
Algebraic Properties of Automata Associated to Petri Nets

and Applications to Computation in Biological Systems

Attila Egri-Nagy and Chrystopher L. Nehaniv
The Royal Society/Wolfson Foundation BioComputation Laboratory & Algorithms Research Group

Centre for Computer Science and Informatics Research
University of Hertfordshire

College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom
{A.Egri-Nagy, C.L.Nehaniv}@herts.ac.uk

Abstract

Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of

the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a

formalized graphical modelling language, often used to describe computation occurring within biochemical and genetic

regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore there

are several different ways to turn a Petri net into a state-transition automaton. Here we systematically investigate

different conversion methods and describe cases where they may yield radically different algebraic structures. We focus

on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries

of the computation occurring within the biological system under study. Results are illustrated by applications to the

Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich,

regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting

a reason for the apparent all-pervasiveness of inhibitory connections in living systems.

1. Introduction

Petri nets, of various types, are an increasingly
popular formalism for describing the operation of
biochemical or genetic regulatory networks [1,2]. In
order to better understand the computation occur-
ring in biological networks so described, algebraic
techniques can be used to detect hidden structure
and symmetries [3–5]. The algebraic hierarchi-
cal decomposition theory of finite state automata
(known as Krohn-Rhodes theory [6]) provides co-
ordinate systems, i.e. calculational frameworks for
understanding any phenomenon modelled as an
automaton. The decomposition identifies reversible
and irreversible components of the system and also
their relationships described in a hierarchical frame.
‘Hierarchical’ is emphasized here due to the fact

that scientific models and cognition seem to utilize
this kind of one-way dependency structure without
feedback very often [7,8].

Our ultimate goal is to usefully apply the decom-
position method to biological problems, where one
usually has huge amount of experimental data re-
lated to biochemical or genetic regulatory networks,
but a global understanding of the mechanisms in-
volved is lacking. Petri nets are often used to express
what is known about particular biochemical and ge-
netic regulatory networks, or to model other systems
[1], but apparently have not previously been inves-
tigated from the viewpoint of algebraic automata
theory.

Before studying the coordinate systems associ-
ated to Petri nets by examining examples in de-
tail, we have to study the relationship between au-

Preprint submitted to Elsevier 23 April 2009

tomata and Petri nets. We have to check whether
the conversion transfers the computational charac-
teristics of Petri nets faithfully, and to address finite-
ness of state-transition automata required in basic
Krohn-Rhodes theory. To accomplish this we focus
on the existence of counters (algebraically these in-
dicate the presence of nontrivial finite group com-
ponents). In Krohn-Rhodes theory the complexity
of the decomposition is defined by the number of
alternations between strictly counting components
(groups) and counter-free components in the decom-
position, therefore it is important to see what prop-
erties of Petri nets lead to the existence of counters.

2. Petri Nets

Petri nets comprise a formal, graphical technique
for specifying and analysing concurrent, discrete-
event based dynamical systems. Petri nets are also
executable models, whose syntax and semantics
have been defined in many variants and with var-
ious extensions [9], so that the standardization of
the Petri net technique is a work in progress.

Though there is not much variation in defining
the basic Petri net, we still have to fix our notation.
The well-informed reader would not find anything
surprising in the definition, however the discussion
of derived attributes may reveal the slightly differ-
ent terminology that is needed for the forthcoming
algebraic proofs.

2.1. Basic Attributes and Dynamics

Informally speaking a Petri net is a bipartite di-
rected graph with two kinds of nodes, places P and
transitions T , where there are no arcs between nodes
of the same kind. More formally,
Definition 1 A Petri net N is a sextuple
(P, T, I, O, W, I), with
– P , the set of places. A place is a container of a

non-negative integer number of tokens. #p (or
simply p) denotes the number of tokens at place p.
(graphically: a circular node)

– T , the set of transitions. A transition consumes
tokens from its input places and produces tokens
that are put into its output places. (graphically: a
rectangular node)

– I, the set of input arcs, I ⊆ P × T . These arcs
define the input places of each transition.

– O, the set of output arcs, O ⊆ T ×P . These arcs
define the output places of each transition.

– W , weights of arcs,W : I∪O → N = {0, 1, 2, . . .}.
These weight values determine how many tokens
are consumed/produced when firing a transition
involves a given input/output arc, respectively.

– I, the set of inhibitory arcs, I ⊆ P × T . Places
with nonzero tokens can inhibit transitions.

As a slight abuse of the notation we will use some
attributes as functions, e.g. I(t) gives the set of input
arcs of transition t, W (a) yields the weight of arc a,
etc.

A Petri net can be embedded into a bigger system,
an environment. For instance, thinking in chemical
terms, there might be some influx, and removal of
some substrates. Environmental input/output can
be represented by a transition with no input/output
arcs (i.e. in the case of input from the environmen-
tal, it just produces tokens without any input from
places in the net, or, in the case of output to the
environment, just consumes its input but produces
no tokens), respectively. For an environmental in-
put transition t, I(t) = ∅, while O(t) = ∅ for an
environmental output transition.

These attributes define the syntax of the basic
Petri net. With this information one can draw the
corresponding diagram, representing places and
transitions graphically. However, the actual dynam-
ics, the semantics, is not yet defined.

The dynamic behaviour of the Petri net is deter-
mined by the execution of transitions. A transition
t is enabled if ∀i ∈ I(t), W (i) ≤ #(source(i)), i.e.
there are enough tokens in the input places. The
transition t is inhibited if ∃i ∈ I(t), #(source(i)) >

0, i.e. there is at least one token at the source of
some inhibitory arc to t. A transition is fireable if it
is enabled and not inhibited. The intuition is that, if
a transition “fires”, the input arcs of the transition
instantaneously consume tokens from their sources
according to the respective weights of these input
arcs, while output arcs of the transition instanta-
neously produce tokens at their sources according
to the respective weights of these arcs.

2.2. Derived Attributes

For the ease of reasoning it is useful to associate
certain higher level attributes to Petri nets.

The local state of a place p is the number #p

of tokens it contains. The global state of the net is
a vector m = (#p1, . . . , #pn) containing all local
states (in an arbitrary but fixed order). The global
state is usually called the marking of the net. A lo-

2

cal state transition is a change ∆tp of the number
of tokens in a given place p, therefore we can as-
sociate to each transition t ∈ T its canonical vec-
tor of changes, or simply (canonical) change vector,
denoted by ∆t = (∆tp1

, . . . , ∆tpn
) for transition t.

Each transition changes the global state in a specific
way, by the overall effect of the local state transi-
tions. It is mathematically convenient to define the
weight of an arc to be zero if the arc does not occur
in the I or O. Then the components of the canonical
change vector of the transition t are given for each
place p as

∆tp = −W (p, t) + W (t, p).

The basic semantics of Petri nets are that any fire-
able transition may “fire” and thus change the global
state according to its canonical change vector. How-
ever, in certain cases the actual change vector may
differ from the canonical change vector, e.g. if a tran-
sition is inhibited then its actual change vector is
the zero vector.

2.3. Concurrency

Petri nets and automata are both “concurrent” in
the sense that any transition that is possible from a
given state may occur. However, when considering
Petri nets, sometimes another type of concurrency
is permitted. State-transition automata are sequen-
tial, at a moment only one transformation (perhaps
chosen from many possibilities) can be executed,
the input symbols of an input word are fed in order
into the automaton one at a time. However, in many
treatments, Petri net transitions can fire simultane-
ously. This parallel execution in Petri nets can be
recaptured in automata by using a simple powerset
construction and, for Petri nets without inhibitory
arcs, is inessential (see Appendix A). 1

For the sake of simplicity, here we assume that
distinct transitions may not fire simultaneously.

3. Finite State Automata and

Transformation Semigroups

By a finite state automaton, we mean a triple A =
(A, X, δ) where A is the finite state set, X is the
(finite) input alphabet and δ : A × X → A is the

1 In the case of inhibitory arcs, this type of concurrency
can lead to additional computational power as shown by the
example in Appendix A.

transition function. We do not explicitly consider
the output of the automaton as it can be recovered
from the state and the input symbol. We tacitly
use the state as the output. We write X+ for finite
nonempty sequences of input letters from X , and
call any such sequence w a word. We extend δ to give
the action of words on states of A inductively defin-
ing δ(a, xw) = δ(δ(a, x), w) whenever w is a word
and x is an input letter. One shows easily by an in-
ductive argument that δ(a, uv) = δ(δ(a, u), v) holds
for any words u, v ∈ X+. We write a · w for δ(a, w)
when a ∈ A, w ∈ X+. Thus any input word w acts
as a well-defined mapping from A to A, i.e. a 7→ a ·w
for all a ∈ A. For a mapping f : A → A, we say the
sequence of inputs (or word) w realizes the mapping
f as an operator on states if ∀a ∈ A, f(a) = a · w.

A function f : A → A on the set A is called a
permutation (reversible) if it is one-to-one and onto;
otherwise, it must collapse elements (some a ∈ A is
an image of more than one element, i.e. the image
of A under f is a proper subset of A), and therefore
is irreversible as an operator on A. A permutation
group is a set G of invertible mappings closed un-
der composition, together with the state set A on
which the mappings act. For more on elementary
group theory see for instance [10]. A transformation
semigroup (ts) (A, S) has a similar structure to a
permutation group, but S consists of general trans-
formations, not necessarily just permutations.

The connection between automata and ts’s is very
close. The input symbols correspond to a basic set
of mappings of the state set and using the usual
function composition (concatenating input symbols
in the automata realm) we have a ts defined on the
state set. Thus the ts associated to A = (A, X, δ)
is (A, S) where S is the set of mappings on A that
are realized by some input sequence w ∈ X+. A
state-transition automaton is defined just like a fi-
nite state automaton, but without the assumption
of finiteness.

3.1. Counting and Non-counting

For algebraic automata theory we make a distinc-
tion between two different types of computations,
between the reversible and the irreversible.However,
there is a very subtle issue about how to understand
reversibility. For an operator f : A → A to have an
inverse, it is not enough that we can return from any
given f(a) to a ∈ A. There must be an inverse op-
erator f−1 : A → A that undoes f which is itself a

3

one-to-one onto correspondence.
In the case of finite automata, if input word

w ∈ X+ realizes f as a reversible operator on states,
there must be an input word w̄ ∈ X+ such that
(a · w) · w̄ = a for all a ∈ A; i.e. w̄ undoes w inde-
pendent of the starting state a. The existence of an
inverse to a transformation f is equivalent to the
property that some power of f is the identity oper-
ator. This follows from a more general fact shown
in Appendix B. Thus, in this case, we may return to
a previous state by going in the same direction, i.e.
by repeating the same operator, but not by “magic”
reset operators. 2

We can illustrate this with the three automata on
Fig. 1.
A1 is automaton with a cyclic group of order 3, y =

x3 is the identity. The operation x counts modulo
3.

A2 has the very same underlying graph, but we use
different labelling. We have two more input sym-
bols. It may not be immediately obvious from the
diagram, but for instance the word yxz generates
a cyclic group of order 2 acting on states {a, b}.
So, A2 can count modulo 2.

A3 appears to be completely reversible (we can go
from any state to any other state), yet it has
no counter: there is no sequence of input sym-
bols which when repeated cycles through distinct
states.

It is very difficult to see from the state-transition
diagram whether a given automaton is capable of
counting or not, since counting may appear only
when using long sequences of input symbols.
Definition 2 An automaton A is counting if there
exist an input word w and a set of pairwise distinct
states a1, . . . , an, n ≥ 2, such that ak · w = ak+1 for
1 ≤ k < n and an ·w = a1. If A is not counting, it is
called non-counting (or counter-free or aperiodic).

76540123a2
w // ... w // ?>=<89:;an

w

}}||
||

||
||

|

76540123a1

w

aaBBBBBBBBB

The structure (a1, . . . , an, 〈w〉) is called a counter or
an algebraic cycle with generating word w and is just
the cyclic permutation group on n points, where 〈w〉

2 A reset is a constant operator r : A → A with r(a) = a0

for some fixed state a0 and every state a ∈ A. That is, r

has only one state in its image. For |A| ≥ 2, no reset is an
invertible operator.

is the group generated by the transformation w, i.e.
the distinct powers of w acting on the ai’s.

The following simple argument shows that the def-
inition captures the existence of finite group compo-
nents.
Proposition 3 An automaton A is counting if and
only if there is nontrivial finite permutation group
(B, G) which is realized in the ts of A.
Proof: If A is counting then by definition there ex-
ists at least one nontrivial finite permutation group
(B, G), given by an algebraic cycle in A. Conversely,
let (B, G) be a nontrivial finite permutation sub-
group of a ts and let g ∈ G be a nontrivial permu-
tation (i.e. not the identity). Let a ∈ B be a state
which is not fixed by g, thus a 6= a ·g, so we leave the
state a. Now it is possible to return to state a by re-
peating g by Fact 16 (Appendix B), completing an
algebraic cycle, so A is counting. 2

More detailed arguments (e.g. involving primitive
words) connected to this concept can be found in
[11].

The basic building blocks of the hierarchical de-
compositions of finite automata are the strict count-
ing components in which every non-identity trans-
formation is the generator of an algebraic cycle (per-
mutation automata) and the flip-flop automaton,
which is non-counting. Krohn-Rhodes theory shows
that an automaton can be built from the direct and
cascaded products of flip-flops if and only if it is
non-counting – no group components appear in the
decomposition [6].

4. Automata Associated to Petri Nets

There are many different ways how to convert a
Petri net into an automaton, and from there canon-
ically into a transformation semigroup. They are
based on the variety of semantics that can be applied
to the same net. They basically reflect different in-
terpretations of Petri nets, therefore they do depend
on what is modelled and on the modeller’s “meta-
physical” standpoint. Predictions made from these
various standpoints may agree or disagree in differ-
ent ways with the observations of modelled phenom-
ena, so it seems well worth knowing what the alter-
native viewpoints are.

4

/.-,()*+a

x

��@
@@

@@
@@

@@

y

�� /.-,()*+a

x

��@
@@

@@
@@

@@

y,z

�� /.-,()*+a
y

��

z

��

x

��

/.-,()*+c

x

??~~~~~~~~~

y

YY
/.-,()*+bx

oo

y

GG
/.-,()*+c

z

??~~~~~~~~~

x,y

YY
/.-,()*+by

oo

x,z

GG
/.-,()*+c

x

GG

z

YY

y
++/.-,()*+b

z

kk

y

GG

x

WW

A1 A2 A3

Fig. 1. Counting or non-counting? See text for details.

4.1. Representing States

Representing the states of the Petri net is fairly
straightforward. Since the state set of the ts is the set
of global states (i.e. markings) of the net. For prac-
tical computational applications even when consid-
ering finite capacities this can be the biggest hurdle,
since the size of the state set can easily be large.
One can consider some subset of this set (e.g. the
set of reachable states from an initial marking) to
alleviate this problem, but this is not crucial to our
discussion here.

4.2. Representing Transformations

In order to construct a state transformation cor-
responding to a transition of the Petri net, we need
to know for each state what is the resulting state
when that particular transition fires. There exists a
very simple algorithm to do this: we just enumer-
ate the global states and apply the transitions for
each marking and record the result of the transition.
However, the transition may not be enabled/fireable
in all possible global states, and this is the point
when different interpretations pop up. The defini-
tion of automata forces us to have a valid resulting
state for any state when applying a transformation
to it. 3 However, when a transition is not fireable we
do not have a “real” resulting state. For the solution
of this dilemma we have two options for construct-
ing the associated automaton:
Identity Construction TI(N). When the condi-

tions are not satisfied nothing will happen by exe-

3 Note that Eilenberg [12] considers partial automata and
develops Krohn-Rhodes theory for them. Use of such a frame-
work could allow us to deal with partial automata naturally
associated to Petri nets by allowing non-fireable transitions
to act in an undefined way, and would be worth pursuing
in future applications of Krohn-Rhodes theory to Petri net
analysis.

cuting the corresponding transformation; thus we
use the identity map for that particular global
state, i.e. the actual change vector is zero and the
global state remains the same. This interpretation
is quite natural, though – as we will see later –
algebraically it has far reaching consequences.

Dead State Construction TD(N). A transfor-
mation from a state which does not satisfy its
enabling condition is not permitted, and if it used
it takes the system to one particular sink state.
That state can be interpreted as an ‘impossible
state’ or as a ‘the experiment went wrong’ state.
With this method we basically encode a partial
transformation in which the undefined values are
represented as a particular state, the so-called
dead state, with no outgoing edges in the state-
transition diagram. 4 However, a transition which
is enabled but inhibited results in no change of
state.
We also use notations like T (N), which means

that for the conversion we do not specify the actual
policy.

4.3. Conversions using a Dead State TD

Theorem 4 Let N be a Petri net without inhibitory
connections and A = TD(N) be the automaton re-
sulting from the conversion using the dead state for
non-enabled transitions. Then A is non-counting
(i.e. aperiodic).
Proof: The dead state is a sink; whenever it is the re-
sulting state the system remains there. Clearly, this
state cannot be a member of a nontrivial counting
cycle. Therefore we have to consider only the en-
abled transitions.

4 The relation of this encoding to the nature of partial
actions is subtle, since, in an emulation, different undefined
computations can be emulated by variously defined and/or
undefined computations. See [12].

5

?>=<89:;a
xyz

++?>=<89:;b
xyz∼xiz∼xz

kk

Fig. 2. Schematic example of an algebraic cycle generated by
a word consisting of transitions x, y, z. The word xyz takes
the global state a of the Petri net to a different global state
b. The same change vector could not restore the marking a,
but transition y is not fireable in the changed context, and
so acts like the identity i, thus, in starting context b, the
word is effectively (in terms of its actual change vector) the
same as xz, which is able to restore a.

Fig. 3. An example Petri net whose associated automaton
is not aperiodic. The transformation semigroup has Zn, the
cyclic group on n points, as an embedded permutation group.
The group is generated by the word t1t2, where (t1t2)n+1 is
the identity element of the group. Starting from the global
state (1, 0, 1) transition t1 fills up the place p2 with n tokens
(arriving at (1, n, 1)). As p2 is not empty anymore, t1 is
inhibited and acts as an identity (note that its input token is
always available by a feedback connection back to p1). The

canonical change vector ∆t2 is (0,−1, 0), which consumes the
tokens of p2 until we are back to the initial global state. The
role of p3 is rather technical; it ensures that the consumed
token from p2 is not accumulated anywhere else. As a variant,
transition t2 could have an environmental output rather than
an output to place p3.

To prove aperiodicity, we have to show that count-
ing cycles do not exist. According to its definition,
for counting we need a starting state and a word
whose powers carry it to some distinct states and
eventually return it back to the starting state. A
word w of the input alphabet of A corresponds to
a chain of transitions in the Petri net. The effect of
these transitions can also be summarized as a cumu-

lative canonical change vector ∆w which is the sum
of the canonical change vectors of its constituent
transitions. Since we may assume all transitions in
the word w are fireable (see above), successive ap-
plications of the word w correspond to the repeti-
tive additions of the same cumulative change vector.
Moreover, there is no interaction between the values
of the different positions of the change vector when
adding it repeatedly. Therefore, if there is a nonzero
value in ∆w then the absolute value of that posi-
tion eventually keeps growing whenever we apply w,
thus we cannot get back to the original state, since
we would need the zero change vector for that. On
the other hand, if ∆w is a zero vector we stay in the
starting state, thus we have only a trivial cycle. 2

Remark. The preceding theorem may seem sur-
prising. Myriad finite automata exist which are
not aperiodic. Isn’t it possible to regard any finite
automaton as a Petri net without inhibitory con-
nections? As the theorem shows, the answer is a
resounding “no”. In a finite automaton, generally a
single input letter will be the label of many transi-
tions between distinct states. But this seems hard
to arrange in the case of a Petri net. In a Petri
net each transition corresponds to a unique label,
and thus the label will generally only appear in a
much more constrained way as labelling arcs in the
associated automaton between distinct states cor-
responding to markings of the Petri net.

The proof gives us the intuition that in order to
have counting components we need words, series of
transitions that have different effects (actual change
vectors different from canonical change vectors) for
just some global states, i.e. in different marking con-
texts. We can return to the starting state (using
the notation of Theorem 4) only by using differ-
ent change vector at some point. But that “differ-
ent change vector” can arise from the word w itself,
when not all input symbols of the word can be ap-
plied (as they may correspond to transitions that are
not fireable), therefore only a (scattered) subword
acts “genuinely” on the state. This is illustrated in
Fig. 2.
Observation 5 There exist Petri nets with inhibi-
tion whose associated automata are counting, even
under the dead-state interpretation.
This is shown in Figure 3 which realizes a modulo n

counter (for both the dead state or identity construc-
tions). Inhibitory connections can provide a way of
achieving this since in certain cases they yield the

6

Fig. 4. A Petri net with a modulo 2 counter component in the
algebraic decomposition of its associated automaton using
the identity policy for non-enabled transitions. All input
arcs have weight 1. The generator of the counter is t1t3t2.
Starting from the marking (1, 0, 0) (i.e. there is only one
token in p1) by applying the generator we get the canonical
change vector of t1it2 (where i is the identity) since t3 is
not enabled for (0, 1, 0). Then again, applying the generator

to the result (0, 0, 1) we get the canonical change vector of
it3i which yields (1, 0, 0).

zero vector as the actual change vector for a transi-
tion, as in Fig. 3 where t1 acts as the identity when
place p2 is nonempty.

From this example and the the previous theorem
we can establish the following guiding principle:
Principle 6 For T (N) to be counting, it is nec-
essary that at least one transition yields an actual
change vector different from its canonical change vec-
tor for at least one global state in N .

4.4. Conversions using Identities TI

According to Principle 6, to avoid aperiodicity we
need some transitions that sometimes have actual
changes different from their canonical change vector.
But this is readily supplied by the interpretation of
using identities for non-enabled transitions. Indeed,
even without inhibitory connections, the policy of
using the identity when a non-enabled transition is
applied also can result in counting (see Fig. 4). Thus,
Observation 7 Under the identity construction,
there are Petri nets without inhibition such that
their associated automaton is counting.

It is debatable how “genuine” these group com-
ponents are. Do they reflect real symmetries of the
original Petri net, or they are only some by-product
of a tricky interpretation?

5. Finite Capacities

In most treatments of Petri nets, the number of
tokens is not limited. However, this unbounded ca-
pacity is not used in practice, and in order to apply
the techniques of algebraic (finite) automata theory,
we shall assume that the capacity of all places in
the net is finite. This is just a technical assumption,
but we have to investigate its effect on the algebraic
structure. We augment the definition of the Petri
net with the following entry.
– C, capacity of places, P 7→ N ∪ {∞}. This value

determines how many tokens each place can ac-
commodate.

The number of local states for a place is its capacity
plus 1, since places can be empty. Using these values
the number of global states of a Petri net N is

∏

p∈P

(

C(p) + 1
)

.

Clearly, this can be a very big number even for Petri
nets of small size.

By definition a transition is not fireable if there are
not enough input tokens. But we also have to con-
sider the “other end” of transitions as well – namely,
the finite capacities of places. What should happen
if there is not enough space for the output tokens?
We have two choices:
Strict Policy. If the output places of transition

cannot accommodate the resulting tokens, the
transition is not enabled. This mirrors the condi-
tion of sufficient supply of input tokens.

Max Policy. The transition may be enabled re-
gardless the content of the output places, but in
case of token overflow the next local state will be
the maximum capacity of the place. The extra
tokens are lost. The “excess material” leaves the
system, yet another way to represent the environ-
mental output.
The choice of output condition policy can have

its effect only in those global states when some of
the places contain ‘enough’ tokens. If the capacities
are large compared to weights of the output arcs,
the difference between the effects of the policies may
be negligible for markings with small numbers of
tokens. However in small capacity examples, like in
Fig. 5, it can result in counting.

Nevertheless, for the dead state interpretation TD,
it is not hard to see that Theorem 4, i.e. aperiodicity
if there are no inhibitory arcs, holds for even when
some capacities are finite whether the strict or max
output policy is followed.

7

Fig. 5. An example Petri net whose associated automaton
is not aperiodic when using conversion TI with strict out-
put policy. Let the capacity of place p2 be 2 tokens. The
decomposition has Z2, the cyclic group on 2 points (the
group consists of one transposition and the identity map-
ping), as one of its components. The group is generated
by the word t1t2. The canonical change vector for t1 is
(0, 2) and for t2 is (0,−1), but when starting from marking
(1, 0) the effective change vector of applying t1t2 twice is
(0, 0) = (0, 2) + (0,−1) + (0, 0) + (0,−1), which equals the
canonical change vector of of t1t2it2. The second applica-
tion of t1 fails as there is not enough space to accommo-
date two more tokens and we use the strict policy. Thus
(1, 0) · t1t2 = (1, 1) and (1, 1) · t1t2 = (1, 0). Note that, in
contrast, the conversion TI done according to the max policy
yields an aperiodic automaton.

Corollary 8 Let N be a Petri net with finite ca-
pacities but no inhibitory arcs. Let the T f

D (N) the
automaton derived using the strict or max policy us-
ing the dead-state construction. Then T f

D (N) is non-
counting.
Proof: The automaton in question is a subautoma-
ton of the automaton TD(N) for the Petri net with-
out finite capacity limits, except it has some modi-
fied transition arcs targeting the dead state rather
than their original targets. Obviously any algebraic
cycle in the resulting automaton would have to ap-
pear also in TD(N) contradicting Theorem 4. 2

6. Completeness

From the mathematical viewpoint it is important
to see what algebraic structures can arise from inter-
pretations of Petri nets. We showed several exam-
ples of how finite cyclic groups can be constructed by
Petri nets. The question is whether all finite groups
can be constructed this way or not. For answering
this question we need to have examples of a Petri

Fig. 6. The Petri net Γ′(N) with a transformation semi-
group realizing all possible mappings of N points, i.e. the
full transformation semigroup which contains the symmetric
group as a subsemigroup.

net that yields a symmetric group, as the symmetric
group permuting n points Sn contains all the groups
acting by permutations on n points. We can produce
such a general example using inhibitory connections
(see Fig. 6 and Prop. 10(e)).

Let us consider Petri nets with one place. Let r be
a transition consuming exactly one token. Let tk be
inhibited if a token is present, otherwise tk produces
k tokens.

Let N ≥ 2. Let Γ(N) be the Petri net with one
place and with transitions r, t1, . . ., t2N−1.
Proposition 9 Let f : {1, 2, . . . , N} → {1, 2, . . . , N}
be any function. Then f is realized by the transfor-
mation semigroup of Γ(N).
Proof: Consider the sequence of transitions

∏N

i=1 rtf(i)+(N−i) =
rtf(1)+(N−1) · rtf(2)+(N−2) · · · rtf(N−1)+1 · rtf(N)

If there are i tokens (1 ≤ i ≤ N) present then in
the course of this sequence there will be i firings of
r before the state with zero tokens is reached and
a transition of the form tk can fire. But then k =
f(i)+(N − i) > N − i, so there will be f(i)+(N− i)
tokens after this tk fires. After this, there will be N−i

more firings of r during which the remaining tk’s (of

8

which there are exactly N −i) will remain inhibited.
Clearly, the transition sequence maps each i to f(i)
for each i ∈ {1, . . .N}.

It follows that the full transformation semigroup,
and hence the symmetric group on N letters is in
the semigroup of the Petri net. 2

Remark: For 0 tokens, the transition sequence
above maps 0 to f(1) (for the identity construction)
or to the dead state (for the dead state construc-
tion); for more than N tokens it removes N tokens.

Remark: Examining the above, we can work with
{0, 1, . . . , N − 1} and f mapping that set to itself
by shifting the first r-transition to the end of the
sequence and increasing the number of tokens pro-
duced by a t-transition by 1. That is, the transition
sequence

tf(0)+1+(N−1)rtf(1)+1+(N−2)r · · ·
· · · tf(N−2)+1+1rtf(N−1)+1r

=
∏N−1

i=0 tf(i)+N−i r

realizes f : {0, . . . , N − 1} → {0, . . . , N − 1}.
Proposition 10 As amapping on states {1, . . . , N},
(a) the transposition (1 2) is representable as
rtN+1rtN−1(rtN)N−2.
(b) the elementary collapsing sending 2 tokens to 1
token is realized by rtNrtN−1(rtN)N−2.
(c) rtN represents the cycle (N N − 1 · · · 1).
(d) The full transformation semigroup on {1, . . . , N}
is generated by r, tN−1, tN , tN+1.
(e) The Petri net Γ′(N) with one place, with mark-
ings of 0 to N + 1 tokens, and the four transitions
listed in (d) realizes the full transformation semi-
group.
Proof: (a) By the construction of Proposition 9, the
transposition is given by

rt2+(N−1)rt1+(N−2)rt3+(N−3) · · ·
· · · rti+(N−i) · · · rtN+(N−N),

which simplifies to the form above. (b) is similiar.
(c) is easily verified by direct calculation. (d) fol-
lows from (a), (b), and (c), and the well-known fact
that an n-cycle, transposition of wo of its adjacent
elements, and an elementary collapsing generate the
full transformation semigroup (see, e.g., [13, Prop.
1.5]). Note Γ′(N) is a sub-Petri net of Γ(N). Then
(e) follows from (d) and the observation that the
generators map the set {0, . . . , N +1} to itself in the

case of the identity construction or, alternatively, for
the dead-state construction, the generators map the
set {0, . . . , N + 1} ∪ {the dead state} to itself. 2

Remark: By the second remark above, on
{0, 1, . . .N − 1}, we can represent the transposition
(0 1) by tN+1rtN−1r(tN r)N−2. The elementary
collapsing taking 0 to N − 1 is given by tN−1.
Also, we observe that tNr represents the cycle
(N − 1 N − 2 · · · 1 0). So these same generators as
before, r, tN+1, tN , tN−1, also yield the full trans-
formation semigroup on {0, 1, . . . , N − 1}.

From the above propositions, remarks, and the
example Γ′(N) shown in Figure 6, we conclude
that using sequences of transitions for the example
(whose markings reachable from the marking with
0 tokens have 0, 1, ..., N + 1 tokens) that each of
the subsets {0, 1, . . . , N − 1} and {1, 2, . . . , N} can
be transformed into themselves by any function on
these sets.

Theorem 11 The symmetric group on N points
and the full transformation semigroup on N points
can be realized as substructures of the semigroup of
the Petri net with inhibition.

This can be seen as a mathematical indication
of the all-pervasiveness of inhibitory connections
in biological networks: they give the possibility for
building computationally rich structures, such as
the full transformation semigroups and full permu-
tation groups. (See Discussion section below).

7. A Biological Example

Let us consider a well-known example from bio-
chemistry, the Krebs, or citric acid cycle. Glucose
is oxidized through several steps to carbon dioxide
and water, while energy is stored in ATP. Here we
create a Petri net model K and concentrate on the
role of two coenzymes NAD and CoASH (this re-
striction makes the model simpler). We restrict the
state set to all markings of the Petri net reachable
by starting from the initial marking with a single to-
ken at the place for pyruvic acid and with all other
places empty. This simple technical step is computa-
tionally important, since it significantly reduces the
set of states of the derived automaton. In this case
the max and strict interpretations will only impact
the places for coenzymes CoASH and NAD and will
have no effect on the presence or absence of symme-

9

1

t1

2

t2

3

t3

4

t4

5

t5

NADCoASH

t6t7

Fig. 7. A Petri net model K of the Krebs cycle in re-
spect to the coenzymes NAD and CoASH catalysing the

reactions represented as transitions. The places with num-
bers correspond to the substrates available for the reac-
tions. This is an extremely simplified model (we let the re-
actions go to completion), so one state can stand for many
substrates: 1={Pyruvic acid}, 2={Acetyl CoA}, 3={Citric
acid, Isocitric acid, Oxalosuccinic acid, α-Ketogluratic acid},
4={Succinyl CoA, Succinic acid, Fumaric acid, L-Malic
acid}, 5={Oxaloacetic acid}. The fact that coenzymes are
not consumed in the reactions is represented by the environ-
mental inputs, which have the effect of keeping them avail-
able.

0000101

0010000

 t5

0000111

 t6

0010010

 t6

0010001

 t7

0010011

 t7

0001000

0001001

 t7

0001010

 t6

0001011

 t6

0100010

0100011

 t7

 t2

0000110

 t7

 t5

1000001

1000011

 t6

0100000

 t1

 t6

0100001

 t7

 t2 t6

0000100

 t4 t7

 t3

 t7

 t6

 t6

1000010

 t7

1000000

 t7 t6

 t4

Fig. 8. The automaton derived from the Petri net model K
of the Krebs cycle. The states (global markings) are repre-
sented as bitstrings with the digit at position i indicating
the existence (1) or absence (0) of a token at the correspond-
ing place i in the Petri net (place 6 is NAD and place 7 is
CoASH).

10

try groups, since amongst reachable markings ex-
actly one substrate place will contain a token, so we
shall treat the places corresponding to them as hav-
ing capacity 1.

The Petri net K has no inhibitory connections.
The automaton derived from considering just the
fireable transitions of this Petri net is shown in Fig-
ure 8. For the identity interpretationTI(K) any tran-
sition arcs not shown act as the identity, preserving
the current state; whereas for the dead state inter-
pretation TD following such an arc leads to a sink
state. By Theorem 4 proved above, under the dead
state interpretation of the Petri Net model of the
Krebs cycle presented here, computation is neces-
sarily counter-free. This fact has also been verified
by explicit computation using jSgpDec [14].

Using the identity interpretation, the effect of a
non-fireable transition quite naturally represents
an interaction with enzymes without the enabling
cofactor(s), hence no chemical transition in the
substrate is achieved. Under this interpretation,
symmetry groups underlying the computation of
the Krebs cycle in intermediary metabolism are
revealed. Using the Petri net K in Fig. 7 we found
cyclic groups of order 2 and 3 among its prime
components 5 , which agrees with our knowledge
about the Krebs cycles from the results of a man-
ual calculation by John Rhodes [7] using a similar
automaton model of the Krebs cycle.

8. Discussion and Conclusions

Petri nets are popular in biological applications
(biochemical and genetic regulatory networks),
therefore it is important to explore the consequences
of the actual modelling decisions. We showed that
the actual interpretations, the semantics of the
Petri net, can have a decisive effect on the algebraic
invariants of the net. From aperiodicity we can go to
counting automata by changing the interpretation
of nonfireable transitions. This is a very important
warning for the users of automata derived from
Petri nets: the possible answers for the seemingly
metaphysical question ‘What happens when a non-
fireable transition tries to fire?’ have far reaching

5 These symmetry groups occur in multiple ways in the
Krebs cycle. For instance, the global marking 0000111 and
word t6t7t5t4t3t6 determine an algebraic cycle, counting
cyclically through three states (0000111, 0010010, 0001010);
while the word t4t6t5t3t6t7 transposes the states 0001011
and 0010011, yielding a modulo 2 counter.

consequences. Moreover, it may be rather surpris-
ing that in order to have counting components we
needed transitions that in some cases behave as an
identity transformation: without effectless transi-
tions we do not have group components.

Dead State
Construction

Identity
Construction

No Inhibition Non-counting Figs. 4 (and 5) (Z2)

Inhibition Fig. 3 (Zn) and Fig. 6 (SN)

Table 1
Summary table for example Petri nets with counting

components. Using a dead state construction for a Petri net
always results in an a non-counting structure (Theorem 4).
The identity construction for Petri nets without inhibition
can give raise to counters regardless of policy (strict, max,
or no bounds on number of tokens; see text) as in the example
of Fig. 4, but the Petri net of Fig. 5 is counting only in the
case of the strict policy. The Petri net with inhibition Γ′(N)
in Fig. 6 generates the symmetric group SN (and even the
full transformations semigroup) regardless of interpretation
(dead state construction TD or identity construction TI) and
policy (strict, max, or no bounds on number of tokens).
Similarly, the one in Fig. 3 with inhibition always yields a
modulo n counter Zn regardless of interpretation and policy.

It remains an open question to determine whether
Petri nets without inhibition could realize the full
symmetric group (under the identity construction
interpretation), although our examples do show the
possibility of nontrival permutation groups in this
case. In contrast, from our results we can immedi-
ately extract the following conclusion for Petri nets
with inhibition:
Observation 12 With inhibition Petri nets can re-
alize any finite permutation group or transformation
semigroup. This strong result for the class of Petri
nets with inhibition is completely independent of the
methods of intrepretation considered and of the poli-
cies for treatment of finite vs. unbounded capacities.
Proof: The first assertion is just the content of The-
orem 11, which follows from Proposition 10(e) us-
ing the example of Petri net of Figure 6. The sec-
ond part follows by observing that the steps in the
proof hold for every choice of interpretation (dead
state or identity construction) and policy (strict or
max, using capacities of at leat N +1 when realizing
the full transformation semigroup or the symmetric
group on N points, or allowing unbounded numbers
of tokens). 2

Table 1 summarizes the main results and exam-
ples constructed in the course of considering of dif-
ferent interpretations and policies for Petri nets.

11

It is notable that independent of these considera-
tions one can find computationally rich structures
in cases where inhibition plays an active role. The
all-pervasive role of inhibition and negative feed-
back (in addition to positive activation) in yielding
complex self-organized structures in biological sys-
tems is well-recognized (e.g. in stigmergy [15], pat-
tern formation and morphogenesis [16], evolution
[17], as well as genetic [18] and neural [19] regu-
latory control). The mathematical construction of
computationally rich structures (the full transfor-
mation semigroups and full permutation groups) in
Petri nets with inhibition demonstrated here could
also be taken as indicative of the underlying rea-
sons for this pervasiveness of inhibition and negative
feedback in the computation of biological systems.

References

[1] M. Peleg, D. Rubin, R. B. Altman, Using Petri Net
Tools to Study Properties and Dynamics of Biological
Systems, Journal of the American Medical Informatics
Association 12 (2) (2005) 181–199.
URL http://www.jamia.org/cgi/content/abstract/

12/2/181

[2] W. Marwan, A. Sujatha, C. Starostzik, Reconstructing
the regulatory network controlling commitment and
sporulation in Physarum polycephalum based on
hierarchical Petri Net modelling and simulation, Journal
of Theoretical Biology 236 (2005) 349–365.

[3] C. L. Nehaniv, J. L. Rhodes, The evolution and
understanding of hierarchical complexity in biology from
an algebraic perspective, Artificial Life 6 (1) (2000) 45–
67.

[4] C. L. Nehaniv, J. L. Rhodes, On the manner in which
biological complexity may grow, in: Mathematical and
Computational Biology, Lectures on Mathematics in the
Life Sciences, Vol. 26, American Mathematical Society,
1999, pp. 93–102.

[5] A. Egri-Nagy, C. L. Nehaniv, Hierarchical coordinate
systems for understanding complexity and its evolution
with applications to genetic regulatory networks,
Artificial Life 14 (3), (Special Issue on the Evolution of
Complexity), in press.

[6] K. Krohn, J. L. Rhodes, B. R. Tilson, The prime
decomposition theorem of the algebraic theory of
machines, in: M. A. Arbib (Ed.), Algebraic Theory of
Machines, Languages, and Semigroups, Academic Press,
1968, Ch. 5, pp. 81–125.

[7] J. L. Rhodes, Applications of Automata Theory and
Algebra via the Mathematical Theory of Complexity
to Biology, Physics, Psychology, Philosophy, and
Games, World Scientific Press, in press, foreword by
Morris W. Hirsch, edited by Chrystopher L. Nehaniv
(Original version: University of California at Berkeley,
Mathematics Library, 1971).

[8] C. L. Nehaniv, Algebra and formal models of
understanding, in: M. Ito (Ed.), Semigroups, Formal

Languages and Computer Systems, Vol. 960, Kyoto
Research Institute for Mathematics Sciences, RIMS
Kokyuroku, 1996, pp. 145–154.

[9] J. Desel, G. Juhás, “What Is a Petri Net?”, in: Unifying
Petri Nets: Advances in Petri Nets, Springer-Verlag,
London, UK, 2001, pp. 1–25.

[10] M. Hall, The Theory of Groups, The Macmillan
Company, New York, 1959.

[11] A. Egri-Nagy, C. L. Nehaniv, Cycle structure in
automata and the holonomy decomposition, Acta
Cybernetica 17 (2005) 199–211, [ISSN: 0324-721X].

[12] S. Eilenberg, Automata, Languages and Machines,
Vol. B, Academic Press, 1976.

[13] P. Dömösi, C. L. Nehaniv, Algebraic Theory of Finite
Automata Networks: An Introduction, SIAM Series on
Discrete Mathematics and Applications, 2005.

[14] A. Egri-Nagy, C. L. Nehaniv, SgpDec, jSgpDec –
computational tools for semigroup decompositions,
(http://sgpdec.sf.net)., (formerly jGrasp) (2003).

[15] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm
Intelligence : From Natural to Artificial Systems, Santa
Fe Institute Studies on the Sciences of Complexity,
Oxford University Press, 1999.

[16] H. Meinhardt, Modelling Biological Pattern Formation,
Academic Press, 1982.

[17] C. Darwin, A. Wallace, On the tendency of species
to form varieties; and on the perpetuation of varieties

and species by natural means of selection, Journal of
the Proceedings of the Linnean Society, Zoology 3 (20
August 1858) 45–62.

[18] E. H. Davidson, The Regulatory Genome: Gene
Regulatory Networks in Development and Evolution,
Academic Press, 2006.

[19] P. Jonas, G. Buzsaki, Neural inhibition, Scholarpedia
(2007) 21952 [last accessed 9 November 2007].
URL http:

//scholarpedia.org/article/Neural_Inhibition

Appendix A: On Concurrency

We discuss in this appendix what happens to the
computational power of Petri nets in case simulta-
neous firing of multiple transitions at the same time
is permitted. The appendix can be read after section
4 on automata associated to Petri nets.
Definition 13 A concurrent transition is a non-
empty set of transitions, Q ⊆ T , which are executed
simultaneously. The transition Q is enabled if there
are enough tokens for all its individual transitions
(the sum of the required tokens are available):

∀p ∈ P, #p ≥
∑

t∈Q

W (p, t).

This definition implies that the members of Q could
be executed sequentially in any order to yield the
same effect as Q. There may be other definitions of
concurrent transitions, but then only some particu-

12

lar order of sequential execution may yield the same
result if any.
Definition 14 LetN be a Petri net. ThenN# is the
Petri net made from N by replacing T with 2T \{∅},
i.e. the set of all possible concurrent transitions, but
with the restriction that only one transition may fire
at a given moment.
Using this construction, we can limit the discussion
to nets in which a single transition fires at a given
moment. The important question is, how is N , when
restricted to singleton transitions, related to N#?,
how much more capable is N# compared to the se-
quential version of N ? Or, asking in a different way:
can the concurrent transition be emulated by a se-
quence of transitions?
Theorem 15 Let N be a Petri net without in-
hibitory connections. Then T (N) = T (N#).
Proof: The definition of concurrent transition en-
sures that the execution of the individual transi-
tions within are completely independent (the sum
of the required tokens are available even if transi-
tions share input places). A concurrent transition
corresponds to a series of transformations in which
the order of the execution does not matter (locally
commutative). Since the transformation semigroup
is built from all sequences of input symbols that
yield distinct transformations, the ts contains the
concurrent actions. 2

Remark: For the arguments presented in this pa-
per it is not vital to consider the difference between
N and N# when there are no inhibitory arcs. But
we have a different situation if the Petri net contains
inhibitory connections. The simple example in Fig-
ure 9 shows that T (N#) contains more transforma-
tions than T (N), i.e. T (N#) may be strictly larger
than T (N). Thus, with inhibition the transforma-
tion semigroup of a Petri net may in some cases
become computationally more powerful by allowing
simultaneous firing of sets of transitions.

Appendix B: Powers of Permutations

Here we prove a simple fact used in relating count-
ing to the existence of permutations.
Fact 16 If A = (A, X, δ) is a state-transition au-
tomaton, B is a finite subset of the state set A, and
w ∈ X+ a word of positive length in the input letters
such that the mapping induced on A by w maps B to
B by a nontrivial permutation. Then for some posi-
tive n > 1, wn acts as the identity operator on B (so

p3

t2

p1

t1

p2 p4

Fig. 9. An example where allowing concurrent transi-
tions yield a bigger automaton. Starting from the marking
(1, 0, 1, 0) both t1 and t2 are fireable, even concurrently. But
any sequential emulation of the concurrent transition will
fail because the second transition (the order does not mat-
ter due to the mutual inhibition) will be inhibited, and thus
not able to fire.

in particular wn−1 acts as the inverse operator to w

when restricted to B. Moreover, for all b ∈ B, the
state sequence (b, b · w, b · w2, b · w3, . . .) eventually
returns to b and cycles forever.
Proof: Since B is finite there are only finitely many
different mappings amongst 〈w〉 = {w, w2, w3, ...},
i.e. wk = wk+n for some k, n ≥ 1. Since wk is a
permutation on B, for each b ∈ B, there is some b′ ∈
B with b′ · wk = b, whence b · wn = (b′ · wk) · wn =
b′ · wk+n = b′ · wk = b. That is, wn is the identity
map on B. Since w is a nontrivial permutation of B,
we have n > 1. 2

13

