig. 6. The dimensionality of this dataset is 5400. We refer 
to this resultant dataset as dataset1. 

 
 

 
Fig. 6. The first row faces are the 60 × 90 extractions of the original 128 × 
128 face images. The second row shows face images after histogram 
equalization. 
 
The second dataset, a much larger dataset, was used by Sun 
et al. [14]. This dataset consists of 400 adult frontal face 
grey scale images (200 male and 200 female) each with 100 
× 100 resolution. All face images were warped to the same 
scale, orientation and position, by geometric alignment of 
centres of the eyes and corners of the mouth. Histogram 
Equalization was then applied on the resultant images. The 
dimensionality of this dataset is 10000. We refer to this 
dataset as dataset2. 

B. Dataset1 
This dataset is randomly divided into 5 subsets, with each 
subset having 80 (40 male and 40 female) for training and 
20 (10 male and 10 female) for testing. The test sets are not 

overlapped with their respective training sets and other test 
sets. 
Intrinsic Dimensionality of this dataset is calculated using 
the fractal method discussed in Section II.A. As stated 
earlier, ID estimation of real world data is difficult. Fig. 
7(a) shows the Correlation Dimension plot for dataset1. As 
the plot is not linear like the plot of the horseshoe data 
shown in Fig. 2, we select different intervals and measure 
the slope of the linear fit of that interval. The ID values 
from these plots of different intervals are different; the ID 
estimation of the plot in Fig. 7(b) is 7 while it is 11 in both 
Fig. 7(c) and 7(d). We select the worst case dimension 11 
as the Intrinsic Dimension of the dataset1. 
 

 
Fig. 7. (a) The Correlation Dimension plot for dataset1. The ID estimation 
varies at different intervals. The interval taken in (b) gives ID as 7, while 
(c) and (d) gives ID as 11. 
 
As the ID value of 11 selected for this dataset can be 
considered as only a rough estimation, we tried different 
dimensions around this value.  
We use two classifiers, a MLP and a SVM with a linear 
kernel (Other kernels like Radial Basis function and 
Polynomial function are tried, but linear kernel produced 
better results). The average error rates over the 5 sets on 
this dataset, for different CCA dimensions are shown in 
Table I. The error on CCA data with 6 dimensions was 
quite high with both MLP and SVM and the error went 
down as the dimension is increased. The minimum 
dimension with optimum result is 14. The “dy-dx” plots of 
the CCA projections, shown in Fig. 8 can explain the 
results of Table I. Fig. 8(a) shows CCA projection to 6 
dimensions. The plot is distorted, with distance linearity 
occurring only at very small distances, indicating a bad 
projection. The projection quality improves as the 
dimension is increased. Fig. 8(d) and 8(e) with CCA 
projections to 14 and 16 dimensions respectively, has 
distance linearity occurring at larger distances. 
 

TABLE I 
AVERAGE ERROR RATES OVER 5 TESTSETS OF DATASET1, WITH 

DIFFERENT CCA DIMENSIONS 
 

Method MLP (%) SVM (%) 
CCA-6 40 43 
CCA-8 31 28 

CCA-10 31 24 
CCA-12 28 24 
CCA-14 23 17 
CCA-15 26 17 
CCA-16 25 20 
CCA-18 26 19 



 

 
Fig. 8. The “dy-dx” plots of CCA projections to (a) 6 dimensions (b) 8 
dimensions (c) 10 dimensions (d) 12 dimensions (e) 14 dimensions (f) 16 
dimensions. Projection to 6 dimensions is more distorted with only few 
starting small distances being linear. The projection quality improves as 
the dimension is increased. 
 
For comparision, we tried classification on data obtained by 
PCA reduction. For an N data point dataset, there will be  
N-1 meaningful Principal Components. More details can be 
found in [6]. As this dataset has 80 faces there will be 79 
meaningful principal components. However the first 67 
components accounted for 95% of the total variance of the 
data. By projecting the data onto these 67 components we 
were able to reduce the 5400 dimensional data to a 67 
dimensional data. We refer to this data as PCA-67 data. We 
also tried classification on the actual data, without any 
dimensionality reduction, and we refer to this data as RAW 
data. Table II shows that both dimensionality reduction 
approaches produced better results than the RAW data, 
with PCA-67 faring better than CCA-14. For comparison, 
another PCA reduction to 14 dimensions is obtained, by 
projecting the data onto the first 14 components. We refer 
to this as the PCA-14 data. The classification in Table II 
shows that PCA-14 performance is worse than that on the 
RAW data.  The “dy-dx” plots of PCA-67 and PCA-14 data 
shown in Fig. 9 explains their performance. The PCA-14 
plot, in Fig. 9(b), shows mismatch of distances at all scales.  
It can also be seen, from Table II, that the SVM gave a 
better classification than the MLP. 
 

TABLE II 
AVERAGE ERROR RATES OVER 5 TESTSETS OF DATASET1 

 
Method MLP (%) SVM (%) 

RAW 30 27 
PCA-67 19 12 
CCA-14 23 17 
PCA-14 34 32 

 
Fig. 9. The “dy-dx” plots of PCA projections to (a) 67 dimensions (b) 14 
dimensions. The plot is distorted for 14 dimensions with nonlinearity of 
distances at all scales, while the plot for 67 dimensions is mostly linear. 

C. Dataset2 
This dataset is divided into 5 subsets with each subset 
having 320 faces (160 male and 160 female) for training, 
50 faces (25 male and 25 female) for testing, and 30 faces 
(15 male and 15 female) as a validation set. The validation 
sets are used for stopping criteria for the training of the 
MLP. 
A rough ID estimation was performed, similar to the 
process for dataset1. The ID is measured as approximately 
14. Again different CCA dimensions are tried as shown in 
Table III. The PCA gave 273 components accounting for 
95% of the total variance of the data. The projection of the 
data onto these 273 components resulted in a 273 
dimensional data. We refer to this data as PCA-273. Table 
III shows the average error rates over 5 testsets. It can be 
seen that the average error rates for CCA above 10 
dimensions is similar, however the minimum dimension 
with optimum result is CCA-12. The performance of the 
PCA-273 is similar to that of CCA-12. There is not much 
difference in the classification performances of the MLP 
and SVM. 
 
 

TABLE III 
AVERAGE ERROR RATES OVER 5 TESTSETS OF DATASET2 

 
Method MLP (%) SVM (%) 
PCA-273 6.55 6.25 
CCA-6 13.75 11.25 
CCA-8 9.5 9.25 
CCA-10 8.25 8 
CCA-12 6.75 7 
CCA-14 6.75 7.5 
CCA-16 6.5 7.5 
CCA-18 8.25 7 
CCA-20 8.75 7.5 
CCA-22 7.75 7.5 

 

V. DISCUSSION 
PCA projection to account for 95% of the total variance of 
the data resulted in 67 dimensions for dataset1, while it 
resulted in 273 dimensions for dataset2. As the number of 
data points increases, the number of such PCA dimensions 
also increases. This, however, does not necessarily mean 
that the ID also increases, and our results show similar ID 
estimation for both datasets. CCA is able to successfully 
reduce the original dimension to the ID for both datasets. 
If the “dy-dx” plot of the CCA-14 of dataset1, Fig. 8(e) is 
considered, the projection can be seen as reasonably linear, 
with no strong unfolding (dy > dx). The larger distances in 
the original dataspace are replicated with good fidelity in 
the output space. This indicates the projection of the data in 



 

a 14 dimensional space by CCA is not strongly nonlinear. 
In contrast the PCA projection in a 14 dimensional space is 
highly distorted as shown by Fig 9(b). This shows the 
inability of the PCA to deal with even slight nonlinearities.  
CCA favours smaller distances over larger ones. It can be 
seen in all the “dy-dx” plots of Fig.8, that smaller distances 
in both input and output spaces are matched. Even in a 
distorted plot of Fig. 8(a), there are few small distances that 
are matched. PCA projections, in contrast, seem to favour 
larger distances. The “dy-dx” plot of PCA projection in a 
14 dimensional space, shown in Fig. 9(b), shows distortion 
at all scales. However, the smaller distances are more 
distorted than the larger distances. Even in a fairly uniform 
PCA projection in a 67 dimensional space, shown in Fig. 
9(a), there is a slight mismatch in smaller distances. This 
may suggest a bad local mapping by PCA. 
 
Based on our experiments, we can make the following 
conclusions: 

• The ID of our face images data is much lower than 
their original dimension. 

• Linear methods like PCA are unable to effectively 
reduce the nonlinear data to its ID, whereas 
nonlinear methods like CCA can effectively do 
this. 

• Classification in the ID space works. 
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