Connectionist models investigating representations
formed in the sequential generation of characters
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This paper considers the results of three different methods of encoding
visual and motor representations of single sequential character
production using three different architectures for the simulation of
perceptual and motor processes. Examination of such processes through
neural net modelling of the generation of handwritten characters
promises to be a fruitful avenue of exploration as the induced
representations of the models can be examined. The results of this
analysis showed that both spatial and temporal similarity were
important in these representations. Similar results have been shown to
be true for actual representations in the motor cortex.

1. Introduction

Perception and action are closely connected. In recent psychological literature their
relationship has developed to the point where they have become inseparable partners
in cognitive function (Glenberg 1997). The mode of interaction between these two
systems however remains unclear. Prinz (1997) discusses the ‘common-coding
approach’ which advocates that perception and action share common codes and can
communicate directly with each other, as opposed to the classical viewpoint that
communication takes place via a translator. Hikosaka et al (1999) have proposed that
two independent systems (which have parallel processes for the acquisition of spatial
and motor co-ordinates) compete and interact during the learning of sequential
movement. An example of such a sequential movement is handwriting.

In order to successfully generate a character both sequential (the order of character
segments) and directional information (the direction of drawing character segments)
is required. Such information requires representation at a cognitive level. From a
motoric viewpoint a representation is required in the form of a movement plan (such
as a generalised motor program) which encompasses information concerning the
entire movement trajectory (including intermediate pen-up movements in the case of
generating discontinuous character forms). From a visual perspective a representation
is required in which sequential and directional information is encoded (such as the
sequence of pen strokes), but without the explicit encoding of intermediate
movements, (although it is possible for this information to be inferred).



To investigate the interaction of visual and motor representations in character
generation it is necessary to define such representations within an encoding system
that can account for the information held within the representations, and investigate
the consequences of the use of different encoding approaches to modelling sequential
generation. This paper investigates the internal representations formed as a result of
using three different encoding strategies, which correspond to the perceptual and
motor experience of character generation.

2. Models

2.1 Architectures

Representations were investigated using three Simple Recurrent Network (SRN)
architectures, used because they have memory thus enabling generation of sequences.
Networks used were the Elman, Jordan and a hybrid architecture, in which features of
the first two were combined (and are displayed below in figure 1). All three
architectures were investigated, as it was not clear which would be the most
appropriate.
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Figure 1: shows the (a) EIman network architecture (b) Jordan network architecture and (c) the
hybrid network architecture used in the simulations. Black arrows indicate full connectivity
between layers and grey arrows indicate one-to-one connections for the purpose of copying
activation from the hidden/output layer to the context layer. Circular arrows indicate layer in
which units have self-connections.

2.2 Output Encoding

All simulations were attempted using three forms of encoding. Output sequences
forming letter shapes were generated as a result of specific single unit activation in
the input layer. The size of the input layer corresponded to the number of sequences
in the training set. Each letterform sequence and input unit was numbered. Activating
the corresponding unit to the desired sequence generated an output sequence. This
can be seen in figure 2. Output was represented on a 4 x 5-unit grid for networks with



a visual representation (see sections 2.2.1 and 2.2.2). Output for networks using a
motor representation (see section 2.2.3) was in the form of two groups of 5 units, one
group representing the x-axis and the other the y-axis of a co-ordinate system.

Figure 2: shows an example of the network
attt ! architecture for an Elman net using a segment-

by-segment encoding. Inactive units are shaded.
It can be seen that activating a single unit in the
input layer triggers a specific sequence.
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2.2.1 Bit-by-bit (visual representation)

This encoding was inspired by Kosslyn et al (1988) and sequentially activates units in
the output layer with the previous unit of activation (previous context) remaining
active in the next step of the sequence. The resulting visual display emulates the
gradual generation of an image (see figure 3) in which sequence and direction of
production of the letter shape can be perceived and intermediate movements can be
inferred.

Figure 3: shows the output of a

single sequence forming a letter L.
Each square represents a unit on the
4 x 5 output grid. Inactive units are

2 shaded. Activation at the current

to t1 t3
time step is added to that of the
previous time step in order to
generate a complete sequence.

t4 t5 t6 t7

2.2.2 Segment-by-segment (segmented visual target representation)

This encoding activates groups of units, with each group of units representing a letter
segment but giving no directional information. This emulates the act of generating a
character segment by segment. At each time step in the sequence a target segment is
output the previous segment is not included in the current time step.

Figure 4: shows the output of a sequence
forming a letter C. Each square represents

a unit on the output grid. Inactive units are

10 tl 2 10+t1+t2 shaded. For this representation activation
at the current time step does not include
activation from the previous time step. A

concatenation of each time step is shown,
however this is not required output.




2.2.3 Thermometer encoding (movement trajectory representation)

The use of thermometer encoding was in order to encompass some representation of
similarity into the co-ordinate system (Tijsseling and Harnad 1997). Unlike localist
encoding, similar inputs have similar representations. In this case the movement from
one target point to the next incorporates some notion of the direction of movement as
well as the sequence. This form of encoding can account for movement trajectories
(Georgopoulos 1997) as opposed to a visual display of the letterform. For example in
the case of a discontinuous letterform such as X, the entire movement trajectory
includes intermediate pen-up movements to another starting point.

Figure 5: shows the x, y output
sequence for a letter L. These co-

ordinates are plotted on a grid for
clarity. Inactive units are shaded.
This encoding emulates the
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— sequence of target points for

output at t0 output at t1 output at t2 generating a character. Arrows
indicate movement towards the

X O I I I I target point at the current time
y OITTT11 [ | I | step from the previous time step.

3. Experiments
3.1 Training and testing

Training and testing patterns consisted of sequences that (according to the encoding
method) generated a representation of letters C, L, G and J for the networks trained on
bit-by-bit and segment-by-segment encoded patterns. For the thermometer networks
training and testing patterns consisted of letters C, L, Z (continuous letter forms — no
pen-up movement required) and E, F and X (discontinuous letter forms — intermediate
pen-up movements required between segments). Batches of ten networks were run -
each with randomly assigned weights. All networks were trained using the minimum
number of hidden units which would allow consistent and successful learning of the
task.

3.2 Results

All networks were trained successfully, after which they were able to produce
complete sequences correctly. All models produced the same convergence behaviour
and similar representations, when comparisons were made for each type of encoding.
Principal component analysis (PCA) was conducted upon all units of the hidden layer
every 10 epochs of training and upon completion of learning for a random selection of



three runs. An example of a PCA upon completion of training for each form of

encoding is shown in figures 6, 7 and 8.
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Figure 6: shows a 2-D PCA graph
displaying the results of a PCA for a
randomly selected Elman network upon
completion of training, using bit-by bit
encoding. It can be seen that sub-
sequence C is represented within letter
G. Sub-sequence L, however, which has
a different starting point from letters G
and C is not represented within letters C
and G as a sub-sequence.

Figure 7: shows a 2-D PCA graph
displaying the results of a PCA for a
randomly selected Elman network upon
completion of training, using segment-by
segment encoding. It can be seen that
sub-sequence C is represented within
letter G. Also sub-sequence L is
represented within letters C and G.

Figure 8: shows a 2-D PCA graph
displaying the results of a PCA for a
randomly selected Elman network upon
completion of training using
thermometer encoding. It can be seen
that letters E and F, which share the
same starting point share some
representation, however letters C and L
which do not share the same starting
point do not.

In all cases spatial similarity was found to be internally represented. So for example
letters C and G (see figures 6 and 7), where letter C is composed of the first three
segments of letter G, are co-represented. Similarly letters F and E (see figure 8). A
significant difference emerges between the bit-by-bit and thermometer encoding
representations and the segment-by-segment encoding representations. The latter co-
represents any segment independently of where it appears in the sequence of
production. For example letters C and L (see figure 7), where the vertical segment of



letter L appears as the second segment in the sequence forming the letter C, but are
co-represented. However, the other two encodings ensure that the network only co-
represents those sequences which are both temporally and spatially similar, so the C
and L are not co-represented in this case.

4. Conclusions

Neural networks were used to investigate the implications of the task encoding upon
the representations formed. The specific network architecture was not found to be of
importance in terms of performance and representation. When input encoding
provided spatial information only, then the induced internal representations were
based on spatial similarity only. However, when input encoding included temporal
information then the internal representation embodied temporal information too.
These results reflect the strong trajectory specific relationship between spatial and
temporal characteristics of letterforms (Viviani and Terzuolo 1982). Although
providing a simplified model of the representation of sequential movement, these
simulations nevertheless offer an explanation for how serial order and location of
learnt sequences can be represented together in the motor cortex (Carpernter et al
1999). Further modelling work is required in order to determine which representation
can best account for empirical data.
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