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Abstract

Martingales are fundamental stochastic process used to model the concept of fair game.

They have a multitude of applications in the real world that include, random walks,

Brownian motion, gamblers fortunes and survival analysis, Just as commutative integra-

tion theory may be realised as a special case of the more general non-commutative theory

for integrals, so too, we find classical probability may be realised as a limiting, special

case of quantum probability theory.

In this thesis we are concerned with the development of multiparameter quantum stochas-

tic integrals extending non-commutative constructions to the general n parameter case,

these being multiparameter quantum stochastic integrals over the positive n - dimensional

plane, employing martingales as integrator. The thesis extends previous analogues of type

one, and type two stochastic integrals, for both Clifford and quasi free representations.

As with one and two dimensional parameter sets, the stochastic integrals constructed

form orthogonal, centred L2 - martingales, obeying isometry properties. We further ex-

plore analogues for weakly adapted processes, properties relating to the resulting quantum

stochastic integrals, develop analogues to Fubini’s theorem, and explore applications for

quantum stochastic integrals in a security setting.
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Notation

Rn
+ denotes the positive n-dimensional quadrant in Rn, with n ∈ N+.

z = (z1, z2, . . . , zn) represents an element in Rn
+. Each zi ∈ R+.

z ≺ z′ denotes two elements in Rn
+such that zi ≤ z′i for 1 ≤ i ≤ n.

z ≺≺ z′ means that zi < z′i for 1 ≤ i ≤ n.

z ∨ z′ denotes the sup of z and z′.

z ∧ z′ denotes the inf of z and z′.

m
∨
i=1

zi, for zi ∈ Rn
+ represents the sup{z1, z2, . . . , zm}.

m
∧
i=1

zi, for zi ∈ Rn
+ represents the inf{z1, z2, . . . , zm}.
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Chapter 1

Introduction

This chapter introduces the problem that this thesis is concerned with, the motivation

behind the work, and outlines the contents of each chapter in the thesis.

1.1 The Problem

The motivation for this thesis is driven by various objectives. The first of these is a

simplification of the approach taken in developing a theory of quantum stochastic integrals

over Rn
+. The complexity involved can, we feel, be unnecessarily daunting and as such

we develop, in the spirit of John Walsh [139], a simpler, more intuitive approach here.

The second objective is the development of tools required in order to achieve our first

objective and our third objective is the identification and exploration of applications

to which the non-commutative quantum stochastic integrals developed may be applied.

These, in particular, are identified and explored with a view to further development at a

later stage. These objectives are, we feel, important promoting accessibility, encouraging

future student participation with the material. The development of relatively simple

applications, strengthen concepts and further encourage participation.

Quantum based applications developed for qubit based multipartite systems such as the

1



2 CHAPTER 1. INTRODUCTION

BB84 [14, 135], E91 [29] and B92 [9] key agreement protocols, the Deutsch-Josza [23, 24]

algorithm, the teleportation [13] algorithm, Grovers [40] algorithm and Shor’s [100, 101]

celebrated algorithms have achieved considerable gain over their classical counterparts.

Quantum based voting protocols have been developed [51, 52, 71] and the application of

probability [21] to voting schemes has been developed at the classical level. The third

objective in this thesis will lead us to identify quantum based applications of classical

concepts relating to voting schemes, and associated tools from cryptology. In this thesis,

we will consider cyclic like group structures for application to protocols in quantum cryp-

tology. These, together with the representation theorem contained within, initially led to

the development of a Fubini like theorems for multipartite quantum stochastic integrals.

This in turn, led to a redevelopment of multipartite stochastic integrals, initiated by the

work of Barnett, Streater and Wilde in the quantum setting and Ito, Cairoli and Walsh,

Wong and Zakai, and Imkeller in the classical setting. For this presentation we commence

with related background material, and then proceed with an exploration of the nature,

characteristics and relationships that exist between quantum stochastic integrals as the

underlying parameter space Rn
+ varies with n. In the commutative setting the develop-

ment of the Ito [49], Wong-Zakai [15, 139, 141], and [48] Imkeller integrals together with

[58] Stochastic versions of the Fubini Theorem have stimulated research at the quantum

level. At the quantum level developments have involved many researchers, including Hud-

son and Parthasarathy, Streater, Accardi, Lindsay, Sinha and Belavkin. Developments

relating to the Ito [46, 80, 86, 87] and the Wong-Zakai integrals [8, 38, 86, 119, 120, 121]

have taken place at both the Hilbert space level, and at the operator level with Banach,

von Neumann and C∗ Algebras. Developments with multidimensional integrals in a non-

commutative setting have been achieved [47, 50, 108, 109, 110, 111, 112, 113, 114, 117]

together with Fubini related problems [47] and multidimensional integrals on Fock space

[50].
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We proceed in this work, from the geometric setting first introduced by John Walsh [139]

with classical stochastic integrals. These we find have application in the quantum setting,

simplifying concepts previously worked with at an operator or vector based level. Our

primary motivation, is to simplify the approach taken with general quantum stochastic

integrals where the complexity involved can very quickly increase leading to an exploration

of the relationships between different types of quantum stochastic integral over Rm
+ and

Rn
+. Our second objective involves the development of quantum stochastic Fubini like

theorems over multi-dimensional parameter spaces. Finally we develop applications for

quantum stochastic integrals based on the Fock space models presented here.

1.2 Structure for the Thesis

We give a brief overview of each of the chapters.

Chapter 2 is a review of those stochastic operator concepts and theorems that relate

to the work carried out in subsequent chapters. It draws on both classical and quantum

concepts from probability theory, operator theory and non commutative theory.

Chapter 3 describes the standard quantum probability models that we work with in

preparation for our work on quantum stochastic integrals. These include the Clifford

sheet and quasi-free CAR and CCR sheets for generalised settings over Rn
+ with n ∈ N+

Chapter 4 commence with a discussion on irreducible parameter types that form funda-

mental components in the underlying parameter space Rn
+. These underpin the quantum

stochastic integrals developed for the general setting, as analogues of the Itø, Wong-Zakai,

and Imkeller integrals found in commutative stochastic theory. Standard results are estab-

lished including isometry, orthogonality and centred martingale properties. The chapter

concludes with a presentation of the general Representation theorem for the Clifford set-

ting and the quasi-free CAR and CCR over R3
+.

Chapter 5 extends our work on quantum stochastic integral with Fubini interpretations
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of the first, second and third kind, these we believe to be a natural development for the

quantum setting. Each of the forms are related to each other and using this we describe

how they may be applied to the proof for the Representation Theorem over Rn
+, for the

Clifford and quasi-free sheets.

Chapter 6 introduces related applications from security to which we apply a selection

of quantum stochastic integrals. The discussion commences with related concepts from

quantum cryptography, for qubit based multipartite models to the one we have been

working with. The discussion returns to the Fock environment where we describe a cyclic

like quantum stochastic construction which we explore in applications, as proof of concept,

to the Diffie Hellman key agreement protocol and El Gamal algorithm from cryptography.

The chapter concludes with a presentation of applications to quantum voting within a

quantum probability framework in contrast to the models discussed in [51, 71].

Chapter 7 provides a summary of our contribution to knowledge, and offers suggestions

for extending the work presented.



Chapter 2

Stochastic Theory and Related

Topics

2.1 Introduction

This chapter is a review of background material used in subsequent chapters. It includes

random variables, expectation, stochastic processes, conditional expectation, adapted pro-

cesses, weakly adapted processes, filtrations, stochastic base; Lesbegue, Baire and Borel

space; Hilbert space, von Neumann algebras, and C*-algebras.

In developing a probability theory [137], one is initially motivated by traditional exam-

ples; coins, cards, and dice. Sample spaces are established, events (subsets of the sample

space) forming a σ-ring (σ-field), associated random variables dependent upon the sam-

ple spaces and measures of likelihood, location and dispersion applied to event spaces.

Experimental models are abstracted into theoretical models and the discussion embraces

uniform, binomial Poisson, exponential and Gaussian distributions. One initially works

with Riemann integrals, but requirements that ensue with for example, expectation on

random variables such as ‘X = 1 for rationals and 0 otherwise’, force one to employ

5



6 CHAPTER 2. STOCHASTIC THEORY AND RELATED TOPICS

measure theoretic tools: measurable spaces, measurable functions and measures such as

the Lesbegue, Borel and Baire measures [91]. We thus work with probability spaces of

the form (Ω,F , P ), in which Ω denotes a sample space, F denotes a σ field of measurable

events, (subsets) of Ω and P represents a Lesbegue, Borel or Baire probability measure.

From here we may derive a link to Segal’s (commutative) probability gage space and from

there generalise to non-commutative gage spaces employed in a quantum setting, [95].

For further details we defer to [58, 91, 94, 95, 96, 97]

2.2 Probability Spaces, Random Variables and Processes

Definition 1. (Topological Space) [58] Let (Ω �= ∅ be an arbitrary space. A class of

sets F ⊂ Ω is called a topology on Ω if F contains: ∅ and Ω, the intersection of any two

sets belonging to F , and the union of elements from any subset of F .

The pair (Ω,F) is called a topological space. The sets A ∈ F are called open, and the

sets A ∈ Ω with AC ∈ F are called closed.

Definition 2. (Borel Space, Borel Sets, Borel σ - Algebra) [58, 62] Let (Ω,F) be a

topological space. The σ algebra that is generated by the open sets (A ∈ F) is called the

Borel σ - Algebra on Ω. The elements generated are called Borel sets or Borel measurable

sets.

Definition 3. (Random Variable) [62] A Random Variable is defined to be a measurable

function X : Ω −→ R such that ∀ Borel sets B ⊆ R, X−1(B) ∈ F .

Here, it is understood that we may work with the equivalence classes from L0(Ω,F , P )

in preference to the vector space L(Ω,F , P ) of all random variables via the relation f ∼

g ⇐⇒ f = g a.s. [62]. The convergence in probability metric d(f, g) =
∫

Ω
min{1, |f(ω)−

g(ω)|}dP (ω) generates the complete metric space (L0, d), in which L0 = L0(Ω,F , P ) and
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Banach spaces (Lp(Ω,F , P ), ||f ||p = (
∫
Ω
|f |pdP )1/p), for 1 ≤ p < ∞ and (L∞(Ω,F , P ),

ess supω∈Ω|f(ω)|) otherwise, formed via the given norms.

The definition for a random variable [5], extends to measurable functions with n dimen-

sional codomain, X : Ω −→ Rn, n ∈ N+, n ≥ 1.

Definition 4. (Expectation) Let X denote a random variable. The Expectation of

X is defined to be the theoretical analogue of the experimental mean average. For X a

(continuous) random variable we have E(X) =
∫
Ω
XdP . For X a discrete random variable

this becomes E(X) = Σ
ω∈Ω

X(ω)P (X = ω)

Definition 5. (Stochastic Process) A collection of random variables {Xz : z ∈ I} for

some partially ordered index set I, defined on the same Borel space is referred to as a

stochastic process. In general, we work with I ⊆ Rn
+, n ∈ N+.

Stochastic processes may be discrete or continuous. A discrete stochastic process X is

of the form (Xi)i∈I with I ⊆ N+, I generally of the form {0, 1, 2, 3, . . .} may be finite

or countably infinite. A continuous stochastic process is of the form X = (Xi)i∈I with

I ⊆ Rn
+. We note that the partially ordered index set I, is often interpreted as time, a

subset of R+, and rather than I one often encounters the use of T for the index set.

Example 1. (Brownian Motion) [62]. A (standard) Brownian Motion (BM0(R)) is

a Gaussian family B = (Bt)t∈T of random variables with partially ordered index set T ,

satisfying:

a) B0 = 0;

b) E(Bt) = 0, E(BsBt) = min(s, t) for s, t ∈ T ;

c) P{t �→ Bt is continuous on T} = 1

The integral [62]
∫ t

0
BsdBs cannot be realised as a Riemann Stieltjes integral, leading to

alternative stochastic integrals being developed, in particular the Itô stochastic integral.

Other stochastic integrals include the Stratonovich and Skorokhod stochastic integrals.
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Multidimensional stochastic integrals such as the Wong-Zakai, and Imkeller integrals have

been developed. We will be particularly interested in multidimensional analogues of the

Itô, Wong-Zakai, Imkeller and stochastic integrals defined over larger parameter spaces.

Example 2. (Wiener Process) [58] Let P denote a probability measure defined on

Ω = C([0,∞)), (the set of continuous functions on [0,∞)), with respect to which the

canonical process X is a Brownian motion. Then P is called the Wiener measure. The

triple (Ω,F ,P) is the Wiener space, and X is called the canonical Brownian motion or

the Wiener process.

Example 3. (Martingales)1 [89] These may appear in, for example, a medical set-

ting (patient diagnosis), with financial modelling (martingale pricing theory of financial

derivatives) and random walks.

Definition 6. (Polish Space) [58] A Polish space is defined to be a separable topological

space whose topology is induced by a complete metric. (So all Cauchy sequences are

convergent with limits in the space).

Example 4. (Polish Space) [58] Rd, Zd, RN, (C([0, 1], ‖ ‖∞) are examples of Polish

spaces. Closed subsets of Polish spaces are also Polish spaces. Q, with the Euclidean

metric, is not a Polish space.

The following definition and example are given for completeness. They are presented as

examples of different processes. The examples and notation are not employed in subse-

quent discussions.

Definition 7. (Markov Process) [58, 90] Let I ⊂ [0,∞) be closed under addition and

assume 0 ∈ I. A stochastic process (Xt) t∈I is called a time-homogeneous Markov process

with distributions (Px) x∈E , E a Polish Space, on the space (Ω,F) if:

1For a definition of martingale see Section 2.6.
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a) ∀x ∈ E, X is a stochastic process on the probability space (Ω.F , Px)

with Px [X = x] = 1

b) the map κ : E × B(E)⊗I −→ [0, 1] , (x,B) �→ Px [X ∈ B] is a stochastic kernel

c) X has the time-homogeneous Markov property (MP):

∀A ∈ B(E), ∀x ∈ E and ∀s, t ∈ I,, Px [Xt+s ∈ A|Fs] = κt (Xs, A) Px a.s.

Here for every t ∈ I, the transition kernel κ : E × B(E)⊗I −→ [0, 1] is the stochastic

kernel defined for x ∈ E and A ∈ B(E) by

κt(x,A) := κ
(
x, {y ∈ EI : y(t) ∈ A}

)
= Px [Xt ∈ A]

The family (κt(x,A), t ∈ I, x ∈ E,A ∈ B(E)) is also called [58] the family of transition

probabilities of X.

Example 5. (Markov Processes) [26, 69, 99] Classically these may be found in, for

example, random walk theory, queuing theory where they are used to characterise traffic

flow within a network. In a quantum setting they appear in Hidden Variable Theory, in

non-commutative probability theory and with random walks.

Definition 8. (Levy Process) [90] Let X = {Xt}t≥0 denote an Rd valued stochastic

process. Then X is said to be a Levy Process (or process with stationary independent

increments) if it has the following properties:

a) for almost all ω, t → Xt(ω) is right continuous on [0,∞), with left limits on

(0,∞)

b) for 0 ≤ t0 ≤ t1 < · · · < tn, the random variables Yj = Xtj −Xtj−1
,

(j = 1, 2, . . . , n) are independent

c) the law of Xt+h −Xt depends on h, but not on t.

Example 6. (Levy Process) [90] Brownian motion is an example of a Levy process and

Levy processes form examples of a Markov processes.
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2.3 Filtrations and Adapted Processes

Definition 9. (Filtration) [62] A filtration (Fi)i∈I is defined to be an increasing family

(Fi ⊆ Fj : i ≤ j in I) of sub - σ - fields of F .

So Fi1 ⊆ Fi2 ⊆ . . . for all i1 ≤ i2 ∈ I

Definition 10. Stochastic Base [62] For this discussion a stochastic base will denote

the 5-tuple (Ω,F , P, (Fi)i∈I , I) with entries as defined above. It is generally understood

that for a stochastic base F0 contains all P null sets and the filtration (Fi)i∈I is right

continuous, by which we mean that Fi = Fi+ = ∩i<jFj.

Definition 11. (Adapted Process) [62] A process X is adapted to (Fi)i∈I if and only

if ∀i ∈ I, Xi is Fi - measurable.

2.4 i-Filtrations and Weakly Adapted Processes

In our discussion on Fubini’s Theorem (Chapter 5) we will be interested in i-filtrations

and weakly adapted processes. In preparation for this we introduce the concepts for the

parameter space R2
+ of points laying in the positive quadrant of the R2 plane.

Notation 1. Let z denote points (z1, z2) ∈ R2
+. The notation describes the more familiar

points (x, y) in the Cartesian plane, but have the advantage of being straightforward to

extend to the positive n-dimensional plane Rn
+.

Notation 2. [139] Let z ≺ z′ denote points in R2
+ such that z1 ≤ z′1 and z2 ≤ z′2 and

z ≺≺ z′ denote points for which z1 < z′1 and z2 < z′2. For z ≺≺ z′ the point z′ is said to

be forward of the point z.

Notation 3. [139] Let z ∨ z′ denote the supremum of z and z′ and z ∧ z′ denote

the infimum of z and z′. So for R2
+, z ∨ z′ = (sup {z1, z′1}, sup {z2, z′2}) and z ∧ z′ =

(inf {z1, z′1}, inf {z2, z′2}).
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Definition 12. (i - Filtration) [139] Let F1
z denote the field F(z1,∞) = ∨

z′2≤z2
Fz′ with

z′ ∈ I, and F2
z denote the field F(∞,z2). Then an i - filtration (F i

z)z∈I is defined to be an

increasing family {F i
z ⊆ F i

z′ : z ≺≺ z′ in I} of sub - σ - fields of F .

  

 

Z2 

Z1 

Z = (Z1, Z2) 

 

 

  

 

Z2 

Z1 

Z = (Z1, Z2) 

 

 

Fig 1. F1
z (defined for shaded region in left diagram) and F2

z (for right diagram)

We note [15] that F1
z = F1

(z1,z2)
= F1

(z1,z2′) and so is independent of the z2 value.

Likewise, F2
z = F2

(z1,z2)
= F2

(z1′,z2) is independent of the z1 value. For the general case

over Rn
+ we have F i

z = F i
(z1,z2,...,zi,...,zn)

= F i
(z1′,z2′,...,zi,...,zn′) and so is independent of the zj

values, for all j �= i and define

F i
z = F i

(z1,z2,...,zi,...,zn)
= ∨

zj ′≤zj
Fz′ with z′ ∈ I.
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Z1 Z’
1 

Z = (Z1, Z2) 

 

 

Fig 2. F2
z defined for shaded region

Definition 13. (i - Stochastic Base) [62, 139] By an i - stochastic base we mean a

5-tuple (Ω,F , P, (F i
z)z∈I , I) with entries as defined above. It is understood that for a

stochastic base F0 contains all P null sets and the i - filtration (F i
z)z∈I is right

continuous, by which we mean that F i
z = F i

z+ = ∩
z≺z′
F i
z′.

Definition 14. (Weakly Adapted Processes) [139] A process X is said to be weakly

adapted if it is adapted to the field F1
z or F2

z . We note that if a process is adapted to

both fields F1
z and F2

z then it is said to be adapted to Fz.

We note [139] that the above σ-fields are often presented as satisfying the following

three martingale hypotheses:

(F1) z ≺≺ z′ =⇒ Fz ⊂ Fz′

(F2) Fz contains all null sets of F
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(F3) Fz = ∩
z≺≺z′

Fz′.

An additional property (fourth hypothesis) may also be presented is referred to as the

conditional independence property. Let z, z′ ∈ I ⊆ Rn
+,

(F4) Fz and Fz′ are conditionally independent, given Fz∧z′ = Fz ∩ Fz′.

We define conditional independence following our discussion on conditional expectations.

2.5 Conditional Expectations

For conditional expectations we consider the interpretation of a conditional probability

E(χA|B) = P (A|B) =
P (A ∩B)

P (B)

as a ’renormalisation’ of likelihood given a shift of sample space from Ω to the subspace

B. With such a shift follows a corresponding shift in expectation from E(X) = E(X|Ω)

to E(X|B) = P−1(B)
∫
A
XdP , described [62] as ’best estimate’ for X given the

information contained in B. This interpretation extends to sub σ - fields Fz of F in

which E(X|Fz) denotes a ’best guess’ for X given the information in Fz such that

∀F ∈ Fz
∫
F

XdP =

∫
F

E(X|Fz)dP.

Theorem 1. [58] The E(X|Fz) exists and is unique (up to equality almost surely).

The Conditional Expectation Operator E(Xz′ |Fz) is a mapping Xz′ �→ Xz. Existence

follows as a consequence of the Radon Nikodym Theorem.

2.5.1 Conditional Expectations and Projections

The [58, 62] best prediction / estimate is understood to be the

‘F measurable random variable that minimises the L2-distance from X’.
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One can define conditional expectations in terms of orthogonal projections from L2(F)

onto the subspaces L2(Fz) such that

∀F ∈ Fz
∫
F

XdP =

∫
F

E(X|Fz)dP

or equivalently

∀f ∈ L2(Fz)
∫
Ω

XfdP =

∫
Ω

E(X|Fz)fdP.

This view of the conditional expectation establishes it as the ‘F measurable random

variable that minimises the L2-distance from X ’.

For z, z′ ∈ I ⊆ Rn
+, we now return to the concept of conditional independence.

2.5.2 Conditional Independence

Definition 15. (Conditional Independence) [139] Let z and z′ ∈ I. Let X be

bounded and Fz′ measurable. Then the σ-fields Fz and Fz′ are said to be conditionally

independent if

E(X|Fz) = E(X|Fz∧z′)

or equivalently,

E (E(X|Fz)|Fz′) = E (E(X|Fz′)|Fz)

An alternative equivalent definition for conditional independence is the following from

Cairoli and Walsh.

Definition 16. (Conditional Independence) [15]. Let (Ω,F , P ) be a probability

space. Let {Fz, z ∈ R2
+} be a family of sub-σ-fields of F . Then F1

z and F2
z are said to be

Conditionally Independent if for all bounded random variable X and all z ∈ R2
+

E (X|Fz) = E
(
E
(
X|F1

z

)
|F2

z

)
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For Rn
+ we obtain:

E (X|Fz) = E
(
E
(
. . .E

(
E
(
X|F1

z

)
|F2

z

)
| . . . |Fn−1

z

)
|Fn

z

)

2.6 Martingales

Various types of martingale are to be found in the literature, some of which we include

in the following definition.

Definition 17. (Martingales, i-/Weak/Strong Martingales) [57, 62, 139] Let X

denote an L1 process, with associated filtration F . Then X is said to be a(n):

a) Martingale if ∀z ∈ I, Xz ∈ Fz and ∀z ≺ z′, E(Xz′ |Fz) = Xz

b) sub - Martingale if ∀z ∈ I, Xz ∈ Fz and ∀z ≺ z′, E(Xz′|Fz) ≥ Xz

c) super - Martingale if ∀z ∈ I, Xz ∈ Fz and ∀z ≺ z′, E(Xz′ |Fz) ≤ Xz

d) i - Martingale if ∀z ∈ I, Xz ∈ F i
z and ∀z ≺≺ z′, E(X(z, z′] |F i

z) = 0

e) Weak Martingale if ∀z ∈ I, Xz ∈ Fz and ∀z ≺≺ z′, E(X(z, z′] |Fz) = 0

f) Strong Martingale if ∀z ∈ I, Xz ∈ Fz, Xz vanishes on the axes, and

∀z ≺≺ z′, E(X(z, z′] | ∨
1≤i≤n

F i
z) = 0

We note [139] that an i martingale is a stochastic process that possesses the martingale

property in its i’th component.
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Z 

Z1 

Z’ 

 

 

  

 

Z2 

Z’ 

Z 

 

 

 

Fig 3. X(z, z′] defined over region Δ = (z, z′].

E(X(z, z′]|F1
z ) = 0 (left diagram) and E(X(z, z′]|F2

z ) = 0 (right diagram)

Example 7. [57] Examples of martingales include random walks, modelling a fair game

(gambling), filtering problems in engineering, modelling random oscillators, together

with applications in finance and in biology.

Theorem 2. Let X = (Xn) denote a process. Then:

a) X is a martingale ⇐⇒ X is both a sub-martingale and a super-martingale

b) X is a martingale over Rn
+ ⇐⇒ X is an i-martingale ∀ i ∈ {1, 2, . . . , n}.

Proof. The proof for part a) follows directly from the definitions.

b) X a martingale ⇐⇒ X is a martingale in each of its coordinates ⇐⇒ X is an

i-martingale for each of it’s i-coordinates. To see this we extend the approach given in

[15]. Let Δ denote an increment in Rn
+ with

Δ = (z, z ′] = ((z1, z2, . . . , zi, . . . , zn), (z1
′, z2

′, . . . , zi
′, . . . , zn

′)] .
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Z Z’ 

 

Fig 4. Δ = (z, z′] increment for R+.

  

 

Z 

Z’ 

 

 

Fig 5. Δ = (z, z′] increments for R2
+.

 

 

 

 

 

Fig 6. Δ = (z, z′] increments for R3
+.
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X(Δ) may be represented as a sum of terms of the form Xt ′ −Xt with

t ′ = (t1, t2, . . . , ti−1, zi
′, ti+1, . . . , tn) and t = (t1, t2, . . . , ti−1, zi, ti+1, . . . , tn).

Each tj value is constant for j �= i and is either zj
′ or zj . For each such difference we

have:

E(Xt′ −Xt|F i
z) = E(Xt′ −Xt|F i

t ) = E(Xt′ −Xt|Fz) = 0

The result E(X(Δ)|F i
z) = 0, now follows.

For X an i-martingale ∀ i ∈ {1, 2, . . . , n} =⇒ X is a martingale over Rn
+ argue as in [15].

2.7 Stochastic Integrals

We now consider the classical Itô and Wong-Zakai stochastic integrals [49, 58, 141] with

respect to Brownian motion.

2.7.1 The Itô Integral

Let W = (Wt)t≥0 denote Brownian motion for the space (Ω,F , P ) with respect to a

filtration F. So W is an F martingale.

let L2(P ) denote the set of measurable functions for (Ω,F , P ) such that ||f ||2 <∞.

Let E denote the vector space of maps H : Ω× [0,∞) −→ R of the form

Ht(ω) =
n∑
i=1

ht−1(ω)χ(ti−1,ti] with n ∈ N, 0 = t0 < t1 < · · · < tn, hi−1 bounded and Fi−1

measurable. E is referred to as the vector space of predictable simple processes.

Classically E is equipped with a (pseudo) norm

‖ H‖2ε =
n∑
i=1

E
[
h2i−1

]
(ti−1, ti] = E

[∫ ∞

0

H2
sds

]
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Definition 18. (IWt and IW∞ ) [58] Let H ∈ E , W denote a Brownian motion process

and t > 0. We define IWt and IW∞ as

IWt =
n∑
i=1

ht−1(Wti∧t −Wti−1∧t) and I
W
∞ =

n∑
i=1

ht−1(Wti −Wti−1
)

Let E0 = {H : H is product measurable, adapted and ‖ H‖2 = E
[∫∞

0
H2
t dt

]
<∞}. For

E a subspace of E0, the closure of E in E0 will be denoted by E .

Definition 19. (The Itô Integral) [58] Let H ∈ E . The Itô integral is defined to be∫∞
0
HsdWs := IW∞ (H), the continuous extension of the map IW∞ : E −→ L2(P ) to the

closure E of E

Theorem 3. (Ito Formula) [58] Let W denote a Brownian motion process. Let t be

small, such that Wt is of order
√
t. We formally write dWt =

√
t and carry out a Taylor

expansion of F ∈ C2(R) with derivative F
′
. Then

dF (Wt) = F
′
(Wt)dWt +

1

2
F

′′
(Wt)(dWt)

2 = F
′
(Wt)dWt +

1

2
F

′′
(Wt) dt

Which in integral form becomes:

F (Wt)− F (W0) =

∫ t

0

F
′
(Ws)dWs +

∫ t

0

1

2
F

′′
(Ws)ds

The following theorem is included as an example of a multidimensional Ito formula, and

is given for completeness. The notation is not employed in subsequent discussions and

we therefore defer to [58] for further details.
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Theorem 4. (Multidimensional Ito Formula) [58] Let Y be a function with continuous

square variation. Let F ∈ C2
(
Rd

)
. Then

F (YT )− F (Y0) =

∫ T

0

∇F (Ys)dYs +
1

2

d

Σ
k, l=1

∫ T

0

δkδlF (Ys)d〈Mk,M l〉s

=
d

Σ
k, l=1

∫ t

0

σk,ls δkF (Ys)dW
l
s +

d

Σ
k, l=1

∫ t

0

bksδkF (Ys)ds

+
1

2

d

Σ
k, l=1

∫ t

0

ak,ls δkδlF (Ys)ds

In particular for Brownian motion, we have:

F (WT )− F (W0) =
d

Σ
k=1

∫ t

0

δkF (Ws)dW
k
s +

1

2

∫ t

0

�F (Ws)ds.

2.7.2 The Wong-Zakai Integral

Related to the work of Cairoli [16], Cairoli and Walsh [15] and John Walsh [138], Wong

and Zakai [141] developed a stochastic calculus for multiparameter processes involving

two types of integral, the first an analogue of the Itô integral, related to the integral

developed by Cairoli, and the second a new type of stochastic integral, described by

John Walsh [139] as being defined over ”cockeyed” increments.

Definition 20. (The Wong-Zakai Integral) [141, 142, 143] Let T = [0, 1]× [0, 1] and

{Wz,Fz, z ∈ T} be a Wiener process.

I1(φ) =

∫
T

φ(z)dWz

is defined as a generalisation of the Itô integral and referred to as an integral of the first

type.
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A second stochastic integral

I2(ψ) =

∫
T

∫
T

ψ(z1, z2)dWz1 dWz2

is defined for so called ‘unordered’ z1 = (x1, y1) and z2 = (x2, y2) for which x1 ≤ x2, and

y1 ≥ y2, points described as ”cockeyed” by John Walsh.

The action [141] of I1 is defined for random functions φ satisfying the following

conditions:

1.φ(ω, z) is a bimeasurable function of (ω, z) with respect to F ⊗ S with S the σ

algebra of Borel sets in T

2.∀ z ∈ T, φz is Fz measurable

3.
∫
T

Eφ2
z <∞

For I2, [141] the action is defined for random functions ψ(ω, z, z′) defined on Ω× T × T

satisfying the following conditions:

1.ψ(ω, z, z′) is jointly measurable with respect to F ⊗ S ⊗ S with S the σ algebra of

Borel sets in T

2.∀ pairs z and z′ ∈ T × T, φ(ω, z, z′) is Fz∧z′ measurable

3.E
∫
T

∫
T

φ2(z, z′) <∞

The above integrals satisfy linearity, inner product and martingale properties and are

orthogonal.

2.7.3 The Imkeller Integral

We introduce the Imkeller integral at this point for completeness. Our primary interest

here has been the extension of stochastic integrals to R3
+ and the claim of a new type of

integral on page 16 of the paper. We continue our discussion of these increments in

Chapter 4, but do not employ the notation used, in our discussion.
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Definition 21. (The Imkeller Integral) [48] Let M be a strong martingale with

E(M4N
1 ) <∞.

Let I = {T }

Let (T, φ) ∈ I.

The linear mapping I
(T,φ)
0 : ET −→ L2(Ω,F , P ),

Σ
1≤i≤n

ai1Fi
Π
T∈T

1AT
i
→ Σ

1≤i≤n
ai1Fi

Π
T∈T 1

ΔAT
i
M Π

T∈T 0
[M ] (ATi )

is referred to as an elementary (T, φ)− integral

We defer to the paper [48] by Peter Imkeller for details regarding the notation.

2.8 Fubini’s Theorem

We recall [140] the classical form of Fubini’s Theorem for general L2(Rn, dμ)

Let x = (x1, x2, . . . , xn) be a point of n - dimensional interval I1,

I1 = {x : ai ≤ xi ≤ bi, i = 1, 2, 3, . . . , n}

Let y = (y1, y2, . . . , ym) be a point of m - dimensional interval I2,

I2 = {y : cj ≤ yj ≤ dj, j = 1, 2, 3, . . . , m}

The Cartesian product I = I1 × I2 denotes the n+m dimensional interval consisting of

points (x,y) = (x1, . . . , xn, y1, . . . , ym)

A function f(x1, . . . , xn, y1, . . . , ym) acting on I will be written f(x,y) and its integral∫
I
f will be denoted by

∫ ∫
I
f(x, y)dxdy
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Theorem 5. (Fubini’s Theorem) [140]. Let f(x, y) ∈ L(I), I = I1 × I2. Then

a) for almost every x ∈ I1, f(x, y) is measurable and integrable on I2 for y;

b) as a function of x,
∫
I2
f(x, y)dy is measurable and integrable on I1 and

∫ ∫
I

f(x, y)dx dy =

∫
I1

[

∫
I2

f(x, y)dy]dx

Fubini’s theorem also extends to Itô integrals taking the following form.

Theorem 6. [58] Let X ∈ Cqv. Let g : [0,∞) −→ R be continuous and (in the interior)

twice continuously differentiable in the second coordinate with derivative δ2g. Then

∫ s

0

(∫ t

0

g(u, v)du

)
dXv =

∫ t

0

(∫ s

0

g(u, v)dXv

)
du

and

∫ s

0

(∫ v

0

g(u, v)du

)
dXv =

∫ s

0

(∫ s

u

g(u, v)dXv

)
du

2.9 Algebras

Definition 22. (Field) We define a field to be an abelian group with respect to both

addition and multiplication that also satisfies the distributive law and the no-divisors of

zero law.

Definition 23. (Vector (Linear) Space) A vector (linear) space (V, F ) over a field

F , is defined to be a set of elements V , such that (V,+) forms an abelian group and

∀α, β ∈ F, v, v1, v2 ∈ V :

a) α(v1 + v2) = αv1 + αv2

b) (α + β)v = αv + βv

c) α(βv) = (αβ)v
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d) 1.v = v, with 1 ∈ F (the multiplicative identity from F )

Definition 24. (Inner Product Space) An Inner Product Space is a vector space V

with an inner product defined for all elements v1, v2 ∈ V . For this discussion inner

products will be linear in their first argument and conjugate linear in their second

argument.

Definition 25. (Hilbert Space) A Hilbert space H is a complete inner product space.

Inner products may also be viewed as norms via the relation ‖ x ‖=
√
(x, x). For

xi ⊥ xj , for all i �= j, 1 ≤ i, j ≤ n we note that ‖
n

Σ
i=1
xi‖2 =

n

Σ
i=1
‖ xi‖2. For real valued

inner products we have the relation, (x, y) = 1
4

[
‖ x+ y‖2− ‖ x− y‖2

]
whilst for

complex inner product spaces we have the relation

(x, y) = 1
4

[
‖ x+ y‖2− ‖ x− y‖2

]
+ i

[
‖ x+ iy‖2− ‖ x− iy‖2

]
. It follows that an inner

product space may also be viewed as a normed space, by which we mean a vector space

with a norm defined upon it.

Definition 26. (Banach Space) A Banach Space is defined to be a normed space that

is complete with respect to its norm.

Definition 27. Algebra [63] An Algebra A over a field F is a vector space A over F

such that for each ordered pair of elements x, y ∈ A a unique product xy ∈ A is defined

such that ∀x, y, z ∈ A and scalars α ∈ F :

(xy)z = x(yz)

x(y + z) = xy + xz

(x+ y)z = xz + yz

α(xy) = (αx)y = x(αy)
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A normed space that is also an algebra satisfying Holders inequality for each of its

elements is described as a normed algebra. So ∀x, y in the algebra A,

||xy|| ≤ ||x||||y||.

If the normed algebra also has an identity then the norm of the identity is 1. A

complete, normed algebra is is said to be a Banach Algebra. If additionally

∀x ∈ A, ||x|| = ||x∗|| then A is said to be a C∗-Algebra.

Definition 28. (GNS) [10, 127] Given a C∗ - Algebra A with identity, and a state ω,

there is a Hlbert space Hω and a representation πω : A −→ B(Hω) s.t.

a) Hω contains a cyclic vector ψπω

b) ω(A) = (ψπω , πω(A)ψπω),

c) every other representation π in a Hilbert Space Hπ with a cyclic vector ψ

such that ω(A) = (ψ, π(A)ψ), is unitarily equivalent to πω

Definition 29. (Tensor product) [10, 55, 80, 88]. Let E denote the set of conjugate

bilinear forms {φ1 ⊗ φ2} acting on H1 ×H2 by the rule

(φ1 ⊗ φ2)[h1, h2] = (h1, φ1)(h2, φ2). We may define an inner product on E by

(φ⊗ χ, μ⊗ ν) = (φ, μ)(χ, ν), extend by linearity and hence define the Tensor product

H1 ⊗H2 of two Hilbert spaces H1 and H2 as the completion of the set of finite linear

combinations of elements in E . We note that in agreement with the finite dimensional

tensor product structures found in, for example, quantum information theory [78]:

a) ∀α ∈ C α(|v〉 ⊗ |w〉) = (α|v〉 ⊗ |w〉) = (|v〉 ⊗ α|w〉)

b) (
m

Σ
i=1
|vi〉 ⊗ |w〉) =

m

Σ
i=1

(|vi〉 ⊗ |w〉)

c) |v〉 ⊗ (
n

Σ
j=1
|wj〉) =

n

Σ
j=1

(|v〉 ⊗ |wj〉)

d) {|i〉}mi=1 a basis for H1 and {|j〉}mj=1 a basis for H2 =⇒ {|i〉 ⊗ |j〉} a basis for

H1 ⊗H2 with dimension mn.
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Theorem 7. [78, 88]. Let {φk} and {ψl} denote orthonormal bases for Hilbert spaces

H1 and H2 respectively. Then {φk ⊗ ψl} is an orthonormal basis for H1 ⊗H2.

Theorem 8. [88]. Let (M1, μ1) and (M2, μ2) be measurable spaces so that L2(M1, dμ1)

and L2(M2, dμ2) are separable. Then

a) There is a unique isomorphism from the tensor product L2(M1, dμ1)⊗ L2(M2, dμ2) to

L2(M1 ×M2, dμ1 ⊗ dμ2) so that f ⊗ g �→ fg.

b) If H′ is a separable Hilbert space , then there is a unique isomorphism from

L2(M1, dμ1)⊗H′) to L2(M1, dμ1;H′)) so that f(x)⊗ φ �→ f(x)φ

c) There is a unique isomorphism from L2(M1 ×M2, dμ1 ⊗ dμ2) to

L2(M1, dμ1;L
2(M2, dμ2)) such that f(x, y) is taken into the function x �→ f(x, ◦).

2.10 Non Commutative Probability

In the quantum setting we will work with a stochastic base of the form (H,A, (Az), m, I)

in which H denotes a Hilbert space structure, (for example Fermi-Fock space), A may

denote either a von Neumann Algebra, a C∗-Algebra, or a Hilbert Space, (Az) will

denote an associated filtration of A, m will represent a gage or state, (a linear functional

acting on A) and I will denote a subset of the parameter set, Rn
+, with z ∈ I ⊆ Rn

+.

Definition 30. Topologies on B(H) [82, 88] Various topologies exist for B(H), the set

of bounded operators acting on a Hilbert Space. We define four such topologies:

a) The Uniform topology (also known as the Norm topology) on B(H) is the topology

induced by the norm ‖ A ‖= sup
x �=0

‖Ax‖
x

with A ∈ B(H) and x �= 0 ∈ H

b) The Strong topology on B(H) is the locally convex vector space topology associated

with the family of semi-norms of the form x �→‖ Ax ‖ with A ∈ B(H) and x ∈ H

c) The Weak topology on B(H) is the locally convex vector space topology associated

with the family of semi-norms of the form x �→ |(Ax|y)| with A ∈ B(H) and x, y ∈ H
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d) The σ-weak topology on B(H) (also known as the ultraweak topology) is the locally

convex vector space topology associated with the family of semi-norms of the form

A �→ | Tr(Ax)| with A ∈ B(H) and x ∈ T (H).

From an operator perspective we have the following:

Definition 31. Operator Convergence [63] Let X and Y be normed spaces. A

sequence (An) of operators An ∈ B(X, Y ) is said to be:

1) Uniformly Convergent if (An) converges in the norm on B(X, Y ). So ∃A ∈ B(X, Y )

such that ‖ An − A ‖−→ 0;

2) Strongly Convergent if (An) converges strongly in Y. So ∃A ∈ B(X, Y ) such that

∀ x ∈ X, ‖ Anx− Ax ‖−→ 0;

3) Weakly Convergent if (Anx) converges weakly in Y for every x ∈ X. So

∃A ∈ B(X, Y ) such that ∀ x ∈ X, ∀ f ∈ Y ′, |f(Anx)− f(Ax)| −→ 0;

Definition 32. (Filtration) [62] Let A denote a von Neumann algebra, a filtration (or

nest of algebras) (Az) of A consists of von Neumann subalgebras of A in which ∪z(Az)

are ultraweakly dense in A, ∪z<z′(Az) is ultraweakly dense in Az′ and ∩z>z′Az = A′
z.

Definition 33. (W ∗-Algebra) [92, 93, 128]. A C∗-Algebra, U is said to be a

W ∗-Algebra if it is a dual space as a Banach space.

W ∗-Algebras have been shown [92] to be a von Neumann algebras by Shôichirô Sakai.

Definition 34. (Gage) [98]. A gage on a W ∗-algebra A is a completely additive

non-negative function m on the projections in A which is unitarily invariant:

m(U∗PU) = m(P ) if P is any projection and U is any unitary in A; and has the

(non-triviality) feature that any nonzero projection in A bounds a projection in A on

which m is finite and positive.

We will work with a faithful, central, normal gage.
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Example 8. Define m on A by m(.) = (Ω, .Ω); where Ω denotes 1 ∈ C = H0 ⊂ F(H)

(the Fermi-Fock space). m is said to be:

a) faithful if A ∈ A, A ≥ 0, m(A) = 0 =⇒ A = 0,

b) central if ∀A,B ∈ A, m(AB) = m(BA)

c) normal if given a family {Pα} of mutually orthogonal projections in A,

m(Σ
α
Pα) = Σ

α
m(Pα)

We note that the gage m is tracial on the Clifford algebra generated by

Ψ(f) = a∗(f) + a(f). We also note that for H1, H2 orthogonal real subspaces of H the

von Neumann algebras A1, A2 generated by the ψ(u), as u varies in H1, H2 resp. are

independent: m(AB) = m(A)m(B), for A ∈ A1, B ∈ A2 [39, 96].

Definition 35. (State) [10] A state ω is a positive linear functional (ω is an element in

the dual of U s.t. ω(A∗A) ≥ 0) over the *-algebra U with ‖ ω ‖= 1

2.11 Noncommutative Lp Spaces

Noncommutative analogues [95, 130] of classical Lp spaces may be formed for

1 ≤ p <∞, in which Lp(A) is taken to be the completion of A with respect to the norm

‖ a‖p = m(|a|p)1/p = (Ω, (a∗a)p/2Ω)1/p. These may be extended to include L∞(A) as A

with the operator norm ‖ a‖∞ =‖ a‖.

Definition 36. (Conditional Expectation) [125, 126, 131, 132, 133, 134] Let A be a

von Neumann Algebra and B be a von Neumann subalgebra of A. Let E : A −→ B be a

linear mapping s.t.

a) E is a σ-weakly continuous faithful projection of norm 1

b) ∀x ∈ A, E(x∗x) ≥ 0

c) ∀x, z ∈ B, ∀y ∈ A, E(xyz) = xE(y)z

d) ∀x ∈ A, E(x∗)E(x) ≤ E(x∗x)
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Then E is said to be a Conditional Expectation.

Noncommutative Conditional Expectations [39, 86] may be established for Lp(A)

spaces as can filtrations, adapted processes martingales and stochastic integrals. We

consider such constructions in the next chapter, defined over the general parameter

space Rn
+ with n ∈ N+.

2.12 Summary

In this chapter we have presented background material from various sources as a

reference point for material in the chapters that follow. In the next chapter we present

standard models relating to quantum stochastic integrals.



30 CHAPTER 2. STOCHASTIC THEORY AND RELATED TOPICS



Chapter 3

Standard Models

3.1 Fock Space and Second Quantisation

Each of the models discussed in this chapter involves a stochastic base of the form

(H,A, g, (Az),R
n
+), in which H denotes different Fock space constructions. Fock spaces

were introduced by V. Fock [35] in 1932. Examples [7, 66] of Fock space are to be found

in, quantum probability, quantum field theory, quantum theory of light, and more

recently quantum information processing. They have been used in the representation of

multipartite states and to describe their subsequent development within Fermi-Dirac

and Bose-Einstein systems. In 1953, J. Cook published The Mathematics of Second

Quantisation [20] in response to inconsistencies emerging from the first quantisation.

3.1.1 Fock Space

Definition 37. (Fock Space) [11, 20, 35] Let H denote a Hilbert space and Hr the

r-fold tensor product of H with itself. We define the free (or full) Fock space generated

by H as

F(H) =
∞⊕
r≥0

Hr = C⊕H⊕H2 ⊕H3 ⊕ . . . . . . . . .

31



32 CHAPTER 3. STANDARD MODELS

with H0 = C. F(H) consists of sequences of vectors (ψr)n≥0, in which each ψr ∈ Hr and

at most, only a finite number of non-zero terms are to be found. The tensor space Hr

may be identified with sequences of the form (0, . . . , 0, ψr, 0, . . . ) ∈ F(H) in which terms

not in the rth position are defined to be zero.

Proposition 1. [88] Let H be a separable Hilbert space. Then the inner product

closure of Hr and F(H) form Hilbert spaces.

Proof. For Hr and F(H), closure, addition and scalar multiplication laws follow by

construction, establishing Hr as a linear space. For the inner product rules on Hr with

respect to the conjugate bilinear form ( , )Hr =
r

Π
i=1

( , )H we proceed as follows. Let

ψr ∈ Hr =
r
⊗
i=1
Hi = H⊗H⊗ · · · ⊗ H, the completion of E1 with respect to the inner

product ( , )Hr . H has an orthonormal basis {ei} from which it follows that {
r
⊗
j=1

i

eij} is

an orthonormal basis for Hr. ψr ∈ Hr may be written in the form ψ1 ⊗ · · · ⊗ ψr with

ψi ∈ H =⇒ (ψ1 ⊗ · · · ⊗ ψr, ψ1 ⊗ · · · ⊗ ψr)Hr =
r

Π
i=1

(ψi, ψi)H ≥ 0. For

(ψ1 ⊗ · · · ⊗ ψr, ψ1 ⊗ · · · ⊗ ψr)Hr = 0 there exits j with 1 ≤ j ≤ r such that ψj = 0 from

which it follows that ψ1 ⊗ · · · ⊗ ψr = 0. Linearity in the first argument of ( , )Hr follows

by construction. Lastly, with respect to the inner product rules we note that

(ψ1 ⊗ · · · ⊗ ψr, φ1 ⊗ · · · ⊗ φr)Hr =
r

Π
i=1

(ψi, φi)H =
r

Π
i=1

(φi, ψi)
H
=

(φ1 ⊗ · · · ⊗ φr, ψ1 ⊗ · · · ⊗ ψr)Hr . Completeness for the Hilbert space property follows by

construction. For F (H) we use the sum of the inner products defined on each Hr, in

agreement [11] with the norm ‖ ψ‖2 = |ψ0|2 + Σ
i≥1

(ψi, ψi), noting that for
∞⊕
r≥0

Hr only a

finite number of the ψi are non - zero. For F (H) a Hilbert space we require the sum of

inner products to be finite, and take the completion
∞⊕
r≥0

Hr of the algebraic direct sum

F (H) with respect to the sum of the inner products |ψ0|2 + Σ
i≥1

(ψi, ψi).

1See Definition 29 (Tensor Products) on page 25
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3.1.2 Operators

Movement [11] between each of the tensor spaces Hr may be achieved through the action

of creation and annihilation operators a∗(f) and a(f) with f ∈ H, on the Hr, in which

a∗(f)(
r
⊗
i=1
fi) =

√
r + 1

r+1
⊗
i=1

fi with f1 = f

and

a(f)(
r
⊗
i=1
fi) =

√
r(f, f1)

r
⊗
i=2

fi

For H = L2(Rn
+) and h = L2(R+) it may be shown [88] that

H = L2(Rn
+)
∼= L2(R+)

n = hn. It follows that we may identify the F(H) as subsets of

F(h) for each value of n and extend the association between F(h) and its creation and

annihilation operator a∗ and a, to a family (F(h),F(hr), {a#r }n≥1) of Fock spaces and

associated operators in which a#r denotes a∗r and ar the creation and annihilation

operators for F(hr) = F(L2(Rr
+)) as opposed to F(h). Summarising, we have the

following.

Lemma 1. Let H = L2(Rn
+) and h = L2(R+). Then for n ∈ N+ F(H) may be identified

as a sub-Fock Space of F(h)

Two subspaces of F(H) of particular interest are the Boson-Fock and Fermi-Fock spaces

F±(H) in which F+(H) consists of symmetric sequences (ψr)r≥0 and F−(H)

anti-symmetric sequences, reflecting the property that bosons may interchange position

without detection

ψr = ψ(x1, . . . , xi, . . . , xj , . . . , xr) = ψ(x1, . . . , xj , . . . , xi, . . . , xr)
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whilst a change in position between any two fermions results in a change in sign

∀i �= j, ψr = ψ(x1, . . . , xi, . . . , xj, . . . , xr) = −ψ(x1, . . . , xj , . . . , xi, . . . , xr)

The Boson-Fock subspace F+(H) of F may be obtained by employing the symmetric

operator S to F(H) as

F+(H) = SF(H) by
r
⊗
i=1

fi
S�−→ Σ

π

r
⊗
i=1
fπ(i) for each Hr in F

with π ∈ Sr the set of permutations for 1, 2, . . . , r. Similarly, we apply the

anti-symmetric operator A to F(H) to obtain the Fermi-Fock subspace

F−(H) = AF(H) by
r
⊗
i=1

fi
A�−→ Σ

π
(−1)order of π

r
⊗
i=1
fπ(i)

for each Hr in F(H). The Bose-Fock and Fermi-Fock spaces each form Hilbert spaces.

3.1.3 CAR and CCR Relations

The creation and annihilation operators satisfy the following relations.

Definition 38. [11, 78] The Canonical Anticommutation Relations for the creation and

annihilation operators are defined as

{a∗(f), a∗(g)} = a∗(f)a∗(g) + a∗(g)a∗(f) = 0

{a(f), a(g)} = a(f)a(g) + a(g)a(f) = 0

and {a(f), a∗(g)} = a(f)a∗(g) + a∗(g)a(f) = (f, g)I

The Canonical Commutation Relations for the creation and annihilation operators are
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defined as

[a∗(f), a∗(g)] = a∗(f)a∗(g)− a∗(g)a∗(f) = 0

[a(f), a(g)] = a(f)a(g)− a(g)a(f) = 0

and [a(f), a∗(g)] = a(f)a∗(g)− a∗(g)a(f) = (f, g)I

3.2 Clifford Model

We begin this section with the construction of non-commutative analogues of the

classical probability space (X,F , μ). These are realised in the form of a probability gage

space (F(H),A, g) [95, 94] which in turn form part of the quantum stochastic base

(F(H),A, g, (Az),R
n
+).

3.2.1 The Probability Gage Space

For the Clifford quantum stochastic base H denotes L2
(
Rn

+

)
, described as a fermion one

particle space for F(H) the associated antisymmetric fermi - Fock space defined over H

[11, 20, 35, 54, 72, 108, 119].

The A in our stochastic base is used to denote the von Neumann Algebra of operators

obtained in the weak closure of the set of polynomials formed by elements of the form

ψ(f) = a(f)∗ + a(f), with f ∈ L2
loc(R

n
+). We note that ∀f ∈ L2

loc(R
n
+) the ψ(f) are self

adjoint since the operators a∗(f) and a(f) are each bounded.

Lemma 2. Let f and g denote real valued functions in L2
(
Rn

+

)
. Then the Fermi field

operators ψ(f) : F(H) −→ F(H) defined by h �→ ψ(f)h = (a∗(f) + a(f))h satisfy a form

of Canonical Anticommutation Relation in which {ψ(f), ψ(g)} = 2(f, g).
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Proof.

{ψ(f), ψ(g)} = ψ(f)ψ(g) + ψ(g)ψ(f)

= (a∗(f) + a(f))(a∗(g) + a(g)) + (a∗(g) + a(g))(a∗(f) + a(f))

= a∗(f)a∗(g) + a∗(f)a(g) + a(f)a∗(g) + a(f)a(g) + a∗(g)a∗(f)

+ a∗(g)a(f) + a(g)a∗(f) + a(g)a(f)

= {a∗(f), a∗(g)}+ {a∗(f), a(g)}+ {a∗(g), a(f)}+ {a(f), a(g)}

= {a∗(f), a(g)}+ {a∗(g), a(f)} by CAR’s

= 2Re(f, g)I by CAR’s

= 2(f, g)I since f, g real valued

For our gage g we define a mapping from L∞(A) = A −→ C by a �→ g(a) = (Ω, aΩ),

which may be used to generate associated Lp spaces with norm

‖ a ‖p = g(|a|p)1/p = (Ω, (a∗a)p/2Ω)1/p

3.2.2 The Clifford Stochastic Base

To complete our stochastic base we extend the probability gage space to include an

index set I ⊆ Rn
+ and a filtration of subsets of A defined on posets from Rn

+. The

filtrations (Az)z∈Rn
+
are generated by conditional expectations (projections), of the form

g(◦|B) with B ⊆ A. Closely related to the stochastic base and subsequent development

of stochastic integrals are stochastic processes of the form (ψz) generated by the Fermi

field operators ψ via the mapping ψ(f) �→ ψz = ψ(χ[0,z]f) in which [0, z] denotes the

n-dimensional cuboid with infimum zero and supremum z an element in the partially

ordered index set. The resulting stochastic process is a centred martingale. The



3.3. THE QUASI-FREE CAR MODEL 37

conditional expectation exists since the state is tracial on the algebra generted by the

ψ(f)’s and may be extended [86] to a contraction Lp(A) −→ Lp(B) with 1 ≤ p ≤ ∞.

3.3 The Quasi-Free CAR Model

3.3.1 The Stochastic Base

The QF CAR stochastic base takes the form (F(H)⊗ F(H),A, ω, (Az),R
n
+). The

Hilbert space F(H)⊗ F(H) is a tensor product of anti - symmetric fermi-Fock spaces

F(H) in which H is L2(R), and R ⊆ Rn
+ is a closed n - dimensional cuboid with inf R

based at the origin.

The von Neumann algebra A is generated by the fermion creation and annihilation

operators acting on F(H)⊗ F(H) as f varies in L2(R). The algebra generated is a

C∗-algebra C. For A we take the double commutant C ′′
of C. The fermion creation and

annihilation operators over F(H)⊗F(H) operators are defined [33] to be:

b∗(f) = b∗0((1− ρ)1/2f)⊗ I+ Γ(−1)⊗ b0(ρ
1/2f)

and

b(f) = b0((1− ρ)1/2f)⊗ I+ Γ(−1)⊗ b∗0(ρ
1/2f)

Here b∗0 and b0 denote the creation and annihilation operators over F(H), ρ denotes a

measurable function on R with 0 < ρ < 1, and the action of Γ(−1) on F(H) is defined

as Γ(−1)Ω0 = Ω0 on H0 = C, and ⊗n(−1) on Hr = ⊗rH.

For our gage we work with [11, 33, 85] the state ω : C −→ C defined by ω(u) = (uΩ,Ω)

with Ω = Ω0 ⊗ Ω0, defining a gauge-invariant quasi-free state on the C∗ − algebra C in

which ω(b∗(f)) = ω(b(g)) = 0 and ω(b∗(f)b(g)) = (ρf, g)L2(R).
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The filtration that we use is (Hz) for z ∈ R together with projections on H. We could

use C∗ filtrations or von Neumann filtrations with ω-invariant conditional expectations

on C or A respectively.

As in the Clifford case the creation and annihilation operators generate centred

martingales, this time in the form of ({b#(χRzu) : z ∈ R}), b# denoting b∗ or b.

3.4 The Quasi-Free CCR Model

3.4.1 The Stochastic Base

The Quasi-Free CCR stochastic base [11, 87, 110, 120] is defined to be F(H)⊗ F(H) in

which F(H) denotes the symmetric Boson-Fock space over the Hilbert space

H = L2(R). For the algebra A, we employ the unital polynomial * - algebra generated

by the boson creation and annihilation operators, c∗ and c acting on F(H)⊗ F(H).

These satisfy the CCR properties and are defined as:

c∗(f) = c∗0((1 + τ)1/2f)⊗ I+ I⊗ c0(τ
1/2f)

and

c(f) = c0((1 + τ)1/2f)⊗ I+ I⊗ c∗0(τ
1/2f)

with c∗0 and c0 the creation and annihilation operators acting on the Boson - Fock space

F(H), τ a measurable function on Rn
+ such that τ ∈ L∞

loc(R
n
+) and τ(z) > 0

The gauge invariant quasi-free state ω takes on the role of ‘gage’for the CCR stochastic

base. It is defined similarly to the CAR case, with Ω = Ω0 ⊗ Ω0 denoting the tensor

product of the boson-Fock (rather than fermi-Fock) no-particle vector. f and g are

elements in D(τ 1/2) = {f : τ 1/2f ∈ L2(Rn
+)}.
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The filtration (Az) will now denote the filtration (F(H)z), the closure of the unital

polynomial *-algebra generated the boson creation and annihilation operators a∗(f) and

a(f) on F(H) as f varies in L2(Rn
+) with support in Rz.

Once again the families {a#(χRzu)Ω : z ∈ R} form centred martingales, with a#

denoting a∗ or a.

3.5 The Stochastic Base and Underlying Parameter Space

In this thesis, we work in the positive region Rn
+ of Rn employing points in Rn

+ as

analogues of the indexing parameter ‘time’ for each of the stochastic processes defined.

Parameter spaces for the case n = 2 and n = 3 have been explored in [15, 139] and [48]

respectively. We explore these and more general parameter spaces further identifying

‘reducible’ and ‘irreducible’ sets in R3
+,R

4
+ and the general parameter space Rn

+, with a

view to establishing links between these and multiparameter quantum stochastic

integrals. Partially ordered sets (POSETS) in Rn
+ lead to the development of filtrations,

conditional expectations, projections and martingales employed in the construction of

quantum stochastic integrals as analogues of those found in the classical theory for

stochastic integration.

3.5.1 POSETS in Rn
+

For the case n = 1 POSETS are defined in terms of forward increments [86], when

working with Ito constructions. In this case the increment Δ ⊂ R+ is forward of some

point of interest t ∈ R+. We note that there exists just one type of increment for the Ito

construction which we refer to as a type 1 increment, (see Fig. 7). For the case n = 2

[15, 119, 141], type 1 increments are defined in an analogous way to the n = 1 case, with

all points in Δ ⊂ R2
+ are forward of some point of interest z ∈ R2

+, (see Fig. 8).
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Fig 7. Type 1 increment Δ for R+, forward of z and Rz.
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Fig 8. Type 1 increment Δ for R2
+, forward of z and Rz.
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Fig 9. Type 1 increment Δ for R3
+, forward of z and Rz.
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Following the work of Wong and Zakai, a new type of increment was established referred

to as a type 2 increment and described by John Walsh [139] as ’cockeyed’ increments.

Here two increments are established forward of the region Rz, one in the ‘z1’direction,

the other in an orthogonal ‘z2’direction. This corresponded to the development of a new

Wong - Zakai stochastic integral.
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Fig 10. Type 2 Increments for R2
+ and R3

+ respectively, forward of z and Rz.
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Fig 11. Type 3 increment for R3
+ forward of z and Rz.
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For the case n = 3 analogues of the type 1 increment follow and a type 3 increment

involving three Δi each forward of the ‘cuboid’Rz in just one parameter.

In the case of a type 2 increment we meet more than one possibility [48]. Type 2

increments comprise of two Δi with Δ1 and Δ2 ”cockeyed” again with respect to Rz in

the sense suggested by John Walsh. Two possible cases for type 2 increments emerge for

the case n = 3. Case 1 has Δ1 forward of Rz in two directions (say x1 and x2 with

x1 ⊥ x2) and Δ2 forward of the region Rz in just one, the remaining direction (x3

perpendicular to both x1 and x2). The infimum of Δ1 wrt x1 and x2 lies along an edge

of Rz, whilst Δ2 is based on a face of Rz. Case 2 has Δ1 forward of Rz in two variables

(say x1 and x2) and Δ2 also forward of Rz in two variables (say x1 and x3). It was

considered that case 2 could lead to a new type of ‘mixed’ stochastic integral in [48].

We explore this in the next chapter.

3.6 Summary

In this chapter we have presented standard models that we will use in the development

of quantum stochastic integrals over Rn
+. The parameter space over which our stochastic

processes are defined has also been introduced and examples of the different types of

increment that exist for n = 1, 2, and 3. In the next chapter we continue the discussion

on parameter spaces, as new material, exploring different types of increment for n ≥ 4.

The increments are categorised as irreducible or composite (reducible) and used in the

development of different types of quantum stochastic integral.



Chapter 4

Stochastic Integrals

4.1 Introduction

In this chapter we extend the work carried out on quantum stochastic integrals over R+

and R2
+ to a more general setting for quantum stochastic integrals defined over Rn

+ for

n ∈ N+. We note that the possibility for different type r increments poses the threat of

greater complexity emerging in our discussions, in contrast to our goal of simplifying the

complexity involved, via the underlying parameter space.

Our findings [112, 118] at the three dimensional level lead to further exploration with a

four dimensional positive parameter base and from there, to general n-dimensional

parameter bases. We begin organising sets in Rn
+ by identifying those sets (later thought

of as increments) forward of an n-dimensional cuboid Rz that may be categorised as

irreducible, as opposed to composite [106, 107, 116] in form. Here we are concerned with

irreducibility of form with respect to n-dimensional cuboids Rz.
1

We conjecture the following result established later as our discussion develops:

Conjecture 1. All increments in Rn
+ may be expressed in terms of type r increments

(defined below) and hence all quantum stochastic integrals (QSI’s) may be expressed in

1See Fig’s. 7, 8 and 9 on page 40 for Rz.

43
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terms of Type r QSI’s. Further the representation is unique up to equivalence

(commutativity).

Increments throughout our discussion will therefore increase in complexity subject only

to the number of available orthogonal directions parallel to the underlying ‘axes’.

4.2 Type r Increments

As stated in Chapter 1, our primary motivation in this work is to simplify the approach

taken with general quantum stochastic integrals where the complexity involved can

quickly become daunting. The geometric approach employed leads us to different types

of increment lying in Rn
+ particularly for the case n ≥ 3. A particular fundamental

increment that we work with, is referred to as a type r increment.

Definition 39. (Type r Increments) Let R denote a closed cuboid in which

infR = (0, 0, . . . , 0). Let z = (z1, z2, . . . , zn) = supR. Let 1 ≤ r ≤ n. We define the

characteristic function for a type r increment to be of the form χΔ1 . . . χΔr . Each of the

Δi denote increments forward of R (and hence the point z), in one or more of the n

parameters parallel to the orthogonal axes. Each parameter is to be forward of R (and

hence z), in one and only one of the r increments Δi. A Type r increments will be

denoted by the notation Δ1
∧
∧ . . .

∧
∧Δr in which the r increments Δi will be mutually

disjoint to each other as subsets of Rn
+.

Example 9. See Fig 7, 8, 9, 10 and 11 on pages 40 and 41.

Definition 40. (Type r Points) A type r point is defined to be a point of the form

(z1, z2, . . . , zr) ∈ Rn
+ × . . .Rn

+ the r-fold product of Rn
+ with itself, such that each

zi ∈ Δi ⊆ Rn
+ and each Δi a component in a type r increment Δ1

∧
∧ . . .

∧
∧Δr.
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Example 10. A type 1 point would be a single point lying in a type 1 increment

forward of Rz, whilst a type 2 point is of the form (z1, z2) with z1 ∈ Δ1 and z2 ∈ Δ2

such that Δ1
∧
∧Δ2.
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Fig 12. Type 1 and type 2 points in R3
+, forward of Rz.

4.2.1 Type r Partial Ordering in Rnr
+

Having defined the type of increments that we will work with we verify that for any

point z
′′ ∈ Rnr

+ there exist directed sets of type r points in Rn
+, relative to z

′′
that we can

work with. We describe a partial order that can be employed to form type r increments.

Definition 41. (Partial Order) [6] Let X denote a set and let the relation ∼ be

defined between some elements of the set. X is said to be partially ordered under ∼ if

the following conditions are satisfied among the elements of X that are ”comparable”

with respect to ∼.

1) Let a ∈ X. Then a ∼ a. (reflexive);

2) For a, b ∈ X, if a ∼ b and b ∼ a then a = b. (antisymmetric);

3) Let a, b, c ∈ X. Then a ∼ b and b ∼ c =⇒ a ∼ c (transitive).
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We note that various forms of poset exist. One such example is an irreflexive ((a � a.),

asymmetric (if a ∼ b then b � a) partial order, also described as a strict partial order.

Example 11. In [64] Leslie Lamport develops a model to describe the ordering of

events occurring in a distributed system. In the model constructed, Lamport introduces

the happened before relation, a strict partial order. For the happened before relation it is

assumed that an event a cannot happen before it happens, for example, in sending or

receiving a message, (irreflexive condition). It is also assumed that if an event a happens

before an event b (as for example with the transmission and receipt of a message) then

event b does not happen before event a, (a message is not received before it is

transmitted), (asymmetric condition). The transitive condition is shown to hold.

Lemma 3. Type r points in the r-fold product
(
Rn

+

)r
= Rn

+ × . . .Rn
+ may be used to

form a partial-ordering for Rn
+ × . . .Rn

+.

Proof. Let z = (z1, . . . , zr) denote a type r point in Rn
+ × . . .Rn

+ relative to a point

z
′′ ∈ Rn

+. Each component zi of z is a point in Rn
+. We consider the components zik ∈ R

of each zi ∈ Rn relative to the components z
′′
k of z

′′
and define a ‘new’point z

′ ∈ Rn as

follows: for zik < z
′′
k let z

′
ik denote any point in R such that zik ≤ z

′
ik ≤ z

′′
k , otherwise let

z
′
ik denote any point in R such that z

′
ik ≥ z

′′
k .

Define z
′
=

(
z
′
1, z

′
2, . . . , z

′
i, . . . z

′
r

)
. Then z

′
is a type r point in Rn

+ × . . .Rn
+ relative to

the point z
′′ ∈ Rn

+, and in particular z
′
is a type r point in Rn

+ × . . .Rn
+ relative to the

point z
′′
=

r
∨
i=1
{z1, . . . , zi, . . . , zr}.
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Fig 13. For n = 2: Type 1 point z
′
= z

′
1 selected from shaded region.
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Fig 14. For n = 2: Type 2 point z
′
= (z

′
1, z

′
2) selected from shaded regions.
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Since z
′
denotes any point satisfying the above it follows that all points in a rectangle Δ

with inf Δ = z
′′
and supΔ = z

′
are type r points.

Using the above algorithm we define a relation ∼ , for z and z
′
in Rn

+ × . . .Rn
+ relative

to a given point z
′′ ∈ Rn

+, such that z ∼ z
′
. The ∼ relation is reflexive, antisymmetric

and transitive.

Following the above discussion we note that not only is z
′
a type r point in Rn

+ × . . .Rn
+

relative to the point z
′′ ∈ Rn

+, but in particular that z
′
is also a type r point in

Rn
+ × . . .Rn

+ relative to the point z
′′
=

r
∨
i=1
{z1, . . . , zi, . . . , zr}. Since z

′
denotes any point

satisfying the algorithm given in the above proof it follows that all points in a rectangle

Δ with inf Δ = z
′′
and supΔ = z

′
are type r points.

Type r increments will be shown to be irreducible forms of increment that may be used

to describe, and hence generate other forms of increment that may occur in Rn
+.

4.3 Examples

In this section we are particularly interested in exploring type 2 increments found in R3
+

the 3 dimensional positive parameter base for stochastic integrals motivated initially by

Peter Imkeller’s work [48] on a stochastic calculus for strong martingales.

4.3.1 The 3-Dimensional Parameter Space

For R3
+, a type 1 increment is of the form Δ with each point z′ = (z′1, z

′
2, z

′
3) ∈ Δ forward

of, or equal to z = (z1, z2, z3) = inf Δ = supR. I refer to this as a (3) increment since

each of the three variables zi
′ of z′ satisfies the inequality zi

′ ≥ zi. A type 2 increment

will involve a pair of Δ’s, Δ1 and Δ2 with one increment forward of infΔ1 ∨ infΔ2 in

two variables whilst the other increment is forward of infΔ1 ∨ infΔ2 in the remaining
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unused, third variable. So, for example, z′1 ≥ z1, z
′
2 ≥ z2 and z′3 < z3 for z′ ∈ Δ1 and

z′1 < z, z′2 < z2 and z′3 ≥ z3 for z′ ∈ Δ2. I refer to this as a (2,1) increment. In contrast,

a (1,2) increment involves Δ1 with one variable forward of infΔ1 ∨ infΔ2 and Δ2 with

the remaining two unused variables forward of infΔ1 ∨ infΔ2. A type 3 increment

involves three such Δ’s, each forward of the point infΔ1 ∨ infΔ2 ∨ infΔ3 in one and

only one variable at a time. This is also referred to as a (1,1,1) increment in which each

variable is forward of infΔ1 ∨ infΔ2 ∨ infΔ3 in one and only one of the Δi’s.

One may consider here, as in [48], the possibility for a new type of increment, Δ of

 
Z3 

Z2 

z 

Z1 

 
Z3 

Z2 

z 

Z1 

Fig 15. Type 2 Increments and R3
+, forward of Rz.

the form Δ1Δ2 in which say Δ1 is forward of infΔ1 ∨ infΔ2 in the traditional x and y

directions whilst Δ2 is forward of infΔ1 ∨ infΔ2 in the y and z directions, a (2,2) type

of arrangement. Such an increment however, is seen to be a composite form which may

be expresed as a limiting case of the type 2 increments introduced above.

Lemma 4. A (2,2) increment in R3
+ is a limit of type 2 increments.

Proof. Let Rz denote the cuboid such that infRz = (0, 0, 0) and

z = (z1, z2, z3) = infΔ1 ∨ infΔ2. Without loss of generality we may let the common

variable for Δ1 and Δ2 be in the third z3 component, and the ‘height’ for each Δi
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(perpendicular to the face of Rz associated with each Δi) be the same, say h. This is

acceptable since the operators (that we subsequently consider2 acting on the parameter

space will be linear with respect to the Δi. We proceed by cutting the two increments in

half using a cut parallel to the z1− z2 plane, through the z3 component at z′3 = z3 + h/2.

This produces a (1, 2) increment, and a (2, 1) increment with respect to the cuboid Rz′

and two (2, 2) increments, one with respect to Rz, the other with respect to Rz′ . The

volume of each ‘new’ increment is reduced by one half the volume of the Δi that it is a

subset of.
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Fig 16. A Limit of Type 2 increments in R3
+ forward of Rz.

Retaining the (1, 2) and (2, 1) increments and repeating the process, recursively, with the

smaller (2, 2) increments, we obtain a sum of type 2 increments whose limit corresponds

to the original volume V (the sum produce a GP with first value V /2 and common ratio

1/2). It follows that we may express any linear operator acting on a (2, 2) increment as

the limit of the sum of the same operator acting on type 2 ((2, 1) and (1, 2)) increments.

We shall see in subsequent chapters, that the significance of different irreducible types of

increment is that they lead to different types of quantum stochastic integral. We now

consider the four dimensional parameter space, since it is here that we do meet a new

type of increment.

2See for example the type r quantum stochastic integrals
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4.3.2 The 4-Dimensional Parameter Space

In R4
+ we work with type 1, 2, 3 and 4 increments based on the ‘four dimensional

cuboid’ Rz with z = supR. For a type 1 increment, (also referred to as a (4) increment,

since for points in Δ1, all four variables are forward of those in Rz), each of the points in

Δ1 is forward of or equal to the point z = infΔ1 = supRz. Type 2 increments take the

form of a (1,3) increment or a (2,2) increment. A (1,3) increment involves two sets Δ1

and Δ2 in which one set, say Δ1 increases in one component, whilst the other set Δ2

increases in the remaining three components. It is here, for the first time, that a new

type of increment appears, which we refer to as a (2,2) increment. Types (1,3) and (3,1)

are by symmetry the same type of increment. A type (2,2) increment however, is new.

Types (1,3) and (2,2) are irreducible forms to each other and thus will lead to

orthogonal type 2 integrals over the R4
+ parameter space.

Lemma 5. In R4
+ type (1,3) and type (2,2) increments are irreducible and hence

disjoint in form with respect to Rz.

Proof. Any cuts parallel to the axes for a type (1,3) or (2,2) result in the same type of

increments, since they satisfy the same criteria for their type. A (1,3) increment Δ1 and

Δ2 for z ∈ Δ1 has three of its four components within the Rz′′ cuboid whilst z′ ∈ Δ2 has

just one component within Rz′′ . For the (2,2) increment two components of z ∈ Δ1 are

within Rz′′ whilst the ‘other ’ two components of z′ ∈ Δ2 are to be found within Rz′′ .

This condition is unaltered with any cuts parallel to the axes, hence no increments occur

that we can use to construct a different type of increment.

Type 3 increments involve three sets Δ1, Δ2, and Δ3 in which two of the sets have 1

dimensional increments in different directions whilst the remaining set has a 2

dimensional increment. I refer to these as (1,1,2) increments noting its equivalence, by

symmetry, in form to the types (1,2,1) and (2,1,1). Finally a type 4 increment consists
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of 4 sets Δ1, Δ2, Δ3 and Δ4, each of which involves an increment in just one dimension

(parallel to the axes), type(1,1,1,1), and each increment occurs in just one of the four

Δi
′s.

Lemma 6. Each of the increments Type 1, Type 2, Type 3 and Type 4 are irreducible

in form and disjoint for increments of the same size.

Proof. Cutting each of the types, parallel to the ‘planes ’leads to increments of the same

form so from the perspective of form, leads to irreducible forms, unlike, for example, the

(2,2) increment in R3
+.

Essentially then, we have five different types of increment occuring in R4
+, type (4), type

(1,3), type (2,2), type (1,1,2) and type (1,1,1,1). One could continue this discussion in

R5
+,R

6
+,R

7
+, . . . with greater combinations of increment being generated, but at this

stage we have covered enough different types of increment to constructively commence a

discussion on general increments and from there stochastic integrals, projections and

martingales relating to general parameter spaces.

4.3.3 The General Parameter Space

For the general case we work over Rn
+ with type r increments. Clearly there will be one

type 1 increment with all components forward of Rz for some z ∈ Rn
+, a type (n)

increment and one type n increment of the form (1, 1, 1, . . . , 1, 1, 1). Various types of

increment may occur in Rn
+ and so we wish to show that these may be expressed in

terms of irreducible increments.

Proposition 2. Let Δ
′
i denote an increment in Rn

+. Let
r

Π
i=1

Δ
′
i denote a product of

characteristic functions χΔ
′
i
acting on the Δ

′
i such that each of the n orthogonal
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variables in Rn
+ occur in at least one of the Δ

′
i. Then

r

Π
i=1

Δ
′
i may be expressed to within ε

in terms of a sum of type r irreducible increments
r

Π
i=1

Δi.

Proof. Each increment may start with the same n dimensional volume by construction.

Let X denote a type r characteristic function with increments
r

Π
i=1
χΔ

′
i
such that just two

of the increments, Δ
′
1 and Δ

′
2 share a common axis. (For example, for n = 3 and r = 2

above, the shared axis was z3). Cut each of the the Δ
′
i in half relative to the common

axis, so if the common axis is zi then Δ
′
i is cut into an ‘upper’half

z ∈ Δ
′ upper
i =⇒ ∀j �= i, zj = z

′
j and zi > z

′
i and a lower half Δ

′ lower
i

X = χΔ
′
1
χΔ

′
2

r

Π
i=3

Δ
′
i

= (χ
Δ

′ upper
1

+ χΔ
′ lower
1

)(χ
Δ

′ upper
2

+ χΔ
′ lower
2

)
r

Π
i=3

Δ
′
i

= χ
Δ

′ upper
1

χ
Δ

′ upper
2

r

Π
i=3

Δ
′
i + χΔ

′ lower
1

χΔ
′ lower
2

r

Π
i=3

Δ
′
i

+ χ
Δ

′ upper
1

χΔ
′ lower
2

r

Π
i=3

Δ
′
i + χΔ

′ lower
1

χ
Δ

′ upper
2

r

Π
i=3

Δ
′
i

The first two terms in the last line are the same type of increment as X but with 1
4
the

original n dimensional volume. The last two terms are now irreducible since the inf Δi,

zi value for an upper increment is greater than the inf Δi, zi value for a lower increment.

For a type r increment sharing one axis between m of the r increments, 0 < m < r,

apply a proof by induction cutting as indicated in the example above. Repeated

applications of the process lead to a sum of irreducible type r increments together with

a sum of the same type but of decreasing volume, each cut reducing the overall volume

for the same type of increments as X by a factor of one half.

For increments sharing more than one common axis apply the cutting process to those

axes and proceed as above.
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Following the discussion on type r increments above we now construct stochastic

integrals over general parameter spaces for the Clifford and Quasi-Free settings.

4.4 The Clifford Representation

We return now to the Clifford Model, first introduced in Section 3.2 in which each of the

elements in the quantum stochastic base (F(H),A, g, (Az),R
n
+) were defined.

4.4.1 Simple Adapted Processes

Definition 42. (Elementary Adapted Processes) A map

h : Rn
+ × · · · × Rn

+ −→ L2(A) is said to be a A valued elementary r adapted process if

there exist Δ1, . . .Δr with Δ1
∧
∧ . . .

∧
∧Δr, and h is of the form h(z1, . . . , zr) = a

r
π
i=1
χ

Δi
(zi),

with a ∈ AinfΔ1∨···∨infΔr

Definition 43. (Type r Quantum Stochastic Clifford Integrals)

Let h(z1, . . . , zr) = a
r
π
i=1
χ

Δi
(zi), denote elementary r adapted processes with

a ∈ AinfΔ1∨···∨ infΔr and each zi ∈ Rn
+. We define the type r Clifford integral Sr of h,

with respect to Ψ, over Rz to be

Sr(h, z, f1, . . . , fr) =
∫
Rz

. . .

∫
Rz

h(z1, . . . , zr)dΨz1(f1) . . . dΨzr(fr)

= a
r
π
i=1

Ψ(χ
Δi∩Rz

fi)

We extend to simple adapted processes on Rn
+ × · · · × Rn

+ and their respective integrals

via linearity.

Example 12. For the case of R+ the increment Δz , forward of z ∈ R+ is an interval of

the form [z, z′) and leads to the Ito - Clifford integral as discussed in [86].
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Example 13. For R2
+ the increment Δz takes the form of a square in which all points

are forward (in both parameters) of the point z ∈ R2
+ and led to the 2- parameter

version of the Ito-Cifford integral. In addition to the square forward of z in 2 parameters

it is also possible to form a Wong-Zakai Clifford integral, as quantum analogue of the

classical Wong-Zakai integral involving two increments in the parameter space each of

which contain points that are forward of supR = z ∈ R2
+ in just one component,

[120, 121].

Example 14. The case of R3
+ leads one to consider increments forward of a point

z ∈ R3
+ in three, two and one parameters, leading to further new integrals [48].

Example 15. For the general case of the parameter space Rn
+ we work with increments

Δr
z, with 1 ≤ r ≤ n containing points forward of z = supR one of each of the available n

parameters, occurring in the available Δi. For r = n we obtain a quantum analogue of

the Ito integral, for r = n− 1 we obtain n quantum analogues of the Wong-Zakai

integral and for the general case we obtain nCr quantum integrals involving r increments

with points forward of z in p1 parameters for Δ1, p2 parameters for Δ2, . . . , pr

parameters for Δr, with
r

Σ
i=1
pi = n.

Theorem 9. (Isometry) Each of the integrals given above satisfy isometry properties.

Proof. Let the integral be a type r 1 ≤ r ≤ n. The other cases are similar. We extend

the approach taken with type I and type II integrals [119] over L2(R2
+) to more general

quantum stochastic integrals for the case of L2(Rn
+).

Let h denote a simple process with disjoint Δij. Then:

‖ Sr(h, z, f1, . . . , fr)‖22 =
m

Σ
i=1

(Ω, a∗i aiΩ)
r

Π
j=1

(fj, fj)
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since the off-diagonal elements each cancel out due the gage being both cyclic and

independent

=

∫
Rz

. . .

∫
Rz

‖ h‖22
r

Π
j=1
|fj |2dz1dz2 . . . dzr

See [111] for further details.

Theorem 10. (Orthogonality) Let r1 �= r2 ∈ N+ with 1 ≤ r1, r2 ≤ n. Then type r1

and type r2 quantum stochastic integrals are orthogonal.

Proof. The integrals generate products of the form
r1
Π
i=1
ψ(χΔi

) and
r2
Π
j=1
ψ(χΔj

). Since

r1 �= r2, ∃Δi, and Δj that cannot be matched / paired off, or (at worst), ∃ at least one

Δi that is disjoint with all of the other Δj ’s. By independence of the gage, the gage of

any such product is zero [39]. For a single ψ the gage is zero, since the (ψ) form centred

martingales.

The centred martingale property established in [119] for the two parameter case extends

to the r-parameter case again by independence of the gage m. As a result general

r-parameter quantum stochastic integrals for simple adapted processes each satisfy

isometry and orthogonality properties as centred martingales.

Theorem 11. (Martingale) Each of the above integrals form centred martingales

Proof. This again follows by independence of the gage. For further details see [113].

4.5 Completion

The integrals described above extend via the representation theorem (discussed in

Sections 4.7 and 5.5) which establishes closure, (or alternatively, via the isometry
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property, to an appropriate completion of the simple adapted processes) in L2(A). Such

integrals continue to satisfy the isometry and martingale properties. Processes belonging

to the respective completions of type r simple processes are themselves found to be

orthogonal, isometric centred martingales.

4.5.1 Two Dimensional Parameter Set

An alternative approach to working with the completion of the simple adapted processes

is to show that the space is weakly closed. In this subsection we illustrate the case for

R2
+. These are early workings of this material employing approaches taken in

[39, 86, 88]. The approach extends naturally to processs over the parameter space Rn
+.

We note that the results also follow from the representation theorem discussed at the

end of this chapter.

Let T1 be a compact set in R2
+ and T2 = A×B a compact subset of R2

+×R2
+ with A∧

∧B.

Let L2
Ψ(T1) denote the set of processes in L2(T1, dμ;L

2(A)) and likewise L2
ΨΨ(T2) denote

the set of processes in L2(T2, dμ;L
2(A)) where L2(Ti, dμ;L

2(A)) denotes complex

Hilbert spaces of L2(A) valued measurable maps on Ti.

Lemma 7. The continuous Type I (resp Type II) L2 processes may be approximated

arbitrarily closely by simple Type I (resp Type II) L2 processes.

Proof. Let g ∈ L2
ΨΨ(T2) denote a continuous L2 processes on T2. Since g : T2 → L2(A) is

continuous and T2 is compact, it follows that g is uniformly continuous on T2. Any open

cover for T2 has a finite subcover hence we may generate a subcover for T2 of discs

radius δ. Taking projections of these onto the axes we may form a δ net of squares

parallel to the axes. Taking the projection of the midpoints z of each δ square onto the

axes we can generate a δ
2
net for T2. Any points within a δ

2
square will be at most

√
2
2
δ

apart. Let Δzi denote the δ
2
square with lower left coordinate zi ∈ A likewise Δz′i denote

the δ
2
square with lower left coordinate z′i ∈ B. Given (z, z′) ∈ T2 = A× B it follows
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∃Δzi and Δz′j s.t. z ∈ Δzi , z
′ ∈ Δz′j . Since A

∧
∧B it follows that ∀ i, j Δzi

∧
∧Δz′j . We take

g(zi, z
′
j) as our approximation to g(z, z′). By uniform continuity

‖(z, z′)− (zi, z
′
j)‖2 < δ

2
< δ =⇒ ‖g(z, z′)− g(zi, z

′
j)‖2 < ε, the δ being dependent upon

the choice of ε. For our simple processes we take h =
∑m

i=1

∑n
j=1 g(zi, z

′
j)χΔzi

χΔzj
for

which we note ‖g(z, z′)− h(z, z′)‖2 < ε with h ∈ L2
ΨΨ(T2). The same argument with

minor modifications (for T1 instead of T2) establishes the lemma.

Lemma 8. [39, 86] Let X ∈ L2(A). Then E(X|A•) : R
2
+ → L2(A) by z �→ E(X|Az) is

continuous.

Proof. z �→ χz is strongly continuous on H = L2(R2
+, dμ)

=⇒ z �→ Γ(χz) is strongly continuous on Λ(H)

=⇒ z �→ E(X|Az) is strongly continuous on L2(A)

Here E(X|Az) = D−1Γ(χz)DX , L2(A) = D−1Λ(H) and D is the duality transform as

defined in [96, 97].

Lemma 9. The set of processes L2
Ψ and L2

ΨΨ are complex Hilbert Spaces.

Proof. We show that L2
Ψ(T1) is a closed subspace of L2(T1, dμ;L

2(A)) and that L2
ΨΨ(T2)

is a closed subspace of L2(T2, dμ;L
2(A)).

Let fn −→ f in L2(Ti, dμ;L
2(A)), i = 1, 2; be s.t. (fn) is a sequence in L2

Ψ(T1) (or

L2
ΨΨ(T2) ). Since fn −→ f in measure, it follows that ∀ ε > 0, with ε = 2−r, ∃nr s.t.

∀n ≥ nr μ({z : ‖fnr(z)− f(z)‖2 ≥ ε = 2−r}) < ε = 2−r.

Let Ar = {z : ‖fnr(z)− f(z)‖2 ≥ ε = 2−r} and Bi = ∪∞
r=iAr.

Then ∀r ≥ i, ‖fnr(z)− f(z)‖2 ≤ 2−r =⇒ fnr(z)→ f(z)

=⇒ ∀z /∈ ∩∞
i=1Bi, fnr(z)→ f(z).
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For z ∈ ∩∞
i=1Bi we have μ(∩∞

i=1Bi) ≤ μ(∪∞
r=iAr) ≤

∑∞
r=i μAr ≤

∑∞
r=i 2

−r = 21−i

Hence μ(∩∞
i=1 ∪∞

r=i Ar) = 0 =⇒ fnr(z)→ f(z)μ a.e. in L2(A) =⇒ ∃ subsequence (fnr)

s.t. fnr(z)→ f(z) μ a.e. in L2(A).

Now fnr(z) ∈ L2(Az)μ a.e. =⇒ f(z) ∈ L2(Az)μ a.e. since: (for i = 1)) L2(Az) is a

closed subspace of L2(A) and (for i = 2)) z = (z1, z2), z1 ∈M1, z2 ∈M2,M1 and

M2 ⊆ R2
+, zi ”cockeyed” =⇒ fnr(z) = fnr(z1, z2) ∈ L2(Az1∧ z2) =⇒ f(z) ∈ L2(Az1∧ z2)

since L2(Az1∧ z2) closed.

Theorem 12. The simple processes are dense in L2
Ψ and L2

ΨΨ

Proof. We show that the simple processes in L2
ΨΨ are dense in L2

ΨΨ. The same argument

with appropriate modifications establishes the case for L2
Ψ.

Let Mi = [zi, z
′
i] for i ∈ {1, 2} and f ∈ L2

ΨΨ(M1 ×M2) ⊆ L2
ΨΨ(M1 ×M2, dμ, L

2(A). Then

∀ε > 0, ∃n ∈ N, θj ∈ C(M1 ×M2) and Xj ∈ L2(A) with 1 ≤ j ≤ n s.t.∫
M1×M2

‖f(z, z′)−
∑n

j=1 θj(z, z
′)Xj‖22dμ < ε, since

L2(M1 ×M2, dμ, L
2(A)) ! L2(M1 ×M2)⊗ L2(A) ! C(M1 ×M2)

‖.‖2 ⊗ L2(A), (see [88]

for example). f ∈ L2
ΨΨ(M1 ×M2) =⇒ f(z, z′) ∈ L2(Az∧z′), θj ∈ R or A and since

E(.|Az∧z′) : L
2(Az∧z′)→ L2(Az∧z′) is a contraction,∫

M1×M2
‖f(z, z′)−

∑n
j=1 θj(z, z

′)E(Xj |Az∧z′)‖22dμ

=
∫
M1×M2

‖E(f(z, z′)−
∑n

j=1 θj(z, z
′)Xj|Az∧z′)‖22dμ < ε.

Now θj(·, ·)E(Xj|A·∧·) is by Lemma 8 a continuous L2 process and hence is in

L2
ΨΨ(M1 ×M2). It follows by Lemma 7 that there exists a simple process in L2

ΨΨ s.t.

we can approximate θj(·, ·)E(Xj|A·∧·) in L
2
ΨΨ. It follows that f(·, ·) can also be

approximated by simple processes in L2
ΨΨ(M1 ×M2).
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4.6 Quasi-Free Quantum Stochastic Integrals

In this section we describe Quasi-free stochastic integrals for H. Such integrals may also

be realised for C∗ algebras, U and von Neumann Algebras, A. We first define the

integral for elementary adapted processes and then extend by linearity to simple

adapted processes.

Definition 44. Let h(z1, . . . , zr) = a
r
π
i=1
χ

Δi
(zi), denote elementary r adapted processes

with a ∈ HinfΔ1∧···∧infΔr and each zi ∈ Rn
+. We define the type r quasi-free integral Sr of

h over Rz to be

Sr(h, z, f1, . . . , fr) =
∫
Rz

. . .

∫
Rz

h(z1, . . . , zr)db
#
z1
(f1) . . . db

#
zr(fr)

= a
r
π
i=1
b#(χ

Δi∩Rz
fi)

where b# may denote either b or b∗. We extend by linearity to H-valued simple adapted

processes.

The quasi-free CCR stochastic integrals are similarly defined in terms of c#.

Type r integrals for both the CAR and CCR cases each result in 2r different possible

stochastic integrals, two type I and four type two integrals, and so forth. Each of the

integrals satisfies isometry conditions and extends via isometry to a completion of the

H-valued simple adapted processes. As with Clifford Stochastic integrals, it may be

shown that theses integrals are orthogonal to each other, orthogonal to Ω and generate

families of martingales.

Theorem 13. The type r quasi-free CAR quantum stochastic integral satisfies the

isometry property.

Proof. We consider the isometry condition for the Quasi free CAR case. Let h denote a
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simple r - adapted process over Rn
+. Then

‖ Sr(h, z, f1, . . . , fr)‖22 =‖
∫
Rz

. . .

∫
Rz

h(z1, . . . , zr)db
#
z1
(f1) . . . db

#
zr(fr)‖

2
2

= ‖Σ
i
ai

r
π
j=1
b#(χ

Δj∩Rz
fj)‖22

= (Σ
i
ai

r
π
j=1
b#(χ

Δj∩Rz
fj)Ω,Σ

k
ak

r
π
l=1
b#(χ

Δl∩Rz
fl)Ω)

= Σ
i, k
(ai

r
π
j=1
b#(χ

Δj∩Rz
fj)Ω, ak

r
π
l=1
b#(χ

Δl∩Rz
fl)Ω)

= Σ
i
‖(ai

r
π
j=1
b#(χ

Δj∩Rz
fj)‖22

The off-diagonal elements all disappear to give the last line. This follows by noting that

ai, ak and
r
π
j=1
b#(χ

Δj∩Rz
fj) ∈

r
∨
p=1

p �=q

Upzk , ai, ak and
r
π
l=1
b#(χ

Δl∩Rz
fl) ∈

r
∨
q=1

q �=p

U qzl and b
# is both a

r
∨
p=1

p �=q

Upzk and a
r
∨
q=1

q �=p

U qzl martingale.

The point here is that if the off diagonals are different then there is always one increment

in Rn
+ that can be isolated from the others. Taking conditional expectations with

respect to the filtrations provides the result. Alternatively [85], we can use the property

that ω(
r

Π
i=1
b∗(fi)

r

Π
j=1
b(gr−j) may be expressed in terms of the ω(b∗(fi)b(gr−i)) which for

disjoint sets is zero. To continue with the diagonal elements, we obtain the following:

Σ
i
‖(ai

r
π
j=1
b#(χ

Δj∩Rz
fj)‖22 = Σ

i
(
r
π
j=1

Ω, b#
∗
(χ

Δj∩Rz
fj)a

∗
i ai

r
π
j=1
b#(χ

Δj∩Rz
fj)Ω)

= Σ
i
(Ω, a∗i ai

r
π
j=1
b#

∗
(χ

Δj∩Rz
fj)

r
π
j=1
b#(χ

Δj∩Rz
fj)Ω)

using the ω product [33] we obtain
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=

⎧⎪⎪⎨
⎪⎪⎩
Σ
i

r
π
j=1
ω(b∗(χ

Δj∩Rz
fj)b(χΔj∩Rz

fj))(Ω, a
∗
i aiΩ) for b# = b

Σ
i

r
π
j=1

(Δj ∩Rzfj , Δj ∩ Rzfj)− ω(b∗(χ
Δj∩Rz

fj)b(χΔj∩Rz
fj)(Ω, a

∗
i aiΩ) for b# = b∗

with appropriate modifications for a mixture of integrators b∗ and b

=

⎧⎪⎨
⎪⎩
Σ
i

∫
Δ1
. . .

∫
Δr
ρr(z)|f1(z)|2 . . . |fr(z)|2 ‖ aiΩ‖22 dz . . . dz for b# = b

Σ
i

∫
Δ1
. . .

∫
Δr
(1− ρ(z))r|f1(z)|2 . . . |fr(z)|2 ‖ aiΩ‖22 dz . . . dz for b# = b∗

with appropriate modifications for a mixture of integrators b∗ and b

=

⎧⎪⎪⎨
⎪⎪⎩

∫
Rz
. . .

∫
Rz
Σ
i

r

Π
j=1
χΔi j

ρr(z)|f1(z)|2 . . . |fr(z)|2 ‖ aiΩ‖22 dz . . . dz for b# = b

∫
Rz
. . .

∫
Rz
Σ
i

r

Π
j=1
χΔi j

(1− ρ(z))r|f1(z)|2 . . . |fr(z)|2 ‖ aiΩ‖22 dz . . . dz for b# = b∗

=

∫
Rz

. . .

∫
Rz

(Σ
i
ai

r

Π
j=1
χΔi j

Ω, Σ
j
ak

r

Π
k=1

χΔk l
Ω) dμ(z)

=

∫
Rz

. . .

∫
Rz

‖ h(z)Ω‖22 dμ(z)

where dμ(z) = ρr(z)|f1(z)|2 . . . |fr(z)|2 ‖ aiΩ‖22 dz . . . dz for b# = b

and (1− ρ(z))r|f1(z)|2 . . . |fr(z)|2 ‖ aiΩ‖22 dz . . . dz for b# = b∗.

The orthogonality and centred martingale properties follow similarly for the general

quasi-free CAR case with similar developments for the quasi-free CCR model generating

the following results.
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Theorem 14. A given instance of a type r quasi-free (QF) CAR QSI is orthogonal to

different instances of type r QF CAR QSI’s and type s QF CAR QSI’s.

Theorem 15. Type r QF CAR QSI’s form centred martingales.

For the quasi-free CCR quantum stochastic integrals we do not have the Pauli Principle,

hence the creation and annihilation operators form unbounded operators [11]. We work

in this case with the ∗ - algebra of operators formed from sums and products of c#

operators and obtain the following result.

Theorem 16. Type r QF CCR QSI’s form orthogonal, isometric, centred martingales.

4.7 Representation Theorems

The general Representation Theorem for the Clifford case over the parameter space Rn
+

has been published in [110]. The quasi-free CAR and CCR case for n = 3 has also been

published in [115]. These two refereed papers are included in the appendices. The

general theorem for the Clifford model is:

Theorem 17. (The Clifford Representation Theorem) Let (Xz)z∈Rn
+
denote an

L2(A) valued martingale adapted to the family (Az)z∈Rn
+
of von Neumann subalgebras

of A. Then ∃ unique fi ∈ L2
ψn s.t.

Xz = X0 +
n

Σ
i=1
Si(fi, z)

The uniqueness of f, g, and h for the case n = 3 and the fi in the general case follows by

application of the conditional expectation operator and isometry.[119]

Proof. See [110] (Appendix C), for details.

For the quasi-free CAR and CCR case over R3
+, the theorem takes the following form.
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Theorem 18. (Quasi-Free CAR and CCR Representations) Let {Xz|z ∈ R}

denote a H-valued martingale. Then there exist unique α, f1, . . . f6 such that

X = αΩ+
2

Σ
i=1

∫∫
Rz

db#z′fi(z
′) +

6

Σ
j=3

∫∫
Rz

∫∫
Rz

db#z′db
#
z′′fj(z

′, z′′)

Proof. See [115] (Appendix C), for details.

Over Rn
+ each type r integral may generate 2r different quantum stochastic integrals.

These are determined by the r martingale integrators b# according to whether it

represents b or b∗. The theorems take the following form:

Theorem 19. (The General Quasi-Free CAR and CCR Representations)

Let {Xz|z ∈ R} denote a H-valued martingale. Then there exist unique α, and fi such

that

X = αΩ +
n

Σ
r=1

2r

Σ
i=1

∫∫
Rz

r

Π
j=1
db#jz′fi(z

′
1, . . . z

′
j)

Proof. Having established that we may represent any increment in Rn
+ to within ε of a

sum of type r increments, a combination of the approaches taken with the above papers

yields the result.

4.8 Summary

In this chapter we have discussed type r increments, general parameter spaces, developed

new type r quantum stochastic integrals and established that isometry, orthogonality

and martingale properties extend to these new integrals. We have developed

Representation theorems and have found that the growing complexity involved in using
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the geometric approach so far employed is no longer, the simpler intuitive approach that

was first conjectured with integrals over general parameter spaces. With this in mind we

look to develop an alternative approach in order to maintain the simpler intuitive

approach to this work. This is our focus for the next chapter.
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Chapter 5

Fubini’s Theorem

5.1 Introduction

In this chapter we explore the possibility for extending Fubini’s theorem from the

classical to the quantum setting for operators adapted to the filtration (Az)
i
z∈Rn

+
. Our

initial motivation for the development of this material is to simplify the proof for the

multiparameter quantum stochastic representation theorem, and is, we believe, a new

quantum development of the theorem.

5.2 i - Processes

Following the discussion given in chapter two on classical i-martingales we now develop

quantum i-filtrations, conditional expectations and martingales for stochastic processes

over Rn
+. The stochastic base that we will work with is the 6-tuple

(F(H), A, (Az)z∈Rn
+
, (Ai

z)z∈Rn
+

1≤i≤n

, g, Rn
+)

with F(H), A, (Az)z∈Rn
+
, g, Rn

+ defined earlier.

67
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Definition 45. We define

Ai
z = Ai

(z1, z2, ..., zn)
= A

(∞,∞,...,∞, zi,∞, ...,∞)
= ∨

zj
j �=i

A(z1, z2, ..., zj−1, zj , zj+1,... zn)

to be the von Neumann algebra generated by polynomials in ψ(z) such that the i-th

component of z ∈ Rn
+ is a fixed constant.

For this discussion we include the axes in our description Rn
+ and observe that

Az = ∩
i
Ai
z = ∪

z′≺ z
Az′ = ∩

z≺ z′′
Az′ (ultraweak closure), A = ∪

z
Az (ultraweak closure),

and Az ∩ Az′ = Az∧z′ (ultraweak closure). We say that (Ai
z) is an i-filtration if

∀z1 ≺ z2, Ai
z1
⊆ Ai

z2
is an increasing family of sub von Neumann algebras of A.

Definition 46. A process X is said to be an i-adapted (weakly adapted) process if

∀ z ∈ Rn
+ Xz ∈ Ai

z

and an i-martingale if

m(Xz′ | Ai
z) = X(z

′
1, z

′
2, ..., zi−1, zi, zi+1, ..., z

′
n)
.

So an i-martingale is a martingale with respect to its ith coordinate. If X is weakly

adapted for all 1 ≤ i ≤ n then X is said to be an adapted process.

It follows that m(Xz′ | Az) = m (m (. . . m (m (Xz′ |A1
z) |A2

z) . . . |An−1
z ) |An

z ) and that the

[15, 139] conditional commutativity (conditional independence) property (F4),

m
(
m

(
Xz′ |Ai

z

)
|Aj

z

)
= m

(
m

(
Xz′ |Aj

z

)
|Ai

z

)

holds for 1 ≤ i, j ≤ n. The following result therefore holds.
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Theorem 20. Let X = (Xn) denote a quantum stochastic process over Rn
+. Then X is

a martingale ⇐⇒ X is an i-martingale ∀ i ∈ {1, 2, . . . , n}.

Example 16. For the case n = 2 with z = (z1, z2) ∈ R2
+ the 1-filtration A1

z denotes the

von Neumann algebra generated by operators defined over the parameter space

[0, z1)× [0,∞) whilst the 2-filtration A2
z denotes the von Neumann algebra generated by

operators defined over the parameter space [0,∞)× [0, z2).

i-filtrations are analogues of classical i-filtrations described in [139] by John Walsh when

considering the possibility for 2-parameter stochastic processes being realised classically

as martingales with respect to one (or more) of the available parameters.

5.3 Fubini

The classical Fubini theorem for integrals may take the following form:

Theorem 21. [140] Let x ∈ I1 ⊂ Rm, and y ∈ I2 ⊂ Rn with I1, I2 compact closed

intervals. Let f(x, y) ∈ L(I), I = I1 × I2. Then

i) for almost every x ∈ I1, f(x, y) is measurable and integrable on I2 as a

function of y;

ii) as a function of x,
∫
I2
f(x, y)dy is measurable and integrable on I1 and

iii)
∫ ∫

I
f(x, y)dx dy =

∫
I1
[
∫
I2
f(x, y)dy]dx

For I ⊂ R2
+, m = n = 1 with both I1 and I2 compact closed intervals in R, with

∫ ∫
I

f(x, y)dx dy =

∫
I1

[

∫
I2

f(x, y)dy]dx =

∫
I2

[

∫
I1

f(x, y)dx]dy

For the quantum setting we consider three forms that can be interpreted as quantum

analogues of Fubini’s theorem.
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5.4 First Form

Let h(z1, z2) = aχΔ1χΔ2 with Δ1
∧
∧Δ2 and a ∈ AinfΔ1∨infΔ2 denote a type 2 elementary

adapted process with Δi ⊂ R2
+. The type 2 quantum stochastic integral for h with

respect to Ψ is of the form

Sr(h, z, f1, f2) =
∫
Rz

∫
Rz

h(z1, z2)dψz1(f1)dψz2(f2) = a
2
π
i=1
ψ(χ

Δi∩Rz
fi)

in which Rz denotes the region of integration in R2
+, Rz a closed rectangle with

inf Rz = (0, 0), the origin.

We note that if a ∈ AinfΔ1∨infΔ2 then a ∈ A1
infΔ1∨infΔ2

and a ∈ A2
infΔ1∨infΔ2

. Following

the presentation given by John Walsh [139], for the classical setting we develop

analogues of type i-stochastic integrals for the quantum setting.

Definition 47 (Type i-Quantum Stochastic Integrals). Let hi denote an elementary

i-adapted process over R2
+ of the form hi(z) = aχ

Δ
(z) with a ∈ Ai

inf Δ, i ∈ {1, 2}.

A type i - quantum stochastic integral for an elementary i - adapted process h with

respect to Ψ is of the form

S(h, z, f) =
∫
Rz

hi(z
′)dΨ(f) =

∫
Rz

aχ
Δ
(z′)dΨ(f) = aΨ(χ

Δ∩Rz(z
′)f)

As with previous definitions for quantum stochastic integrals, the above integrals extend

by linearity to simple processes.

Over R2
+, a type 2 integral S2 with Δ1

∧
∧Δ2 we note that a ∈ A1

inf Δ2
, a ∈ A2

inf Δ1
,
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aΨ(χ
Δ1

∩Rzf1) ∈ A1
inf Δ2

, and aΨ(χ
Δ2

∩Rzf1) ∈ A2
inf Δ1

from which it follows that

S(h, z, f1, f2) =
∫
Rz

∫
Rz

h(z1, z2)dΨ(f1)dΨ(f2) =

∫
Rz

(

∫
Rz

aχ
Δ1
dΨ(f1))χΔ2

dΨ(f2)

=

∫
Rz

aΨ(χ
Δ1∩Rz

f1)χΔ2
dΨ(f2)

= aΨ(χ
Δ1∩Rz

f1)Ψ(χ
Δ2∩Rz

f2)

= a
2

Π
i=1

Ψ(χ
Δi∩Rz

fi)

If we denote the integral
∫
Rz

∫
Rz

h(z1, z2)dΨ(f1)dΨ(f2) by SΔ1Δ2 then it follows from the

CAR’s that SΔ1Δ2 = −SΔ2Δ1. So a change in the order of integration changes the sign of

the integral. For a general type r integral on an elementary adapted process we obtain,

as an application of the CAR relationship, the following proposition.

Proposition 3. Let
r

Π
i=1

Δi = Δ1Δ2 . . .Δr denote χΔ1χΔ2 . . . χΔr with

Δi
∧
∧Δj ∀i. j ∈ {1, 2, . . . , r}. Let P denote a permutation of the integers 1, 2, . . . , r, and

ε(P ) =

⎧⎪⎨
⎪⎩
1 if P is an even permutation,

−1 if P is an odd permutation.

.

Let a be a product of Ψ’s with Ψ ∈ Az with z = sup
r
∨
i=1
{inf Δ1, . . . inf Δi, . . . inf Δr}.

Then S r
Π
i=1

Δi

= (−1)tε(P ) m
Π
i=1

ΔP (i)

S r
Π

j=m+1
ΔP (j)

with t =

⎧⎪⎨
⎪⎩
0 for a even,

m for a odd.

.

Here m ∈ N+, 1 ≤ m ≤ r and a ∈ Az is generated by products of the Ψ’s. In general

a ∈ Az is the limit of sums and products of the Ψ’s. The above result extends by

linearity to simple sums and products. For the general case a ∈ Az, a is either even, or

odd or a sum of even and odd ai ∈ Az. It follows that the next theorem holds.
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Theorem 22. Let h ∈ L2(A). t =

⎧⎪⎨
⎪⎩
0 for h even,

m for h odd

.

Then S(h) r
Π
i=1

Δi

= (−1)tε(P ) m
Π
i=1

ΔP (i)

S(h) r
Π

j=m+1
ΔP (j)

Proof. Let hj ∈ L∞(A) L2

−→ h ∈ L2(A). Then ∀j, hj is a sum of even and odd products.

Let h+j denote the sum of even products and h−j denote the sum of odd products. Let

h+ = L2 − lim
j→∞

h+j , h
− = L2 − lim

j→∞
h−j and h = h+ + h− in L2(A). So for each j we group

the sum of even and odd parts with L2 limits h+ and h− respectively, with h = h+ + h−.

We note that

S(hj) r
Π
i=1

Δi

= S(h+j ) r
Π
i=1

Δi

+ S(h−j ) r
Π
i=1

Δi

= ε(P ){ m
Π
i=1

ΔP (i)

S(h+j ) r
Π

j=m+1
ΔP (j)

+ (−1)m m
Π
i=1

ΔP (i)

S(h−j ) r
Π

j=m+1
ΔP (j)

}

= (−1)tε(P ){ m
Π
i=1

ΔP (i)

S(h+j ) r
Π

j=m+1
ΔP (j)

+ m
Π
i=1

ΔP (i)

S(h−j ) r
Π

j=m+1
ΔP (j)

}

= (−1)tε(P ) m
Π
i=1

ΔP (i)

S(h+j + h−j ) r
Π

j=m+1
ΔP (j)

Hence for h ∈ L2(A),

‖S(h) r
Π
i=1

Δi

− (−1)tε(P ) m
Π
i=1

ΔP (i)

S(h) r
Π

j=m+1
ΔP (j)

‖22

= ‖S(h) r
Π
i=1

Δi

− S(hj) r
Π
i=1

Δi

+ (−1)tε(P ){ m
Π
i=1

ΔP (i)

S(hj) r
Π

j=m+1
ΔP (j)

− m
Π
i=1

ΔP (i)

S(h) r
Π

j=m+1
ΔP (j)

}‖22

≤ ‖S(h− hj) r
Π
i=1

Δi

‖22 + ‖ m
Π
i=1

ΔP (i)

S(hj − h) r
Π

j=m+1
ΔP (j)

‖22 −→ 0 as j →∞ by isometry

The first form demonstrates that a type r quantum stochastic integral can be viewed as

a multiple integral in which the order of integration is (up to sign difference),
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commutative. Comparing the first form for r = 2 (for example), with the ‘classical’

Fubini, we note that first form multiple integration is still performed over ‘R2
+’ rather

than ‘R+’ (or ‘R’ ) and that this extends to the general case.

We now therefore seek an alternative form of Fubini Theorem such that each of the

integrators in our multiple integral, live in dimensions lower than those initially given,

consistent with the classical case, whereby a type r integral may be seen as a

combination of type m and type n integrals with m+ n = r. We will fix a ∈ Az for the

following discussion, focusing primarily upon the parameter space Rn
+.

5.5 Second Form

In this section we propose an alternative form of Fubini theorem for type r quantum

stochastic integrals over Rn
+, that focuses on varying underlying parameter spaces Rm

+

and Rm′
+ (with m+m′ = n), upon which the martingale integrators (Ψz) depend rather

than the integrators themselves. This involves a change of focus and interpretation from

the first form of Fubini theorem.

For elementary adapted processes over the parameter space R2
+, integrals over Rz

generate operators that are a combination of type 1 and type 2 operators aΨ(χ
Δ∩Rz

f),

and aΨ(χ
Δ1∩Rz

f1)Ψ(χ
Δ2∩Rz

f2). For the general parameter space Rn
+ we obtain Integrals

(operators) that are a combination of products of the form a
r

Π
i=1

Ψ(χ
Δi∩Rz

fi) with

1 ≤ r ≤ n.

Let n = 2. For type 1 and 2 QSI’s (quantum stochastic integrals) Δ is a rectangle in R2
+

which may be partitioned in various ways. Let Δ be partitioned along the

‘horizontal’axis generating p regions Δi of equal area. It follows that a type 1 QSI may
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be expressed in terms of vertical and horizontal ‘increments.’

∫
Rz

aχ
Δ
dΨ(f) = aΨ(χ

Δ∩Rz
f) =

p

Σ
i=1
aΨ(χ

Δi∩Rz
f) =

p

Σ
i=1

∫
Rz

aχ
Δi
dΨ(f)

= lim
p−→∞

p

Σ
i=1
aΨ(χ

Δ∩Li∩Rz
f) as the rectangles Δi → vertical lines Li in Δ

=

∫
Rz∩Δ

∫
Rz∩Li

aχ
Δ
dΨ(f)dz1 where z1 denotes the horizontal variable.

The first part of the stochastic integral is similar to classical line integrals over R2
+ [138]

whilst the double integral is similar to a stochastic Fubini integral [58], (see also chapter

2) a combination of Lesbegue and stochastic integrals.

For the type 2 QSI we consider Ψ as an A1
z martingale process (which we will denote by

Ψ1) for Δ1, and as an A2
z martingale process Ψ2 for Δ2. A type 2 QSI may be expressed

as

∫
Rz

∫
Rz

aχ
Δ1∩Rz

dΨ(f1)χΔ2∩Rz
dΨ(f2)

= aΨ(χ
Δ1∩Rz

f1)Ψ(χ
Δ2∩Rz

f2)

= aΨ1(χ
Δ1∩Rz

f1)Ψ
2(χ

Δ2∩Rz
f2)

=

∫
Rz∩Δ2

∫
Rz∩Lj

⎛
⎝ ∫
Rz∩Δ1

∫
Rz∩Li

aχ
Δ1
dΨ1(f1)dz1

⎞
⎠χ

Δ2
dΨ2(f2)dz2

=

∫
Rz∩Δ2

∫
Rz∩Δ1

⎛
⎜⎝

∫
Rz∩Lj

∫
Rz∩Li

aχ
Δ1
dΨ1(f1)χΔ2

dΨ2(f2)

⎞
⎟⎠ dz1dz2

=

∫
Rz∩Δ1

∫
Rz∩Δ2

⎛
⎜⎝

∫
Rz∩Lj

∫
Rz∩Li

aχ
Δ1
dΨ1(f1)χΔ2

dΨ2(f2)

⎞
⎟⎠ dz2dz1

The last line follows since the sums for the approximations relating to the outer
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integrals can be summed in any order.

We therefore have a relationship between the first and second form of Fubini Theorem

for the case n = 2. What then of the general case?

For the general parameter space Rn
+, type r QSI’s involve working with integrators Ψ

that are martingales with respect to filtrations of the form ∨
i
Ai and may be expressed in

the form

a
r

Π
i=1

Ψ(χ
i
fi) =

∫
Rz∩Δ1

. . .

∫
Rz∩Δr

⎛
⎜⎝

∫
Rz∩Lir

. . .

∫
Rz∩Li1

aχ
Δ1
dΨ1(f1) . . . χΔr

dΨr(fr)

⎞
⎟⎠ dzr . . . dz1

=

∫

Rz∩
(

r
∪

i=1
Δi

)

⎛
⎜⎝

∫
Rz∩Lir

. . .

∫
Rz∩Li1

aχ
Δ1
dΨ1(f1) . . . χΔr

dΨr(fr)

⎞
⎟⎠ dz1

Proposition 4. Let {Ψ} denote a stochastic process defined over Rn
+.

Then:

{Ψ} is a martingale over Rn
+ ⇐⇒ {Ψ} is an i− martingale for 1 ≤ i ≤ n

⇐⇒ {Ψ} is a martingale over Rn−1
+ for 1 ≤ i ≤ n.

Proof. (=⇒) This follows from the definition of martingale applied to (Ψ(χΔ)), a linear

stochastic process with Δ ⊆ Rn
+ expressed in terms of the regions Rz.

(⇐=) Az =
r
∧
i=1
A i
z ⊂ A i

z for 1 ≤ i ≤ r. Repeated application of the conditional

expectation with respect to A i
z establishes the martingale property, both for Rn

+ and

Rn−1
+

Remark 1. Given a stochastic process {Xz}z∈I with Δi ⊆ Rn
+ and

Xz ∈ A = L∞(A) ⊆ L2(A) we note that A is generated by sums and products of the

form
m

Σ
j=1

r

Π
i=1
ψij with ψij = ψj(χΔi

fi). We would like to consider Xz in terms of a slightly



76 CHAPTER 5. FUBINI’S THEOREM

different form
r

Π
i=1
ψi, an extended, more general stochastic processes, still related to Xz

via linearity and isometry, as required. The QSLI’s developed in the second form, have

given us a significant move in this direction. If the fi can be associated with projections

over Rn−1
+ then Xz will have ‘images’ over Rn−1

+ of the form X
′
z =

r

Π
i=1
ψ

′
i with

ψ
′
i = ψ

′
(χ

Δi
fi) and fi ∈ L∞(Rn−1

+ ). These will be QSI’s over Rn−1
+ with martingale

integrators associated with those used over Rn
+.

5.6 Third Form

We now consider Az, with a view to expressing these in terms of QSLI’s. Each a ∈ Az

is, by construction, formed from sums and products of the ψ(Δi)s with Δi ⊆ Rn
+ or, the

weak / strong limit of such sums and products. Each of the ψ(Δi) is a QSI’s, (or a limit

of such sums) and hence may be expressed in terms of QSLI’s. The integrals may be a

variety of integral types, from type r integrals to type i integrals, each may be

interpreted as a QSLI and any product
p

Π
i=1
ψ(Δi) may be viewed as nested QSLI’s.

Extending the approach taken in the second form to include operators in Az as nested

QSLI’s allows us to view our type r QSI’s as a sum of slices from corresponding algebras

defined over Rn−1
+ . Although the fi issue is still not resolved, we have moved far enough

to achieve one of our goals which is to simplify the proof for the Representation theorem

further, since convergence obtained for type r QSI over Rn
+ to products of the Ψ’s via

the cutting process can now be applied at much lower dimensions and followed by

inductive arguments for products over Rn
+.

5.7 Representation Theorem

Following our discussion at the end of the last chapter and the discussion here on QSLI’s

we note that QSLI’s may be employed in the proof to the representation theorem. For
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(ψ) a Rn
+ martingale it follows that (ψ) is an Rn−1

+ martingale. Proceeding as in previous

examples with the cutting process [110] we may show that for n = 2 sums and products

of ψ’s in L2(A) may be expressed as a sum of type r QSI’s or at worst the limit of a sum

of type r QSI’s. Assuming that the result holds for products of ψ’s over Rn−1
+ we can use

an induction argument via the QSLI ‘sheets’which may be viewed as martingale

processes over Rn−1
+ . Applying the cutting process to increments in Rn

+ cuts increments

associated with the QSLI ‘sheets’over Rn−1
+ . Since this holds for each of the n Rn−1

+

‘planes’ the result follows over Rn
+. The same argument holds for the quasi-free cases

over Rn
+.

In particular, we note:

1) for any product X, in the Clifford or quasi-free models we may apply the quantum

stochastic Fubini Theorem and focus on the ‘slices’through the difference between X

and the type r approximations to X ;

2) for fi ∈ L2(Rn
+) we note that fi is a an equivalence class, which we may represent as

[fi] and from which we may choose any representative fi. Each fi can be sliced parallel

to the plane Rm
+ with 1 ≤ m ≤ n and for each slice we may associate the fi ∈ L2(Rn

+)

with the family of slices parallel to the plane Rm
+ .

3) for each slice f̃i, the difference truly lies in the algebra generated by the elements

ψ(Δif̃i) with Δi ⊆ Rm
+ and f̃i ∈ L2Rm

+ ).

4) with each slice defined over Rm
+ we may employ an inductive argument, commencing

with n = 2, where such slices, each tend to zero as the number of cuts tends to infinity

and hence that the original difference over Rn
+ also tends to zero.

Remark 2. The slicing approach discussed above creates a link between martingales

over Rm
+ and i-martingales over Rn

+ which can be employed also, for example, in the

proof that quantum stochastic integrals are martingales.
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5.8 Summary

In this chapter we have worked with i-processes, to develop different forms of Fubini

theorem which we have applied to the Representation theorem in order to simplify the

proof given. In the next chapter we begin the development of two new applications of

quantum stochastic integrals to tools employed in cryptographic and voting protocols.



Chapter 6

Applications

6.1 Introduction

In this chapter we look at some applications to which we may apply our quantum

stochastic integrals. The applications considered relate to some of the tools employed in

a security setting, where we find a range of algorithms and protocols relating to

authentication, anonymity, confidentiality, integrity, and non-repudiation. Many of these

tools rely on finite field theory and in particular properties of cyclic groups, to achieve

their aims. With the appearance of Shor’s algorithm [100, 101], concerns regarding

many of these algorithms emerged, particularly for government and commercial

ventures, in which the perception held was that they would affect the long term viability

of such classically based schemes. The quantum setting, however may offer possibilities

for the future, and investment in quantum research relating to computing,

communication and security has been forthcoming. In the next two sections, we meet

background material set in qubit based multipartite systems. The purpose of this is to

set in context the influences and motivation for the remaining sections in which cyclic

groups are constructed using quantum stochastic integrals and quantum

implementations are described, with a view to future development.

79
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6.2 Quantum Cryptography

Classical cryptography protocols based on cyclic groups are generally based upon the

perceived difficulty in solving either the Integer Factorisation Problem (IFP), or the

Discrete Logarithm Problem (DLP). Both of these problems are believed to belong to

the NP complexity space, however no known proof to support this belief exists.

Central to many of the constructions employed in the classical setting and also found in

the quantum setting is the concept of generator, or primitive, an element that can be

used to generate a cyclic group under the repeated application of a binary operation

such as addition or multiplication relative to an irreducible divisor. Examples from

classical cryptography [122, 124], include both symmetric and asymmetric key systems.

A symmetric key system involves the use of one key, shared between a sender and

receiver to encrypt and decrypt data in a communication. The Advanced Encryption

Standard [22], and the Data Encryption Standard are two such examples. For

asymmetric key systems [25] we meet algorithms based on the [1], integer factorisation

problem (IFP), such as RSA, the Rivest, Shamir, Adleman algorithm, the discrete

logarithm problem (DLP) with the El Gamal algorithm [37], the elliptic curve discrete

logarithm problem (ECDLP) with again the El Gamal algorithm, Menezes, Vanstone,

Okamoto algorithm, the hyperelliptic curve discrete logarithm problem (HCDLP) [19],

and pairing based schemes, with the Tate Pairing and Weyl Pairing. In contrast to

algorithms used for confidentiality purposes, finite fields may also be employed to help

maintain integrity and develop authentication tools. Examples of these are to be found

in, for example, network analysis, [83]. for the successful delivery of network traffic.

Various anonymity protocols make use of finite field theory, [17] with applications based

on the application of generated fields from algebraic number theory and algebraic

geometry. These lead to the employment of finite fields, [59, 74] elliptic curves, [60]

hyperelliptic curves and pairings, for the development of secure algorithms. Secure that
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is, unless Shor’s algorithm [100, 101], can be efficiently implemented in a quantum

computer. If or when this happens, asymmetric key schemes based on either the IFP,

DLP, ECDLP, or HCDLP will, be rendered obsolete.

In the quantum setting finite fields have appeared concerning the complexity of

performing Galois field arithmetic [123], in Shor’s algorithm for the IFP and DLP, with

phase space [56] defined over finite fields and with maximally unbiased bases

[42, 73, 84, 43] together with Galois rings and operators [106, 107].

6.3 Observations on Irreducibility, Operators and Algebras

In this section concepts of entanglement, irreducibility and prime are introduced with

the discussion centering on similarities and differences that exist between constructions

involving entanglement and their classical counterparts as found in, for example,

algebraic number theory. We observe throughout this discussion that being prime,

irreducible or entangled is not, in general, a permanent state, but one very much

dependent upon the set in which the object resides. The definition for a prime may be

presented in various ways1, for example in terms of D an integral domain, or in terms of

algebraic numbers.

Definition 48. (Prime) Let p ∈ D with D an integral domain, s.t. p �= 0, 1. Then p is

said to be prime if p = ab with a, b ∈ D =⇒ p|a or p|b but not both.

Definition 49. (Algebraic Integers) [76] Let α ∈ C be a root of a monic polynomial

f(x) ∈ Z[x] of degree d, with d the minimum degree such that α is a root of such

polynomial. Then α is said to be an algebraic integer of degree d.

In terms of algebraic numbers p ∈ R (a commutative ring with identity) is said to be

prime if it is not a unit and p|mn =⇒ p|m or p|n
1A number divisible by itself and 1 only, but not 1.
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Definition 50. (Irreducible) An object a in a ring R with identity 1R is said to be

irreducible if a = bc �= 0, with b, c ∈ R =⇒ b or c is a unit. A unit in a commutative ring

R is an element α ∈ R s.t. ∃β ∈ R with αβ = 1R.

It is well known that in a unique factorisation domain [UFD] an irreducible is prime but

that otherwise irreducibles are not always prime. In general we have

{primes} ⊆ {irreducibles} with equality guaranteed only within a UFD.

Theorem 23. (The failure of Unique Factorisation is the failure of

Irreducibles to be Prime) [76]. Let F be a number field and α an element in the

ring OF of algebraic integers lying in F . Then α can be factored into a product of

irreducible elements. Moreover, every non-zero α ∈ OF has such a unique factorisation

into a product of irreducibles, up to order and associates if and only if every irreducible

element of OF is prime.

Example 17. In Z(
√
2,
√
5) 3 = 1× 3 = (

√
5−

√
2)(
√
5 +

√
2). It follows that 3 is not

prime in Z(
√
2,
√
5).

In the case of mixed states the situation is not quite so straightforward. A separable

mixed state may be expressed as a linear combinations of tensor products in which the

components of each tensor product contains a linear factor, a superposition of

fundamental qubit states. Otherwise it is an entangled state. Recognising that a mixed

state is separable [30] is not always straightforward.

6.3.1 Entanglement - spatial separation with local unitaries

For the case of Hn, n ∈ R it is well known [32, 79] that local unitary operations preserve

entanglement. Of particular interest to the discussion in hand is the following definition

regarding equivalent states.
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Definition 51. Equivalent States under LOCC [77, 75, 136] Two states |ψ〉 and |φ〉

are said to be equivalent under LOCC (Local Operations with Classical

Communication) if ∃ local unitaries M1, . . . Mn s.t.|ψ〉 =M1 ⊗ · · · ⊗Mn|φ〉.

In 1742 Goldbach conjectured that ∀n ∈ N, n even, could be expressed as a sum of two

primes or ones. It followed, given the truth of the conjecture that ∀m = 2n + 1, with

m ≥ 7, m could be expressed as the sum of three odd prime numbers. Euler responded

with the conjecture that ∀m = 4n+ 2, m ≥ 6, m could be expressed as the sum of two

primes, each of the form 4n+1 or one. In considering a corresponding case for entangled

states it is clear that all states may be expressed in terms of entangled states since, for

example the Bell states form a basis for any Hilbert space H under consideration.

Theorem 24. Let the volume of a separable state be bounded. Then every separable

state may be expressed as sum of two entangled states

Proof. Given a separable state |ψ〉 ∃ (since the state is bounded [53] say by ε) an

entangled state outside of the epsilon ball. Let |φ〉 denote the entangled state found and

|ξ〉 the difference between them. Then |ψ〉 = 1
2
((|ψ〉+ |ξ〉) + (|ψ〉 − |ξ〉)) with (|ψ〉 ± |ξ〉)

both entangled.

The fundamental theorem of arithmetic states that any integer may be uniquely

expressed (up to order of factors) as a product of primes. This begs the question as to

whether such a result exists for the states of an arbitrary Hilbert Space.

Theorem 25. Every pure state may be uniquely expressed as a product of separable

and/or entangled states.

Proof. A state |ψ〉 ∈ Hn is either entangled or decomposable [44]. If it is entangled then

we are done. If it is decomposable then |ψ〉 = |φ〉r ⊗ |ξ〉s ∈ Hr ⊗Hs = Hn with

0 < r, s < n.
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Consider |φ〉r ∈ Hr (the same argument will hold for |ξ〉s ∈ Hs). If |φ〉r is entangled

then |ψ〉 is a product of an entangled state and |ξ〉s. If |φ〉r is decomposable then we

may express |φ〉r as a product of states each belonging to Hilbert spaces with smaller

dimension than Hr. Continuing with this process we obtain products involving either

entangled states or states in H - a superposition of say |0〉 and |1〉. |φ〉r is therefore a

product of entangled and/or ’separable’ sub states formed from H. Applying the same

argument to |ξ〉s gives the result. For uniqueness consider the inner product applied to

two possibly different representations of |ψ〉.

Entanglement, irreducibility and being prime are each dependent upon the space against

which they are referenced, so it is natural to seek a condition that is not dependent

upon the space under discussion. One such condition is the greatest common divisor and

we use this to motivate the following definition.

Definition 52. Let {|φi〉}ni=1 denote elements in a Hilbert space H. Then the elements

{|φi〉}ni=1 are said to be relatively entangled if there are no common factors throughout.

One can think of relative entanglement as the analogue of coprime for irreducible or

prime numbers and one could equally well refer to relative entanglement as

coentanglement.

Theorem 26. The relatively entangled pure states are invariant under a change of

ambient space as are relatively entangled classes

Proof. In losing entanglement via global unitaries being realised as local ones, and

unitary equivalence being achieved between the once entangled state and separable

states, the once entangled representation still retains its non factorisable property. Thus

relative entanglement is maintained.
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This section opens up discussion on the comparison between entanglement, irreducibility

and primes leading to the possibility for further research in a number of related

directions. In particular, the density of entangled states (and separable states) in a fixed

n-dimensional Hilbert space, congruency, analogues for finite fields and applications. On

the one hand it is a cautionary note, being irreducible is a relative statement that can

quickly change. It is also a motivating note as we explore an alternative approach to

realising cyclic groups via quantum stochastic integrals.

6.4 Generators in a von Neumann Algebra - Fubini

Each stage of integration with a Fubini quantum integral generates an operator

ψ(χΔi
) ∈ A leading to a sequence (ψ(χΔi

))i with 1 ≤ i ≤ r. Each of the ψ(χΔi
) satisfy

the CAR properties and hence are of period 2 satisfying ψ(χΔi
)ψ(χΔi

) = I for |Δi|2 = 1
2
.

The order in which we apply the Fubini sub-integrals leads, up to sign difference, to the

same result. However the application of each sub-integral generates rCs =
r!

s!(r−s)!

possible ways of realising a product of s ψ(χΔi
)′s from the r available. So it is possible

to generate a final stochastic integral in a variety of different ways. It follows that we

may associate a variety of different sequences with any given quantum stochastic Fubini

integral. Not only can we generate a particular sequence, but for applications of the

sub-integrals beyond r we can generate alternative sequences back to a constant

multiple of the identity operator in A. So, i- filtrations may be employed to generate

any product (and hence sequence) of ψ(χΔi
)′s. For notational simplicity we will refer to

each ψ(χΔi
) as ψi.

Example 18. (Sequence) Let 1 ≤ n, i ≤ 3. For any of the Δi ⊆ R3
+ we can generate

each of the ψi in any order, (and separately). So we can generate a sequence of elements
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as shown below. Note, we ignore sign differences as at ψ3:

I
ψ1−→ ψ1

ψ2−→ ψ1ψ2
ψ3−→ ψ1ψ2ψ3

ψ1−→ ψ2ψ3
ψ2−→ ψ3

ψ3−→ I

Here we apply the QSI process to the sequence χΔ1χΔ2χΔ3χΔ1χΔ2χΔ3 in turn. The QSI

process applied to χΔi
with respect to i filtrations we identify as a cyclic process with

outcome determined by the original sequence χΔ1χΔ2χΔ3χΔ1χΔ2χΔ3 .

We therefore have a method for generating a collection of elements which are cyclic in

nature via the QSI acting as primitive. The outcome is not dependent upon the binary

operation, irreducibility and starting element but on n, r, the increments Δi, and the

order in which the i-integrals are applied.

Example 19. Group Properties Closure, associativity, identity, and inverse

properties follow from the algebraic properties of the von Neumann algebra A.

Commutativity is anticommutative for CAR algebras and commutative for CCR

algebras. For ψi we have anticommutativity. To obtain commutativity we either need to

ignore signs (CAR Fermion case) or use CCR Boson algebra.

Standard classical examples for cyclic groups include Zp, Z[x]/f(x) in which f(x)

denotes an irreducible function and Ep(a, b) elliptic curves defined over finite fields.

Such groups have been used with success in error detection [65, 83], correction [65, 68, 2]

and cryptology [19, 22, 25, 28, 37, 31, 36, 59, 60, 61, 74, 3, 102, 105]. For the quantum

setting we consider the following examples.

Example 20. Discrete Logarithm Problem Given a cyclic group as described above

with orbit 2r the Diffie Hellman Problem is to establish the value x such that the xth

application of the quantum stochastic i integral process generates the given product
s

Π
i=1
ψi The hidden element here is the order of integration.
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Example 21. Diffie-Hellman Key Agreement Protocol We use an example to

illustrate the protocol.

Let Alice and Bob agree a type 2 (2,1) product of ψχΔ’s over R
2
+. For our example let

Alice use a pair of Δ’s, Δ1 and Δ2 such that the z2 coordinates for inf Δ1 and inf Δ2 are

the same. Let Bob use one Δ3 cockeyed to the pair of Δi chosen by Alice. So for

i ∈ {1, 2}, Δi
∧
∧Δ3.

Alice sends to Bob ψ(χΔ1)ψ(χΔ2) to which Bob applies ψ(χΔ3) and Bob reciprocates

sending ψ(χΔ3) to Alice who applies ψ(χΔ1)ψ(χΔ2). Both Alice and Bob have now

agreed the same quantum ‘key’.

This is susceptible to a ‘man in the middle attack’ as is the classical Diffie Hellman key

agreement protocol, but the example illustrates as proof of concept.

The Diffie Hellman protocol can be used with n ∈ N+ and for r participants a type r

quantum stochastic i-integral can be employed.

Example 22. (El-Gamal)

We work with a particular value of n, throughout, for the parameter space.

Bob publishes his public key which involves a primitive α = Ψ(Δi), a starting operator

for the sequence, its i - integral β =
s

Π
j=1

Ψ(Δj), n the dimension for the parameter space

and r the type of integrals being used. Bob’s private key will consist of two elements, s

and the type r sequence of length 2r, in particular, the Δ’s used to generate the

i-integrals sent.

Alice selects, a type r sequence K of Δ’s

(
χΔπ(1)

, χΔπ(2)
, . . . , χΔπ(r)

, χΔ
π
′
(1)
, . . . , χΔ

π
′ (r)

)

in which π and π
′
are two randomly selected permutations of k ∈ Z

∗
r+1.

Let m denote the operator to be encrypted. Define encryption e(m,K) =
(
αk, mβk

)
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where k denotes the point to which integration takes place with respect to each of the

domains in Alice’s sequence - from position 1 to position k in Alice’s sequence. For

decryption we have d(e(m,K)) = mβkαkr = mαrkαkr = ±m subject to parity, by which

we mean the number of commutes required in order to obtain each of the ψ’s adjacent

to the same operator, thus generating m times a product of I’s. (As before we select the

Δ’s so that |Δ|2 = 1
2
.

A major problem for security protocols built on the Integer Factorisation Problem or the

Discrete Logarithm Problem is that they can be broken through repeated application of

Shor’s algorithm. The algorithm takes an element from the cyclic group and derives the

order of the element which is then used to break the original security protocol. Here we

have more information required to establish the cyclic group. In particular we need to

know the order for the application of the i-integrals and possibly information regarding

the starting ψ(Δi).

Conjecture 2. The above cyclic group is not susceptible to an attack using Shor’s

algorithm.

6.5 Quantum Voting

The first paper to be published on quantum voting was by Vaccaro, Spring and Chefles

[51] in 2005 closely followed by Buzek, Bielikova, Hillery, and Ziman [71] just two weeks

later. Both of these were preceded by a paper by Christandl and Wehner [18] on

quantum anonymity during 2004. There are various types of voting protocol available to

users [103] and for an introduction to the area we defer to [4, 12, 21, 34, 52, 81].
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6.5.1 The Ballot

We employ the use of a finite Fock space F2n(H) =
2n
⊕
i=0
Hi in which n denotes the

maximum number of voters in the ballot. The system (Fock space) is initialised with a

starting vector in Hn. The ballot will be in response to a question or statement

requiring a yes or no response. A yes / no response will reflect agreement /

disagreement with the question or statement posed. For a yes vote the creation operator

will be applied whilst for a no vote the annihilation operator will be applied. To obtain

a result we will apply the number operator, aa∗ to the result.

6.5.2 Voting Scheme for s candidates

One such voting scenario involves n voters casting votes, at a local tally centre where

authentication and anonymity protocols are employed. Once collected these are then

collected and securely sent to a central (global) tally centre for processing. We consider

one approach to recording each vote cast via creation operators on finite dimensional

Fock space.

We assume that once a vote is cast it will not be changed. This isn’t essential, but

simplifies the model. We use the creation operator a∗(fi) on a ‘finite’ Fock space

Fj(H) =

n⊕
i=1

Hi = C⊕H · · · ⊕ Hn 1 ≤ j ≤ n

to record a vote for each candidate. For fi ∈ L2(Rn
+) , we use a different f1, f2, . . . , fs to

represent each of the s candidates that a voter may access in the quantum voting scheme

under discussion. The Pauli exclusion principle for fermions states that no two fermions

can exist in the same state. Hence Fermi Fock space is inappropriate for this model and

we work with the Bose-Fock space F+(H), with H = L2(Rn
+). Given the existence of s

registered candidates for our voting scheme we take the s-tuple (F1,F2, . . . ,Fi, . . . ,Fs)



90 CHAPTER 6. APPLICATIONS

with each Fi ⊆ F+(H), to represent the occupancy space for candidate i.

Hence we have s possible finite dimensional Fock spaces that we use to record the voting

tally for each of the candidates. Each subspace of the sequence represents a tally space

for candidate i, recording the number of votes cast for the candidate through repeated

applications of the creation operator to the space Fi. The action of the creation

operator a(fi) on Fi to denote the casting of a vote for candidate i. So the idea here is

to use different Fock Spaces to represent each candidate. The application of a creation

operator each time a vote is made moves a state from Hr �→ Hr+1. Note that we could

add a further space upon which each vote is recorded to give a total tally for the votes

cast. The precise operator used to record a vote for candidate i being

I⊕ I⊕ · · · ⊕ a∗(fi)⊕ · · · ⊕ I.

An algorithm such as El Gamal could be employed to obscure the number of votes cast

for each candidate as the votes would be moved to different occupancy spaces until

decrypted at the central tally centre. Measurement, once again could be achieved via

the number operator.

To accommodate a change in vote one could employ the annihilation operator to move

the total number of votes cast for a candidate from one space to a lower occupancy

space.

6.6 Summary

In this chapter we have looked at a selection of concepts and influences found in the

qubit based multipartite setting related to cryptography and voting protocols. We have

described applications of quantum stochastic integrals to the development of quantum

based cryptography in terms of cyclic groups generated by quantum stochastic integrals,

Diffie - Hellman and El-Gamal algorithms and have further described applications to

quantum voting.



Chapter 7

Contributions to Knowledge and

Conclusions

7.1 Introduction

This chapter reviews the contribution to knowledge that this thesis makes and outlines a

range of research areas that could be developed as a result of this work.

7.2 Contribution to Knowledge

The original goals for this thesis were to develop general quantum stochastic integrals

focusing on the underlying parameter space as a means of simplifying concepts

previously worked with at an operator or vector based level but over Rn
+ rather than R

or R2
+. To explore relationships between stochastic integrals over Rm

+ and Rn
+ and to

develop applications for quantum stochastic integrals based on the Fock space models

presented here.

Our primary motivation, has been achieved.

• We have derived isometry, centred martingale and orthogonality properties for the

91
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general case with the Clifford and quasi-free setting. The Clifford results have been

presented at the Fifth International Conference on Applied Mathematics and

Computing. The paper was refereed and published in the International Journal of Pure

and Applied Mathematics.

• Representation Theorems have been developed over Rn
+ for the Clifford and quasi-free

CAR and CCR setting. The Clifford results have been presented at the 23rd Quantum

and White Noise Conference held at CIMAT, Guanajuato, Mexico and published as a

refereed paper1.

• The Quasi-free CAR and CCR Representation Theorems over R2
+ were presented at

the 28th Quantum and White Noise Conference held at Santiago, Chile. This research

was also refereed and published. The general case over Rn
+ is contained here.

• We have also identified irreducible parameter types for the general parameter spaces

Rn
+, established equivalence between different parameter types and used these to

generate simple proofs for, for example the Representation Theorems.

Relationships between different quantum stochastic integrals have been achieved.

• To this end we have developed Fubini like quantum stochastic forms. The first of these

involved general type r quantum stochastic integrals and relational properties were

explored.

• The first form was extended to a second quantum stochastic form involving quantum

stochastic line integrals. These were related to the commutative stochastic Fubini

Theorem and a relationship between the first and second form established.

• The second form has been extended to a third form. These have been applied to the

proof of the Representation Theorem, simplifying the proof over Rn
+.

Applications have been explored within a quantum cryptography setting. These we see

as work in progress providing proof of concept status. They constitute areas of interest

1This was significant for me in that not only did I have the opportunity to present my work to major researchers
in this area, and meet researchers whose work I had read but I also got to present at the same venue that John
Walsh had presented at some years earlier.
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for future research in an applied setting.

• As part of a team of three we have published the first research paper on quantum

voting and surveying. This paper was initially posted on xxx.lanl.gov and subsequently

published as a refereed paper in the Journal Physical Review A.

• We have identified a ‘cyclic’group structure generated by quantum stochastic integrals

with creation operators as integrator.

• We have used these to construct Diffie Hellman quantum key agreement protocols and

El Gamal encryption/decryption protocols. We have also applied the quantum

stochastic structure to develop a quantum voting model.

7.3 Future Research

Future work resulting from this thesis will include:

• Further research at the quantum stochastic level with Fubini like QSI’s, and path

integrals, viewed from a parameter base level,

• Development at the (stochastic) differential equation level following on from the

Representation Theorem,

• Applications. The security applications with Fock space are new areas of research and

as such can be developed with Quantum Probability models or qubit, qutrit models.

Quantum voting is a young area of research with many different forms of voting scheme

at the classical level.

7.4 Conclusions

We have reviewed the work achieved in this thesis and outlined areas for further

research. The applications achieve proof of concept and further research is underway.
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Appendix A

Cryptographic Algorithms

A.1 The Diffie Hellman Key Agreement Protocol

This is a classical key agreement protocol, in contrast to a key exchange protocol, since

neither sender nor receiver know the key until the end of the protocol. The protocol is

based upon the discrete logarithm problem and hence is based upon a finite

multiplicative cyclic group, generated by a primitive element α. The primitive α

generates the integers 1, 2, 3, . . . , p− 1, where p is an agreed prime number. α is often

referred to as a primitive root of p, by which we mean that α generates each of the

integers from 1 up to p− 1.

Definition 53. Given a finite cyclic group (G, ◦) with n elements we define a primitive

for the group to be any element α that generates the entire group under the binary

operation ◦. The finite cyclic group may be denoted by the symbol 〈α〉.

We recall the discrete logarithm problem:

Definition 54. Given a prime number p, primitive α, and β ∈ 〈α〉 = 1, 2, 3, . . . , p− 1,

(the cyclic group generated by α), the discrete logarithm problem is to find a value r

such that β = αrmod p.
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The protocol runs as follows:

Let Alice and Bob denote the senders and receivers.

1. Bob and Alice agree the primitive before starting the protocol.

2. Alice and Bob select secret random numbers a, and b respectively.

3. Alice sends αa to Bob whilst Bob sends αb to Alice.

4. Alice and Bob now possess the same key k = αab.

Alice and Bob can now use the same key in a symmetric key cryptography scheme [122]

such as DES (the Data Encryption Scheme) or AES (the Advanced Encryption Scheme)

to exchange data.

A.2 The Classical El-Gamal Encryption Scheme

Let Alice and Bob denote sender and receiver respectively. We therefore consider the

case in which Alice wishes to send ciphertext to Bob. Since this is a public key

cryptosystem Alice will use Bobs public key to encrypt the plaintext message and Bob

will decrypt using his private key.

The plaintext messages are broken into blocks of size less than p, p being a suitable

prime number, selected so that the DLP is unlikely to be broken during the time period

that security is sought. Different characters used in Alice’s plaintext messages are

associated with one and only one value in Z∗
p. For a trivial example, take

A = 1, B = 2, C = 3, . . .

A.2.1 The Classical El-Gamal Encryption and Decryption Algorithm

Bob’s public key is the triple (p, α, β), in which α is a primitive for Z∗
p.

Bob’s private key is r = logα(β).
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In addition to using Bob’s public key for encryption, Alice also selects a random number

k ∈ Zp−1 and uses this in the encryption process.

Given m ∈ Z∗
p, a plaintext value, encryption is defined to be

e(m, k) = (αkmodp,mβkmodp)

producing a ciphertext value in Z∗
p × Z∗

p. This is sent to Bob who decrypts the

ciphertext pair using

d(αkmodp,mβkmodp) = [mβkmodp((αkmodp)r)−1]modp
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Appendix B

Voting Protocols

B.1 Goals, Protocols and Algorithms

In any secure communication between two or more parties one is interested in achieving

a range of goals. Amongst these is authentication, confidentiality, integrity,

non-repudiation and, particularly in the case of voting, anonymity.

B.1.1 Authentication

Authentication involves convincing the parties that you wish to communicate with, that

you are entitled to communicate with them. In the case of your computer this involves

the provision of a username and password. For an election, a poll card, name and

address.

B.1.2 Confidentiality

Confidentiality involves keeping data confidential to oneself and those parties that are

intended should have access to the data. Confidentiality is often achieved through a

combination of symmetric and/or asymmetric cryptographic algorithms. Examples of

symmetric algorithms could include AES [22] (the Advanced Encryption Scheme) and
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DES [67] (the Data Encryption Standard). Examples of asymmetric algorithms could

include RSA [1] (the Rivest, Shamir, Adleman algorithm whose security relies upon on

the perceived difficulty in solving the Integer factorisation Problem for suitably selected

values) and El-Gamal [3, 19, 37, 59, 74] (reliant upon the perceived difficulty in solving

the Discrete Logarithm Problem / Elliptic Curve Discrete Logarithm Problem for

suitably chosen values and/or curves).

B.1.3 Integrity

Integrity involves measuring change to data between sender and receiver. The intention

is that data sent, by the sender Alice should be the same as the data received by the

receiver, Bob. With classical distributed systems this involves the use of hash functions

[3, 83] such as the SHA and MDn series of algorithms, Cyclic Redundancy Checks,

parity checks and checksums. With quantum algorithms, [9, 14, 41, 78] such as BB84

and B92 it involves the use of no-cloning, measurement by an eavesdropper leading to

disturbance and check bits between Alice and Bob.

B.1.4 Non-Repudiation

Non-repudiation involves ensuring that actions that a party have made cannot be

denied. For example if I have cast a vote, in a voting scheme then the protocol ensures

that denial will not be entertained. The use of digital signatures is one mechanism for

achieving this.

B.1.5 Anonymity

With a voting scheme, anonymity is often desirable, and involves breaking any links that

exist between a cast vote and the voter. The following section discusses this in more

detail.
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B.2 Classical Voting Schemes

[This section is taken from [51] and presented here for completeness. For references see

the paper which may be accessed from the following section].

Various properties have emerged from the literature as being desirable attributes of

classical secret ballot voting schemes. Amongst these is the concept of resilience which

involves the properties of universal verifiability, privacy, and robustness. A universally

verifiable election scheme is a scheme deemed open to scrutiny by all interested parties.

Compliance with this property ensures that ballots are carried out correctly and that

subsequent tallies are fairly assessed. For a scheme satisfying the privacy property an

honest participant is assured that their vote remains confidential, provided that the

number of attackers does not grow too large. With the property of robustness, an

election scheme has the capacity to recover from faults again, provided that the number

of parties involved does not grow too large. Schemes satisfying these three properties are

said to be resilient. Another desirable property of an election scheme, particularly as a

counter to the risk of vote buying or coercion, is that it is receipt-free. Receipt-free

election schemes ensure that voters cannot prove, to other parties, the particular vote

cast within the scheme. Further desirable properties are to be found in the literature,

for example. Voting protocols performed within a classical setting are in general

grouped according to their use of homomorphisms, MIX nets, and blind signatures.

B.2.1 Homomorphic Election Schemes

These involve the use of a homomorphic, probabilistic encryption scheme consisting of a

plaintext space V, a ciphertext space C each of which form group structures under

appropriate binary operations and together with a family of homomorphic encryption

schemes such that by . Homorphic election Schemes are important since they allow one
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to derive tallies without the need to decrypt individual votes. Such schemes lead to

resilient election schemes.

B.2.2 MIX net schemes

MIX nets were first introduced by Chaum, and have found applications in scenarios

involving anonymity, elections and payments. A MIX net election scheme involves the

use of shuffle machine agents referred to as MIX servers, which take as input a

ciphertext vector these could be, for example, encrypted votes submitted by, for

example, voters and produces as output a permuted vector which the components are

shuffled of corresponding output for example, decrypted votes such that the link

between the source for each ciphertext encrypted vote and its resulting plaintext vote

remains hidden. The resilience properties of privacy, verifiability and robustness may be

presented in terms of t-privacy, t-verifiability, and t-robustness, where it is understood

that t refers to the number of malicious MIX servers that the scheme can withstand

given at most n?2 malicious sources. A scheme satisfying the above three t-properties is

said to be t resilient. The development of classical MIX net schemes to achieve, in

particular, privacy initially led to ciphertext whose size was proportional to the number

of MIX servers involved in the scheme. This problem was resolved by Park, Itoh, and

Kurosawa, resulting in ciphertext whose length was independent of the number of MIX

servers. Sako and Kilian, produced a general MIX net scheme satisfying verifiability but

failing with regard to robustness. The first resilient MIX net scheme was produced by

Ogata, Kurosawa, Sako, and Takatani.

B.2.3 Blind signature schemes

These were also introduced by Chaum and have been developed with applications in

anonymity, election, and payment schemes. The basic concept involves obtaining a



B.2. CLASSICAL VOTING SCHEMES 123

signature to authenticate a message, for example, an encrypted vote, without the signer

being able to observe the message vote itself or its signature. Verification regarding the

signature is however supported by such schemes whilst maintaining privacy regarding

the actual plaintext. A signer is thus denied the ability to link a particular plaintext

with its corresponding blind signature. Variations upon such schemes are to be found

with, for example, fair blind signatures in which the possibility of, for example,

blackmail is discussed.

B.2.4 Sender untraceability schemes

These schemes allow information to be sent anonymously. For example, in Chaums

Dining Cryptographers Problem a group of diners wish to determine if either an

external agency or one of the group is paying anonymously for the meal. The solution

requires 1 bit of information to be broadcast anonymously using a communication

channel available to all diners. The simplest situation occurs for three diners with only

two possible scenarios: one diner is to pay the bill or no diners pay the bill. The diner

who pays broadcasts the message 1 in the following way. Each diner shares a single

binary-digit one-time pad with the other two. The broadcast is executed by each diner

adding the two numbers on the one time pads he or she holds. If one of the diners is

paying he or she adds 1 to the value of the sum. The results modulo 2 are announced

publicly to all diners. The sum of the 3 broadcast messages modulo 2 is 1 only if the

message 1 is sent by a paying diner otherwise it is 0. Thus a message is broadcast but

the identity of a paying diner is untraceable. The security of a classical scheme is

deemed to be one of two varieties: computational or unconditional also known as

information-theoretic security. A scheme which can be broken in principle but requires

more computing power than a realistic adversary can access in a given critical time is

deemed computationally secure. Examples are schemes based on the integer
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factorization problem and the discrete logarithm problem. Such computationally secure

schemes are under threat from quantum computing. On the other hand, a scheme which

is secure even if an adversary has unlimited computing resources is said to be

unconditionally secure. A one time pad encryption scheme is unconditionally secure.

Homomorphic maps and mixed nets not based on the one time pad are computationally

secure. Blind signatures can be applied in an unconditionally secure manner to

authenticate a vote and sender untraceability provides anonymity with unconditional

security. Chaums secret ballot protocol, which uses blind signature and sender

untraceability schemes, allows unconditionally secret voting. The sender untraceability

component of the protocol requires one-time pads between all pairs of voters, that is

N(N-1)/2 one time pads are required for a ballot with N voters.

B.3 Quantum Voting Schemes

Quantum voting protocols first appeared [51, 71] in April and May 2005 and has

developed at a steady rate with papers [27, 45, 70, 104, 129] describing schemes based

on entanglement (comparative ballot, anonymous survey, travelling ballot, distributed

ballot), on conjugate coding; schemes with voter identity and multiparty secret sharing.

Each scheme developed, has been based on multipartite qubit systems. We seek to

explore the development of quantum based voting schemes employing tools developed in

quantum probability. Our motivation for this being what appear to be, natural tools for

the collection of votes cast.
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