1	Arabidopsis thaliana, A New Host for Polymyxa Species			
2				
3	Madeleine J. Smith, Michael J. Adams and Elaine Ward			
4				
5	Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden,			
6	Hertfordshire, AL5 2JQ, UK.			
7				
8	Corresponding Author:			
9	Dr. Elaine Ward			
10	Department of Plant Pathology and Microbiology			
11	Rothamsted Research,			
12	Harpenden,			
13	Hertfordshire,			
14	AL5 2JQ,			
15	UK.			
16	Tel: + 44 (0) 1582 763133 ext.2495			
17	Fax: +44 (0) 1582 760981			
18	E-mail: elaine.ward@bbsrc.ac.uk			
19				
20	Running Title: Arabidopsis, A New Host for Polymyxa Species			
21				
22	Key Words: Polymyxa graminis, Polymyxa betae, Soil-borne cereal mosaic virus,			
23	Arabidopsis, Plasmodiophorida			
24	1			
	1.			

25 Abstract

27	Polymyxa species are obligate biotrophs belonging to the Plasmodiophorid group,
28	responsible for transmitting a large number of plant viruses to many crop species.
29	Their obligate nature makes them difficult to study. Controlled environment
30	experiments were used to investigate the potential of infection of Arabidopsis
31	thaliana by Polymyxa spp. to provide a more tractable system. Two ecotypes of
32	Arabidopsis, Columbia and Landsberg erecta were grown in soils known to be
33	infested with Polymyxa. At the end of a two month growth period, both ecotypes were
34	found to harbour Polymyxa-like structures or spores. These findings were confirmed
35	by Polymyxa-specific PCR tests and rDNA sequencing which positively identified the
36	presence of Polymyxa in the roots of both ecotypes of Arabidopsis. Both Polymyxa
37	graminis and Polymyxa betae were identified. This is the first report of infection of
38	Arabidopsis by Polymyxa spp. and shows the possibility of using this system for
39	studies of infection biology and host-parasite interactions.
40	

41 Introduction

42	
43	Polymyxa species are a group of obligate root infecting organisms belonging to the
44	Plasmodiophorid group that are important plant-virus vectors (Kanyuka et al., 2003).
45	Polymyxa graminis transmits viruses such as Soil-borne cereal mosaic virus
46	(SBCMV), Soil borne wheat mosaic virus and Wheat spindle streak mosaic virus to
47	cereals. P. betae transmits Beet necrotic yellow vein virus, the cause of Rhizomania,
48	to sugar beet.
49	A number of subgroups (ribotypes) of Polymyxa spp. have been identified
50	according to rDNA sequence data (Ward et al., 1994; Ward & Adams, 1998; Legrève
51	et al., 2002; Ward et al., 2005). Some of these ribotypes appear to differ in host range
52	and temperature requirements leading to the suggestion that they should be classified
53	as formae speciales (Legrève et al., 1998; 2002). Two groups of Polymyxa graminis
54	isolates are found in temperate regions, ribotype I (f. sp. temperata) and ribotype II (f.
55	sp. tepida). All ITS rDNA sequences for P. betae reported to date fall into two types
56	which differ by only one base pair (Ward & Adams, 1998; Legrève et al., 2002).
57	Due to their obligate nature and relatively long life-cycle, Polymyxa species
58	have been difficult to study. The development of a model system for studying
59	Polymyxa-plant interactions would be extremely useful. Arabidopsis thaliana is an
60	invaluable model system for several reasons: 1) short generation time, 2) the ability to
61	grow large numbers in a relatively small space, 3) its ability to self-fertilise, 4) the
62	large number of progeny that can be produced from a single plant, 5) its small haploid
63	genome containing a relatively small number of repetitive genetic elements, 6) the
64	availability of a fully-sequenced genome, 7) the availability of mutagenised lines, 8)

65 ease of transformation and, 9) the large number of ecotypes exhibiting natural 66 variation available (Meyerwitz, 1989). These features are in contrast to many crop 67 species such as cereals where genetic resources are less well advanced. 68 Arabidopsis has already been used very successfully to study the interactions 69 of another plasmodiophorid, Plasmodiophora brassicae (Koch et al., 1991). The 70 ability to separate host sequences from those of *Plasmodiophora* by bioinformatics 71 analysis has simplified the interpretation of data e.g. from suppressive subtractive 72 hybridisation experiments to study gene structure and expression (Bulman et al., 73 2006; Bulman et al., 2007). Sources of resistance and factors important for the 74 infection of *Plasmodiophora* have been studied by exploring the responses to both 75 natural and induced (mutagenic) variation in host genes affecting infection (Siemens 76 et al., 2002; Alix et al., 2007). Arabidopsis has been used to visualise infection 77 biology of *P. brassicae* (Mithen & Magrath, 1992). The availability of synteny maps 78 between Arabidopsis and Brassica species has allowed identification of resistance loci 79 in Brassica species first identified in Arabidopsis (Suwabe et al., 2006). Global 80 analysis of host gene expression at different time points post infection has been 81 possible using Arabidopsis genome arrays and this has allowed identification of host 82 genes that may be important for infection by *Plasmodiophora* (Siemens et al., 2006). 83 Genes of interest can then be studied further by transforming into *Arabidopsis* or by 84 utilising the bank of insertion lines available in Arabidopsis (Puzio et al., 2000; 85 Siemens et al., 2006) 86 Many of the host plants that *Polymyxa* species infect are not well characterised 87 genetically, have fewer genetic tools available and they have long generation times.

88 Also, the roots of cereals can be difficult to visualize by microscopy as they are

thicker in diameter than those of *Arabidopsis*. This can sometimes make visual
detection of *Polymyxa* in roots difficult. Therefore, if infection of *Arabidopsis* by *Polymyxa* species can be demonstrated, this could be a valuable tool in increasing our
understanding of plant-*Polymyxa* interactions. This study aimed to look at the
potential for infection of *Arabidopsis* by *Polymyxa* spp. under controlled environment
conditions using *Polymyxa* infested soils.

- 95
- 96

6 Materials and Methods

97

98 Arabidopsis thaliana ecotypes Landsberg erecta (Ler-0) and Columbia (Col-99 0) were used for this study (supplied by A. Cuzick, Rothamsted Research, UK). These 100 ecotypes were chosen because they are genetically distinct and mapping populations 101 are available. Seeds were sown into sterile Levingtons No. 2 compost containing 102 sand, and stratified for four days in the dark at 4°C. Pots were then removed and 103 placed in a greenhouse under short day length conditions (8 hr day at 20°C, 16°C night, light levels 200 - 300 μ mol.m⁻².sec⁻¹). Once the seedlings had produced their 104 105 first true leaves, they were transferred to 10 cm pots containing infectious soils diluted 106 1:2, soil to sterile sand. Two UK soils were used, one from Wiltshire which was 107 infested with SBCMV (Lyons et al., 2008) and one from Woburn where Polymyxa 108 was present but no associated virus had ever been identified (Ward et al., 2005, R. 109 Lyons, (Rothamsted Research) pers. com). For each soil, 5 seedlings of each ecotype 110 were planted. Plants were then allowed to grow for two months. Flowering bolts were 111 removed upon development to prolong vegetative growth.

Once roots had been removed from pots and undergone vigorous washing in sterile, distilled water, three sets of 3 cm bunches of root, one from the base of the plant, one from the middle of the root mass and one from the root tip, were examined using an Axiophot (Zeiss) light microscope and bright field illumination. Portions of root were mounted in sterile water under a coverslip.

117 DNA was extracted from root material as described by Ward et al. (2005). Polymyxa-specific rDNA primers Pxfwd1 (5'CTG CGG AAG GAT CAT TAG CGT 118 119 T 3') and Pxrev7 (5' GAG GCA TGC TTC CGA GGG CTC T 3') were used in PCR 120 (Ward *et al.*, 1994). For sequencing studies, the *Polymyxa*-specific forward primer 121 Pxfwd1 and the generic fungal ITS4 reverse primer (5' TCC TCC GCT TAT TGA 122 TAT GC 3') (White & Bruns et al., 1990), were used to amplify rDNA. Each reaction 123 mix (50 µL) contained: 0.2 µM primers, 1U Taq DNA polymerase (MBI), 0.2 mM 124 deoxyribonucleoside triphosphates (Sigma), 1x PCR buffer NH₄ (MBI), 0.02 mg/µL BSA. Cycling conditions were 2 min at 95°C, then 30 cycles of: 94°C for 30s, 50°C 125 126 for 1 min, 72°C for 2 min, followed by 72°C for 10 min. Products were analysed in 1% agarose gels. 127 PCR products were cloned into the pGEM®-T Easy vector (Promega 128 129 Corporation, Madison, WI, US). Plasmid DNA was prepared using the QIAprep spin 130 miniprep kit (Qiagen, Crawley, UK) and sequenced using the ABI PRISMTM Big-

131 Dye version 1.1 kit using primers M13SeqF (5' GCC AGG GTT TTC CCA GTC

132 ACG A 3') and M13SeqR (5' GAG CGG ATA ACA ATT TCA CAC AG 3') and run

133 at the Geneservice sequencing facility (http://www.geneservice.co.uk).

134

Results and Discussion

137	Examination by microscopy showed the presence of <i>Polymyxa</i> -like spores in
138	numerous root hairs (but not the main root) of Arabidopsis ecotype Ler-0 plants
139	grown in the Woburn soil (Figure 1). Two of the Col-0 plants grown in the Woburn
140	soil contained structures that resembled Polymyxa zoosporangia (Figure 2). Three of
141	these structures were seen in total and they were all located in the main root system
142	rather than the root hairs. No spore clusters were observed. In the root sections
143	examined from Arabidopsis plants grown in the Wiltshire soil, no Polymyxa-like
144	spores or zoosporangia were identified.
145	PCR with the Polymyxa-specific primers Pxfwd1/Pxrev7 demonstrated the
146	presence of <i>Polymyxa</i> species in the roots of all four combinations of <i>Arabidopsis</i>
147	ecotypes and soils (Figure 3). A total of 28 clones were sequenced following
148	amplification of rDNA products from Arabidopsis roots using primers Pxfwd1/ ITS4.
149	Eleven of these sequences showed significant identity to P. graminis F1 ITS
150	ribosomal DNA (Table 1) and one to P. betae F67 ITS rDNA. Of the remaining
151	sequences, nine showed 98-100% nucleotide identity to Arabidopsis rDNA, two to
152	uncultured Basidiomycetes, one to an uncultured Helotiale, one to Urostyla grandis,
153	one had very partial identity to Anguina agrapyri, another had partial identity to an
154	Ectomycorrhizal fungus and one had no known homology to any sequence in
155	Genbank. The identification of Arabidopsis and other non-Polymyxa sequences in the
156	roots is not unexpected, as only one of the primers used (Pxfwd1) is Polymyxa -
157	specific whereas the ITS4 primer is a generic, 'fungal' rDNA primer.

158 Sequences from these experiments were aligned with existing *Polymyxa* 159 rDNA sequences and phylogenetic analyses were performed in MEGA4 (Figure 4). 160 With the exception of LeWil clone 34, which grouped with *P. betae*, all of the other 161 Polymyxa sequences obtained from Arabidopsis root samples formed a clade with the P. graminis F1 (ribotype I) isolate (AY12824, 99% support from bootstrapping). 162 163 There was strong bootstrap support (99%) separating the Col-0 Woburn clone 3 164 sequence from the other sequences in this clade. 165 Collectively, our results indicate that *Arabidopsis* is susceptible to infection by 166 Polymyxa spp. Polymyxa-like spore clusters were identified in root hairs of 167 Arabidopsis Ler-0 plants and structures resembling young Polymyxa-like 168 zoosporangia in the roots of Col-0 plants. The putative zoosporangium is not like that 169 of any of the other plasmodiophorid genera. Although these structures were not 170 observed in all plants, it is possible that they were present in parts of the root system 171 other than those examined by microscopy. The spores, although similar in appearance 172 to Plasmodiophora, were aggregated together in clusters whereas Plasmodiophora 173 spores do not form aggregates. In addition no galls were observed in the roots of these 174 plants, as would occur in Plasmodiophora infections. 175 Using Polymyxa-specific PCR assays, Polymyxa was detected in all four 176 combinations of Arabidopsis ecotypes and soils, and this was confirmed by rDNA 177 sequencing; sequences either had high nucleotide identity to the rDNA sequence from 178 ribotype I P. graminis or to P. betae. None showed close identity to P. graminis type 179 II despite this ribotype being present in both soils (Ward et al., 2005; Lyons et al., 180 2008). Although temperate ribotypes of P. graminis have been shown mainly to infect 181 monocotyledonous plants, P. betae and tropical isolates of P. graminis have been

182 shown to infect dicotyledonous plants (Barr, 1979; Ratna *et al.*, 1991; Barr & Asher,
183 1992; Legrève *et al.*, 2000).

184 The observation of spores in the root hairs of the Arabidopsis ecotype Ler-0 185 plants is interesting as *Polymyxa* species are not routinely reported infecting root 186 hairs, although this has been observed infrequently (M. Smith, M. J. Adams, 187 unpublished). However, it is not unreasonable to expect changes in morphology and 188 tissue colonisation in this alternative host. 189 One way to absolutely determine the organism producing the structures 190 observed in the roots of the Arabidopsis plants would be to use a technique such as 191 laser capture micro-dissection although this would be technically challenging 192 (Emmert-Buck et al., 1996; Kerk et al., 2003; Day et al., 2005). 193 Further experiments would be required to optimise the system, to establish the 194 range of Polymyxa isolates capable of infecting Arabidopsis and to determine whether 195 there were any links between the type of infection seen (location and developmental 196 stage) and the Arabidopsis ecotype used. 197 This is the first report to demonstrate that infection of Arabidopsis by Polymyxa spp. is possible. Both P. graminis and P. betae sequences were found in 198 199 infected Arabidopsis roots and extends the range of known hosts for both species. 200 This important finding opens up the exciting possibility of using a model system for

- 201 studying *Polymyxa* infections with a wide range of available tools, and that is much
- 202 more amenable to study than using sugar beet or cereal hosts.

203

204 Acknowledgements

205

206	The authors would	l like to thank A.	Cuzick for	providing seed	and A. Tymon
-----	-------------------	--------------------	------------	----------------	--------------

- and K. Kanyuka for assisting with soil sampling. MJS was supported by a BBSRC
- 208 PhD studentship; John Walsh is thanked for his supervision and encouragement.
- 209 Rothamsted Research receives grant aided support from the Biotechnology and
- 210 Biological Sciences Research Council.
- 211

212 **References**

214	Alix K, Lariagon C, Delourme R & Manzanares-Dauleux MJ (2007) Exploiting
215	natural genetic diversity and mutant resources of Arabidopsis thaliana to study
216	the A. thaliana-Plasmodiophora brassicae interaction. Plant Breeding 126:
217	218-221.
218	
219	Barr DJS (1979) Morphology and host range of <i>Polymyxa graminis</i> , <i>Polymyxa betae</i> ,
220	and Ligniera pilorum from Ontario and other areas. Can J Plant Pathol 1: 85-94.
221	
222	Barr KJ & Asher MJC (1992) The host range of <i>Polymyxa betae</i> in Britain. <i>Plant</i>
223	Pathol 41: 64-68.
224	
225	Bulman SR, Ridgway HJ, Eady C & Conner AJ (2007) Intron-rich gene structure in
226	the intracellular plant parasite Plasmodiophora brassicae. Protist 158: 423-
227	433.
228	
229	Bulman SR, Siemens J, Ridgway HJ, Eady C & Conner AJ (2006) Identification of
230	genes from the obligate intracelular plant pathogen, Plasmodiophora
231	brassicae. FEMS Microbiol Lett 264: 198-204.
232	
233	Day RC, Grossniklaus U & Macknight RC (2005) Be more specific! Laser-assisted
234	microdissection of plant cells. Trends Plant Sci 10: 397-406.
235	
236	Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, ZHuang Z, Goldstein SR,
237	Weiss A & Liotta LA (1996) Laser capture microdissection. Science 274:
238	998–1001.
239	

240 241	Kanyuka K, Ward E & Adams M J (2003) <i>Polymyxa graminis</i> and the cereal viruses it transmits: a research challenge. <i>Mol Plant Pathol</i> 4: 393-406.			
242				
243	Kerk NM, Ceserani TS, Tausta L, Sussex IM & Nelson TM (2003) Laser capture			
244	microdissection of cells from plant tissue. Plant Physiol 132: 27-35.			
245	I J			
246	Koch E, Cox R & Williams PH (1991) Infection of Arabidopsis thaliana by			
247	Plasmodiophora brassicae. J Phytopathol 132: 99-104.			
248				
249	Legrève A, Delfosse P & Maraite H (2002) Phylogenetic analysis of <i>Polymyxa</i>			
250	species based on nuclear 5.8S and internal transcribed spacers ribosomal DNA			
250	sequences. <i>Mycol Res</i> 106: 138-147.			
252	sequences. mycor nes 100. 150 117.			
252	Legrève A, Vanpee B, Delfosse P & Maraite H (2000) Host range of tropical and sub-			
253	tropical isolates of <i>Polymyxa graminis</i> . Eur J Plant Pathol 106: 379-389.			
255	tropical isolates of 1 brymysta grammis. Ear 5 1 tant 1 amor 100. 577-507.			
255	Legrève A, Delfosse P, Vanpee B, Goffin A & Maraite H (1998) Differences in			
250 257	temperature requirements between <i>Polymyxa</i> sp. of Indian origin and			
258	<i>Polymyxa graminis</i> and <i>Polymyxa betae</i> from temperate areas. <i>Eur J Plant</i>			
258 259	Pathol 104: 195-205.			
	Painoi 104: 195-205.			
260	Lucas D. Hommond Kosselv KE & Kommuna K (2008) Indentification and			
261	Lyons R, Hammond-Kosack KE & Kanyuka K (2008) Indentification and			
262	characterisation of a novel efficient resistance reponse to the Furoviruses SBWMV			
263	and SBCMV in barley. Mol Plant Microbe In 21: 1193-1204.			
264				
265	Meyerwitz EM (1989) Arabidopsis, a useful weed. Cell 56: 263-269.			
266				
267	Mithen R & Magrath R (1992) A contribution to the life-history of <i>Plasmodiophora</i>			
268	brassicae-Secondary plasmodia development in root galls of Arabidopsis			
269	thaliana. Mycol Res 96: 877-885.			
270				
271	Puzio PS, Newe M, Grymaszewska G, Ludwig-Müller J & Grundler FMW (2000)			
272	Plasmodiophora brassicae-induced expression of pyk20, an Arabidopsis			
273	thaliana gene with glutamine-rich domain. Physiol Mol Plant P 56: 79-84.			
274				
275	Ratna AS, Rao AS, Reddy AS, Nolt BL, Reddy DVR, Vijayalakshmi M & McDonald			
276	D (1991) Studies on transmission of Indian Peanut Clump virus disease by			
277	Polymyxa graminis. Ann Appl Biol 118: 71-78.			
278				
279	Siemens J, Nagel M, Ludwig-Muller J & Sacristan MD (2002) The interaction of			
280	Plasmodiophora brassicae and Arabidopsis thaliana: Parameters for disease			
281	quantification and screening of mutant lines. J Phytopathol 150: 592-605.			
282				
283	Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmulling T, Parniske M			
284	& Ludwig-Muller J (2006) Transcriptome analysis of Arabidopsis clubroots			
285	indicate a key role for cytokinins in disease development. Mol Plant Microbe			
286	In 19: 480-494.			
287				

288	Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome
289	T, Fukuoka H, Hirai M & Matsumoto S (2006) Simple sequence repeat-based
290	comparative genomics between Brassica rapa and Arabidopsis thaliana: The
291	genetic originof clubroot resistance. Genetics 173: 309-319.
292	
293	Ward E & Adams MJ (1998) Analysis of ribosomal DNA sequences of Polymyxa
294	species and related fungi and the development of genus- and species- specific
295	PCR primers. Mycol Res 102: 965-974.
296	
297	Ward E, Adams MJ, Mutasa ES, Collier CR & Asher JC (1994) Characterisation of
298	<i>Polymyxa</i> species by restriction analysis of PCR- amplified ribosomal DNA.
299	Plant Pathol 43: 872-877.
300	
301	Ward E, Kanyuka K, Motteram J, Kornyukhin D & Adams MJ (2005) The use of
302	conventional and quantitative real-time PCR assays for <i>Polymyxa graminis</i> to
303	examine host plant resistance, inoculum levels and intraspecific variation. New
304	Phytol 165: 875-885.
305	
306	White TJ, Bruns T, Lee S & Taylor J (1990) Amplification and direct sequencing of
307	fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to
308	Methods and Applications (Innis MA, Gelfand DH, Sninsky JJ, & White TJ,
309	eds), pp. 315-322. Academic Press, San Diego.
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	

Table 1. Results of BLAST hits for sequenced clones with significant nucleotide identity to *Polymyxa* rDNA.

Arabidopsis	Soil	Clone No.	BLAST Hit ^a	Genbank
ecotype				Accession No.
Landsberg	Woburn	LeWob34	98% P. graminis F1 ^b	FN393973
Landsberg	Wiltshire	LeWil3	99% P. graminis F1	FN393974
Landsberg	Wiltshire	LeWil7	99% P. graminis F1	FN393967
Landsberg	Wiltshire	LeWil34	99% <i>P. betae</i> ^c	FN393976
Landsberg	Woburn	LeWob8	97% P. graminis F1	FN393968
Columbia	Woburn	CoWob3	93% P. graminis F1	FN393971
Columbia	Woburn	CoWob10	99% P. graminis F1	FN393972
Columbia	Woburn	CoWob11	99% P. graminis F1	FN393966
Columbia	Woburn	CoWob29	99% P. graminis F1	FN393975
Columbia	Wiltshire	CoWil1	99% P. graminis F1	FN393969
Columbia	Wiltshire	CoWil7	99% P. graminis F1	FN393970

³Closest match showing percentage nucleotide identity between the query and database sequences, ^b

339 Accession Number : AY12824, ^c Accession Number:Y12827

342 Figure legends

343

344 Figure 1. Root hair from *Arabidopsis* Ler-0 plant grown in Woburn soil containing

345 plasmodiophorid-like spore clusters

346

Figure 2. *Polymyxa*-like zoosporangial structure in a main root cell of an *Arabidopsis*Col-0 plant grown in Woburn soil.

349

350 Figure 3. Amplification of *Polymyxa*-specific rDNA products from *Arabidopsis* roots.

351 Lane 1, 100 bp size marker (Fermentas); lane 2, healthy uninfected Arabidopsis Col-

352 0; lane 3, healthy uninfected *Arabidopsis* Ler-0; lane 4, *Arabidopsis* Col-0 from

353 Woburn soil; lane 5, Arabidopsis Ler-0 from Woburn soil; lane 6, Arabidopsis Col-0

354 from Wiltshire soil; lane 7, Arabidopsis Ler-0 from Wiltshire soil; lane 8, no DNA

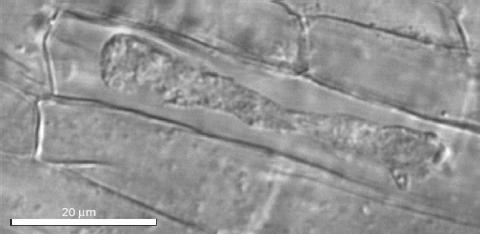
355 control; lane 9, *Polymyxa* DNA positive control.

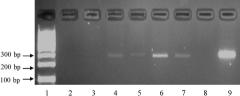
356

357 Figure 4. Phylogenetic relationships between *Polymyxa* ITS rDNA sequences from

358 Arabidopsis and other isolates. Sequences PgF1 (*P.graminis* ribotype I, Accession

359 No. Y12824), Pg51 (*P. graminis* ribotype II, Y12826) and PbF67 (P. betae, Y12827)


360 were reported in Ward and Adams, 1998), other sequences were obtained in the


361 current study. The Neighbor-Joining method (Maximum composite likelihood

distances) was used in MEGA4 (Tamura et al., 2007) with 10000 bootstrap

363 replications.

