

Abstract—We present in this paper three novel

developmental models allowing information to be encoded in

space and time, using spiking neurons placed on a 2D substrate.

In two of these models, we introduce neural development that

can use bilateral symmetry. We show that these models can

create neural controllers for agents evolved to perform

chemotaxis. Neural bilateral symmetry can be evolved and be

beneficial for an agent. This work is the first, as far as we know,

to present developmental models where spiking neurons are

generated in space and where bilateral symmetry can be

evolved and proved to be beneficial in this context.

I. INTRODUCTION

N order to investigate the importance of bilateral

symmetry in artificial neural development, here we

introduce three different novel models of a developmental

program that grow spiking neural networks on a two-

dimensional substrate. Each of these models has different

degrees of allowed or enforced symmetry. These

developmental programs are evolved, using a genetic

algorithm, to allow simulated agents to perform chemotaxis.

This paper begins with a basic introduction on symmetry in

nature and how it has been modeled in artificial evolutionary

models. Then, we introduce our developmental model, the

agent used and the task it had to perform. Further, we

describe in more detail our three different models. Then, the

simulation and genetic algorithm parameters are presented.

This section is followed by the results, the discussion and

finally the conclusion.

A. Symmetry

For centuries, people have observed and been fascinated

by symmetrical patterns found in nature [1-3]. In our minds,

symmetry is often related to something beautiful, well

balanced or well proportionate [3]. It has been shown that in

many species (even in humans), female prefer males that

have symmetrical displays [4]. One possible reason to

explain this phenomenon is that symmetry might reflect the

high quality of a signaler. Another reason could be that

individuals have evolved recognition systems that have

common properties and are capable of generalization, and

from this could emerge a high sensitivity to symmetries [4].

In living organisms, symmetries arise as a side effect of the

creation of axes that will guide cells during development [1-

3, 5-8]. Cells divide and migrate following gradients that

form these axes. They might also create or modify gradients

and rearrange themselves to form the most

thermodynamically stable pattern [6]. Therefore, it is very

likely that cells will be placed symmetrically along different

axes to have a system in a state of equilibrium [3]. But due to

developmental noise, even the most bilaterally symmetrical

animals do not show perfect symmetry. Also, many

vertebrates are mainly bilaterally symmetrical about the

midline of the body but they have many internal organs that

are not bilaterally symmetrical (for example in humans:

heart, stomach, spleen…) [5-8]. Even if the emergence of a

bilateral body plan was a key step in evolution, new axes

were defined that differentiated head and foot, back and front

and left from right, and allowed asymmetrical parts to be

created and eventually lead to more complex organisms.

B. Evolutionary Computation

In order to understand the importance of symmetry in

development, certain researchers in artificial intelligence

have created abstract developmental models that generate

neural controllers for robots or simulated agents. It is always

a difficult task to create robust and adaptable neural

controllers for agents that can perform many different

actions. It is even more difficult if you want to reuse existing

controllers and add new modules so an agent can learn and

perform new tasks. A promising trend is to evolve neural

networks using evolutionary computation. There are

different approaches in this research area and many different

ways to encode evolving features into genes [9-14]. A certain

amount of work has been done in evolutionary computation

on encoding spatial neural networks [15], with symmetrical

structure using L-systems [16-21] and grammatical encoding

[22, 23]. Stanley also created abstract models generating

representations of symmetrical patterns [24, 25]. To the best

of our knowledge, no one has created a developmental model

generating spiking neural controllers placed in 2D spaces,

where bilateral symmetry can be evolved, and improved the

performance of an agent to perform certain tasks.

C. Our Approach

In this study, we used developmental programs that

allowed information to be encoded as spatio-temporal neural

activity patterns. We created three new developmental

models initially inspired by Kodjabachian and Meyer’s

Evolution of Bilateral Symmetry in Agents Controlled by Spiking

Neural Networks

Nicolas Oros, Volker Steuber, Neil Davey, Lola Cañamero, and Rod Adams

Science and Technology Research Institute, University of Hertfordshire, AL10 9AB, United Kingdom

{N.Oros, V.Steuber, N.Davey, L.Canamero, R.G.Adams}@herts.ac.uk

I

978-1-4244-2763-5/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

SGOCE paradigm [26-30] and NEAT [24, 25, 31]. By using

them, we wanted to see how bilateral symmetry in neural

networks could be generated and affect the behavior of a

simulated robot. In our models, a developmental program

was expressed in a genome and when executed, it would

create one or more intermediate neurons with one or more

connections to make the whole neural network grow. Like in

[31, 32], one of the key ideas in our approach is based on

complexification. An initial genome is first composed of

only one gene creating only one neuron when expressed.

Then, during evolution, new genes can be added via

mutations creating more neurons and more connections,

therefore adding more complexity to the system. Another

important concept of this model is targeting [32]. We used a

2D neural substrate where spiking neurons (with synaptic

integration and conduction delays) are placed and can grow

connections to target locations. Evolution can therefore

generate neural networks able to encode external information

as spatio-temporal patterns.

We first created a model where parameters of each neuron

were encoded in the genome (NO_SYM). We then created

two variations of it allowing bilateral symmetrical clones of

neurons to be created. The first one allowed the evolution of

symmetrical neurons (EVO_SYM) and the second one

enforced the symmetry for every neuron (ENF_SYM). We

also decided to have neural development performed in two

stages: first creating every neuron on the substrate, then

creating all the connections. This was inspired by biological

systems where neurons first divide, then migrate to a certain

location and finally create connections [5, 6, 33]. Some

neurons might eventually die but we decided not to model

apoptosis in our model to deal with complexity

incrementally.

D. The agent and its Task

We decided to evolve an agent to perform a simple task

which was to stay inside a chemical concentration in a

simulated continuous environment (Fig. 3). The agent has

two wheels, one on each side of the agent, providing a

differential steering system. Each wheel is controlled by two

motor neurons providing forward and backward propulsion.

The agent also has two antennae placed on the front of the

agent, one orientated on the left and the other one on the

right. Each antenna is linked to a sensory neuron. The two

antennae are separated widely enough to detect the presence

of the chemical gradient (Fig. 1). To control the agent, we

used a spiking neural network. The sensory and motor

neurons placed on the neural substrate form the initial neural

network (Fig. 2).The complete neural network was created

by using a developmental program.

II. METHODS

A. Spiking Neurons

We used a leaky-integrate and fire model with synaptic

integration and conduction delays already described in [34,

35]. We also used a realistic model of noise in the form of an

diffusive OU (Ornstein-Uhlenbeck) current [36]. This form

of colored noise reproduces the subthreshold voltage

fluctuations in real neuronal membranes. We added this

noise to the total input current of each neuron. The noise

current I(t) is described by:

()

()() ()tDItI
dt

tdI

I

ξ
τ

+−−= 0

1
 (1)

where τI denotes the current noise time constant (2ms in our

case), I0 is the mean noise current (0 in our case),

D = 2σ
2
 / τI is the noise diffusion coefficient, σ is the

standard deviation (0.0007 in our case) and ξ(t) is a Gaussian

white noise (with mean = 0 and standard deviation = 1). The

motor neurons used to control the wheels are modeled in the

same way. However, the sensory neurons are based on this

model but have a different expression to calculate the input

current. We created a model of a spiking sensory neuron in

which the chemical concentration is processed so that a

quasi-linear relationship between the concentration and the

firing rate of the sensor is produced. The sensory neurons

were already described in detail in [34, 35, 37].

B. Chemical Concentration

We decided to use a simple model of chemicals that are not

diffused and evaporated. The concentration is a linear

Fig. 2. 2D substrate of an agent with initial neural network. The two

sensory neurons are shown on the right in yellow. The motor neurons

move the agent forward (green) or backward (orange) by turning the

wheel.

Fig. 3. Path of an agent moving towards the middle of a fixed chemical

concentration (red circle). The concentration is a linear gradient where

the maximum value is situated in the middle.

5

5

5
5

50

100

(0;0)

Fig. 1. Properties of an agent equipped with two wheels and two

antennae. Units are arbitrary.

100

50

250

100

100

(0; 0)

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

gradient where the maximum value is situated in the middle

of the circular chemical concentration.

C. Agent Movements

In order to move the agent, we calculated the velocity V(t)

(arbitrary unit) of each wheel using the following equation:

() () ()()bfvmotor ttttKVV

dt

dV
−−−+−= δδτ 0

 (2)

Where δ is the Dirac function (pulse) defined by δ(x) = 0

when x ≠ 0 and δ(x) = 1 when x = 0.

We decided for simplicity that an agent should always

move forward in the absence of any external input so we set

up the parameters accordingly: V0 = 0.5 is the default

velocity (the agent is always moving straight by default),

Kv = 5 is the speed coefficient, τmotor = 0.05 is the time

constant in seconds, tf is the time when the most recent spike

was emitted by the motor neuron responsible to turn the

wheel forward, tb is the time when the most recent spike was

emitted by the motor neuron responsible to turn the wheel

backward. The agent was moved by calculating the velocity

every time step.

III. DEVELOPMENTAL PROGRAMS

A. Without Symmetry: NO_SYM

The developmental program constructing the neural

network consists of a genome which is an array of modules.

A module must have a gene, which we denote N, encoding

the position (x, y) of an intermediate neuron, and can have

genes encoding possible connections, denoted C. The neuron

is placed on a 2D Cartesian coordinates system with its

origin situated in the centre of the agent (Fig. 1 and 2). If a

new module is created, it will be added to the end of the

genome. A module is valid if it is composed of only one N

gene but not if it is only composed of C genes. A C gene

encodes the different parameters for a connection of a

neuron. That includes an angle θ and a distance d to

determine where it connects (see Section III. B), a synaptic

strength (w) and a type (afferent or efferent). A neuron can

also have connections even if they are not encoded in the

module defining its properties. The reason is that other

neurons can create efferent and afferent connections to this

neuron.

When an agent is created, it only has an initial neural

network (Fig. 2). There are no intermediate neurons, only

motor neurons and sensors. If the genome of an agent is

composed of at least one module, the complete neural

network can be created by executing the developmental

program expressed in the genes, reading the genome from

the beginning to the end. With only one module, only one

intermediate neuron will be created but it can have more than

one connection. The neural network is constructed by the

developmental program in two steps by reading the genome

twice. First, all the neurons are created in the 2D substrate by

reading all the N genes. Secondly, all the connections are

created by reading all the C genes.

When reading a C gene, a target position for a given

neuron is defined to determine to which neuron it will be

connected to. The target position is given by the angle θ (in

radians) and the distance parameter d relative to the neuron.

A neuron creates a connection to the closest cell to this target

position (Fig. 4). Self connections are therefore possible.

Motor neurons cannot have output connections and sensory

neurons cannot have input connections. A target position can

be situated outside the substrate. In this case, a connection

will still be created linking the closest neuron.

B. Evolvable Symmetry: EVO_SYM

This model is a modification of NO_SYM. The main

concept of this model is to introduce genetically encoded

bilateral symmetry with respect to the longitudinal axis of the

agent. The idea is that instead of encoding two neurons that

are similar but are positioned on opposite sides of the

midline (x-axis), the genome could encode only one neuron

but with an extra evolvable parameter allowing the creation

of its symmetrical clone; this allows compressing genetic

information. In fact, the initial neural network is

symmetrical, and therefore the evolutionary process should

be able to use this important embedded feature. This model

is based on an abstraction of a gradient that could form the

horizontal axis. Compared to NO_SYM, C genes are still the

same but N genes have an additional Boolean parameter sym.

This parameter sym plays an important role. If it is activated

(set to true), a clone of the actual neuron will be created and

placed symmetrically to the x-axis (Figs. 5 & 6). If the parent

neuron is situated on the x-axis, its clone will be created in a

close random place around it.

The development of the neural network is very similar to

NO_SYM. The only difference is that during the first step of

development (creation of neurons), each created neuron will

have a symmetrical clone if its parameter sym is set to true.

TABLE 1

RANGES OF VALUES USED FOR THE PARAMETERS OF THE GENES

Parameters Ranges of values

x [-50,50]

y [-25,25]

w [-15,15]

θ [0,2π]

d [1,100]

type afferent / efferent

Fig. 4. Creation of a connection by neuron 1 in two steps. First,

neuron 1 places a target point on the substrate depending on the

distance d and angle θ parameters. Secondly, the closest neuron to

the target point gets connected to neuron 1. The type of connection

(input or output) depends on the parameter type and the synaptic

strength (weight) is encoded by the parameter w.

θ
 1

2
d

 1

2
w

Target point

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

A clone of a neuron has its y parameter set to - y and all the

connection parameters θ set to - θ. Therefore, the clone of a

neuron is horizontally symmetric and its connections are also

symmetric (Figs. 5 & 6). The neural growth is still performed

in two steps by reading the genome twice. First, all the

neurons (and their possible symmetrical clones) are created

in the 2D substrate by reading all the N genes. Secondly, all

the connections are created by reading all the C genes.

C. Enforced Symmetry: ENF_SYM

This developmental model is almost the same as

NO_SYM. The only difference is the systematic creation of

a symmetrical clone for every neuron. Every time a neuron is

added to the substrate by executing the genome, a

symmetrical clone is also created, as in EVO_SYM (Figs. 5

& 6). But compared to EVO_SYM, ENF_SYM does not

encode the possible symmetry in the genome. The creation of

symmetrical neurons is an automatic process always

occurring during the first step of the development of the

neural network.

IV. EXPERIMENTS

We performed two series of tests. First, we evolved

simulated agents that stay in a fixed chemical concentration.

We then evolved agents to stay inside a moving

concentration. In each series, we performed seven GA runs

for each developmental model in order to study the

importance of symmetry in neural development.

For the first series of tests, each agent had two runs of 200

seconds and started from different locations (left and right of

the fixed chemical concentration). The fitness function was

very simple and consisted of the sum of the inverse distances

between the agent and the centre of the concentration during

the last 50s of a run. The fitness of an agent was the sum of

the fitness values recorded for the two runs.

For the second series of tests, we evolved agents able to

stay within a moving concentration. One agent and one

chemical source were placed in a toroidal world. Compared

to the first series, the time of a run was longer (300s). During

a run, an agent was always placed at the same place with a

random angle of initial movement and the chemical

concentration was placed randomly in the world. The

concentration was then set moving randomly in the

environment. The fitness function was also different and

started to be calculated only when the agent was touching the

concentration (recording time was initialized at this point).

The fitness is the sum of the inverse distances, divided by the

recording time. We used a resolution of 1ms (1 time step) for

every simulations.

A. Genetic Algorithm

We used a classical genetic algorithm (Fig. 7) to evolve an

agent that could perform chemotaxis. The initial population

was composed of 100 agents. Each one of them was

equipped with four motor neurons and two sensors

composing the initial neural network (Fig. 2). Initially, they

all had a genome composed of one module encoding one

neuron, placed in the middle of the substrate, and one initial

connection, having parameters randomly initialized.

Therefore, the genome of these agents had one module

composed of one N gene and one C gene. Then, each agent

was subject to mutations (see Section IV.B). After mutations,

these agents were placed in the initial population and the GA

could begin. Once all the agents were evaluated, the agents

were ranked by fitness and the ten fittest ones were copied to

the next generation. Ninety new individuals were created and

added to the next generation‘s population by selecting two

parents for each, using a tournament selection of size 5. A

new individual was created by cross-over of the two parents

(see Section IV.B.). Out of these 90 new agents, twenty were

mutated. The genetic algorithm lasted for 1000 generations.

B. Genetic Operators

The use of the following genetic operators allowed

complexification of the genome by adding, modifying or

removing new genes.

Mutation - In our model, mutations occur with the same

probability independently of the size of the genome. Twenty

agents were randomly chosen from the 90 new agents created

by the tournament selection and mutated. Three kinds of

mutations were used in this GA. A mutation could add or

delete neurons, add or delete connections and modify the

values of the parameters of the genes. Each mutation was

performed within a certain range of values added to the

Fig. 5. At the top, the 2D substrate of an agent with the initial

neural network and one intermediate neuron (in red) having two

connections is shown. At the bottom, the symmetrical clone has

been added.

Fig. 6. Drawing showing the coordinates and the angle of the

connections of the intermediate neuron (bottom) and its

symmetrical clone (top).

y

x

x

(x, y)

(x,-y)

θ1

-θ1

θ2

-θ2

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

original ones (Tables 2 & 3), and these parameters were

maintained within certain values defined earlier (Table 1).

For example, if the value of the parameter x of a N gene was

49, and a mutation tried to add 5 to x (x = 54), x would be set

to its maximum value 50 due to the range of values used.

Here is the simple algorithm of the mutation process:

For all twenty agents:

I. Mutate each module:

1. 5% chances to add a new connection.

2. 5% chances to remove a randomly selected

connection.

3. Choose randomly one of the following mutations:

• Pick randomly one connection, choose randomly

one parameter and mutate it.

• Add a random value to parameter x of a N gene.

• Add a random value to parameter y of a N gene.

II. 5% chance to add a new module (new neuron).

III. 5% chance to remove a randomly selected module

(neuron and connections).

When a new module is added to the genome, the new

neuron always has one randomly initialized connection. The

new neuron is placed randomly in the vicinity of the last

neuron created on the substrate (last encoded in the genome).

A new connection added is also always randomly initialized.

Cross-over - Neural selection is applied here by crossing-

over modules at the same position. By doing so, each neuron

should be able to specialize more quickly during evolution.

Here is an example:

Two agents A1 and A2 are selected to create a new agent

A3. The maximum number of modules a new agent can have

depends on its parents. In this case, agent A1 has five

modules and A2 has three of them. Therefore, the new agent

A3 will have at maximum five modules (i.e. five neurons).

The crossover process will make five selections of modules

and at each selection, there is an equal chance of selecting

the agent A1 or A2. Therefore, each module of the same

position has 50% chances to be selected and copied. If at the

fourth selection, for example, the chosen agent is A2, which

does not have any more modules at this position, nothing will

be added to the genome of agent A3 at this stage. But another

module can be copied from A1 if this one is chosen during

the fifth selection, and this module, originally from position

5, will become a module of position 4 of agent A3.

V. RESULTS

In the first series of tests, we evolved agents to stay inside

a chemical concentration as close as possible from its center

(Fig. 3). We found that the GAs implementing the

developmental models using symmetry (EVO_SYM,

ENF_SYM) evolved good neural networks so the agent went

in and stayed close to the centre of the concentration. We

saw that in all the seven GAs, EVO_SYM evolved a neural

network with symmetrical neurons. In fact, the neural

controllers evolved with EVO_SYM or ENF_SYM were

very similar. NO_SYM did not manage to evolve an optimal

solution as the others and had an overall pretty bad

performance. Therefore, the first series of tests showed us

that without evolvable or enforced symmetry, the system

could not evolve and find an optimal solution. In Fig. 8, we

can see the neural controller of the fittest agents evolved

using NO_SYM. We can clearly see that it is not bilaterally

symmetric and in fact, the agent implementing it performed

rather badly. Fig. 9 shows the neural network of the fittest

agent evolved using EVO_SYM. This agent was performing

well and used both sensors and motor neurons. It used only

two symmetrical neurons where only one neuron was

encoded in the genome. Neuron N1 is taking an input from

TABLE 2

RANGES OF MUTATIONS USED FOR THE PARAMETERS OF THE GENES

Parameters Ranges of mutation

x [-5;5]

y [-5;5]

sym (only for EVO_SYM) true / false

θ [-π/4;π/4]

d [-2;2]

w [-5;5]

type afferent / efferent

GA starting with a population of 100 agents

100

Run every agents and

record fitness values

100

10 fittest

Use tournament

selection for

reproduction

elitism

90

Apply

mutations

Fig. 7. Genetic algorithm with parameters. The population is

composed of 100 agents. For the first experiment, each agent had two

runs of 200 seconds starting from different places (left and right of

the chemical concentration). In the second experiment, each agent

had only one run of 300s. For both experiments, the fitness rewarded

an agent that stayed inside the chemical gradient. Once all the agents

were evaluated, the agents were ranked by fitness and the ten fittest

ones were copied to the next generation. Ninety new individuals were

created and added to the next generation‘s population by selecting

two parents for each, using a tournament selection of size five. A

new individual was created by cross-over of the two parents (see

Section IV.B.). Out of these 90 new agents, twenty were mutated.

The genetic algorithm lasted for 1000 generations. We ran the GA

for 1000 generations.

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

the sensor S0 and is stimulating M0 and M3 and is inhibiting

M1 allowing the agent to turn quickly. N1 also has an

excitatory self connection. Neuron N2 has the same

symmetrical connections. We also noticed that both neurons

are inhibiting each other. This neural network can be seen as

an advanced Braitenberg vehicle [38]. The trajectory of this

agent is shown in Fig. 3.

In the second series of test, we saw again that the

developmental models using bilateral symmetry generated

better neural controllers than NO_SYM (Fig. 11). Once

more, EVO_SYM always evolved a neural network with

symmetrical neurons in all the seven GAs. Fig. 10 and Table

3 show the neural controller of the fittest agent evolved using

EVO_SYM. Neuron N1 is taking an inhibitory input from

sensor S0 and an excitatory input from S1. It is stimulating

M2 and is inhibiting N4 allowing the agent to turn more

quickly as N4 stimulates M0. Neuron N2 is symmetrical to

N1 so it has the same symmetrical connections. We also

noticed that both neurons are inhibiting each other. Neuron

N3 takes input from the sensor S1 and stimulates the motor

neurons M1 and M2 so the agent can turn quickly. Neuron

N4 is symmetrical to N3 so it has the same symmetrical

connections. We notice that two other symmetrical neurons

(N5 and N6) and a non symmetrical neuron (N7) exist but

they do not modify the overall neural activity of the

controller. This shows that symmetrical neurons (N1 and N2)

can also have asymmetrical connections. N5, 6 and 7 can be

seen as evolutionary artefacts that could become useful in

time or disappear. This neural network has more complexity

that the one shown in Fig. 9. The main differences between

the two are the two layers of neurons and inhibitory

connections coming from the sensors. We also noted that

neurons N3 and N4 created more than one connection to the

motor neurons. We suppose that it is due to the limit values

the weights can have [-15; 15] (see Table 1). Therefore, we

can see that the system can easily adapt to circumvent certain

constraints.

TABLE 3

WEIGHT MATRIX OF THE NN FROM FIG. 9 SHOWING THE CONNECTIONS

LINKING CELLS (TOP ROW) TO OTHER CELLS (LEFT COLUMN)

Cells S0 S1 N1 N2 N3 N4 N7

M0 15 15

M1 6, 15

M2 15 15

M3 6, 15

N1 -6 9 4, -15

N2 9 -6 -15 4

N3 6 -10

N4 6 -10

N7 -8

Fig. 10. Neural network of the fittest agent using EVO_SYM evolved to

stay in a moving concentration. Motor neurons are depicted in red,

sensory neurons in green and intermediate neurons in black.

M0 M1

M2 M3

S0

S1

N2

N1

Fig. 9. Neural network of the fittest agent using EVO_SYM evolved

to stay in a fixed concentration. Motor neurons are depicted in red,

sensory neurons in green and intermediate neurons in black.

Fig. 8. Neural network of the fittest agent using NO_SYM evolved to

stay in a fixed concentration. Motor neurons are depicted in red,

sensory neurons in green and intermediate neurons in black.

M0 M1

M2 M3

S0

S1

M0 M1

M2 M3

S0

S1

N1

N2

N7

N5

N3

N4

N6

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

VI. DISCUSSION

In this paper, we have shown that bilateral symmetric

neural networks can be evolved using a genetic algorithm

and our developmental models, and have better

performances than non-symmetrical ones. Perhaps this is not

surprising. Firstly, the agent has bilaterally placed sensors

and actuators. Secondly, the task of chemotaxis also has

implicit symmetry: a chemical to the left triggers a turn to the

left and symmetrically, a chemical to the right triggers a turn

to the right.

Complexification, targeting and neural selection are

important concepts in our model. We use a 2D neural

substrate where spiking neurons are placed and can grow

connections to target locations. Therefore, the geometric

configurations of the neural network significantly matter.

Since we use spiking neurons with conduction delays,

distances separating connected neurons encode time delays

between the points in time spikes are sent by a neuron, and

the time they are received by another neuron. A neural

network generated by our developmental models can encode

information not only using firing rate encoding but also using

temporal coincidence or delay encoding [34, 35, 39].

Evolution can therefore generate neural networks able to

encode external information as spatio-temporal patterns.

More detailed analysis of the activity of the different neural

networks that evolved will be done in the future to see which

neural encodings were really used.

We have noticed from our results that sometimes more

than one connection linking two cells was created. This is

due to the limits of the weights used, showing that the system

can easily adapt to certain limiting constraints. We have seen

that connections between symmetrical parts of the neural

controller could be connected and inhibitory connections of

symmetrical neurons were often evolved. Also, neural

controllers grown with NO_SYM could have symmetrical

neurons, but did so with an extremely low probability.

We have to emphasize the fact that the initial neural

network, placed on the substrate, is bilaterally symmetrical.

Most physical robots are also bilaterally symmetric, and

therefore, we assume that mapping sensors and motors to

sensory and motor neurons on the neural substrate could be

done in a direct manner when implementing our model on a

simulated and real robot. In this case, it biased evolution to

find an appropriate solution that uses this embedded

symmetry. It would be very interesting to see if bilateral

symmetry would still arise and be beneficial when evolving

the morphology of the agent as well as the neural substrate.

Cells could migrate on the substrate and differentiate to

become sensors, neurons and motor neurons.

Many modifications of this model can be done. For

example, adding the possibility to encode the threshold of a

neuron or different axes of symmetry in the genome. Other

developmental models could have been created where only

one gene could have created symmetrical neurons for the

entire neural network. However, we decided to use

EVO_SYM to permit the creation of both symmetrical and

asymmetrical parts, and therefore to increase complexity.

VII. CONCLUSION

In this paper, we have presented three novel

developmental models allowing information to be encoded in

space and time using spiking neurons placed on a 2D

substrate. In two of these models, we introduce neural

development that could use bilateral symmetry. We showed

Fig. 11. Fitness mean values over seven GA runs of fittest agents per generation. The agents were evolved to perform chemotaxis with a moving

target. This graph shows that the use of bilateral symmetry (EVO_SYM and ENF_SYM) created neural controllers performing considerably better

than without symmetry (NO_SYM).

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

that these models created neural controllers that permit

agents to perform chemotaxis, and do so better than

controllers with no symmetry. We also have showed that

with EVO_SYM, neural bilateral symmetry was often

evolved and was found to be beneficial for the agents. This

work is the first, as far as we know, to present developmental

models where spiking neurons were generated in a 2D space

and where bilateral symmetry could be evolved and was

proved to be beneficial in this context.

In future work, we will use incremental evolution to

generate agents that can perform more than one task. Our

long term interest is to study the emergence of chemical

communication in a population of artificial agents.

REFERENCES

[1] D. A. Thompson, On Growth and Form: Cambridge University Press

(1992), 1917.

[2] H. Meinhardt, Models of Biological Pattern Formation: Academic

Press, 1982.

[3] H. Weyl, Symmetry: Princeton Press, 1952.

[4] M. Enquist and R. A. Johnstone, "Generalization and the evolution

of symmetry preferences," Proceedings of the Royal Society,

Biological Science, vol. 264, pp. 1345-1348, 1997.

[5] W. Arthur, The Origin of Animal Body Plans, A Study in

Evolutionary Developmental Biology: Cambridge University Press,

1997.

[6] S. F. Gilbert, Developmental Biology, Eighth Edition, 8 ed.: Sinauer

Associates, 2006.

[7] A. R. Palmer, "Symmetry Breaking and the Evolution of

Development," Science, vol. 306, pp. 828-833, 2004.

[8] L. Wolpert, "Development of the asymetric human," European

Review, vol. 13, pp. 97-103, 2005.

[9] Y. Dongyong and S. i. Yuta, "Evolving Mobile Robot Controllers

Using Evolutionary Algorithm," in SICE 2002, Proceedings of the

41st SICE Annual Conference. vol. 4, 2002, pp. 2184-2189.

[10] D. Floreano, P. Husbands, and S. Nolfi, "Evolutionary Robotics," in

Springer Handbook of Robotics, Chapter 61, B. Siciliano and O.

Khatib, Eds.: Springer, 2008.

[11] R. Pfeifer, F. Iida, and J. Bongard, "New Robotics: Design Principles

for Intelligent Systems," Artificial Life, Special Issue on New

Robotics, Evolution and Embodied Cognition, vol. 11, pp. 99-120,

2005.

[12] D. Floreano, P. Dürr, and C. Mattiussi, "Neuroevolution: from

architectures to learning," Evolutionary Intelligence, vol. 1, pp. 47-

62, 2008.

[13] E. Ruppin, "Evolutionary Autonomous Agents: A Neuroscience

Perspective," Nature Reviews Neuroscience, vol. 3, pp. 132-141,

2002.

[14] X. Yao, "Evolving Artificial Neural Networks," Proceedings of the

IEEE, vol. 87, pp. 1423-1447, 1999.

[15] S. Nolfi, O. Miglino, and D. Parisi, "Phenotypic Plasticity in

Evolving Neural Networks," Technical Report PCIA-94-05, Institute

of Psychology, C.N.R., Rome 1994.

[16] A. Channon and R. I. Damper, "The Evolutionary Emergence of

Socially Intelligent Agents," in Socially Situated Intelligence: a

workshop held a SAB'98, 1998.

[17] A. Channon and R. I. Damper, "Evolving Novel Behaviours via

Natural Selection," in Proceedings of the 6th Conference on the

simulation and synthesis of living systems (ALIFE VI), Los Angeles,

CA, USA, 1998, pp. 384-388.

[18] T. Miconi and A. Channon, "A virtual creatures model for studies in

artificial evolution," in Proceedings of the IEEE Congress on

Evolutionary Computation (CEC 2005), Edinburgh, UK, 2005.

[19] T. Miconi and A. Channon, "An Improved Sytem for Artificial

Creatures Evolution," in Proceedings of the 10th Conference on the

simulation and synthesis of living systems (ALIFE X), Bloomington,

Indiana, USA, 2006.

[20] G. S. Hornby and J. B. Pollack, "Body-Brain Co-evolution Using L-

systems as a Generative Encoding," in Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2001), 2001.

[21] K. Sims, "Evolving 3d morphology and behavior by competition," in

Proceedings of the 4th International Workshop on the Synthesis and

Simulation of Living Systems (ALIFE IV), 1994, pp. 28-39.

[22] M. Komosinski and A. Rotaru-Varga, "Comparison of Different

Genotype Encoding for Simulated 3D Agents," Artificial Life, vol. 7,

pp. 395-418, 2001.

[23] F. Gruau, "Genetic synthesis on modular neural networks," in

Proceedings of the 5th International Conference on Genetic

Algorithms, San Francisco, CA, USA, 1993, pp. 318-325.

[24] J. Gauci and K. O. Stanley, "Generating Large-Scale Neural

Networks Through Discovering Geometric Regularities," in

Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-2007): New York, NY: ACM, 2007.

[25] K. O. Stanley, "Compositional pattern producing networks: A novel

abstraction of development," Genetic Programming and Evolvable

Machines Special Issue on Developmental Systems, vol. 8, pp. 131-

162, 2007.

[26] D. Filliat, J. Kodjabachian, and J. A. Meyer, "Incremental evolution

of neural controllers for navigation in a 6 legged robot," Proceedings

of the Fourth International Symposium on Artificial Life and

Robotics, vol. In Sugisaka and Tanaka, editors, Oita Univ. Press.,

1999.

[27] A. Ijspeert and J. Kodjabachian, "Evolution and development of a

central pattern generator for the swimming of a lamprey," Research

Paper No 926, vol. Dept. of Artificial Intelligence, University of

Edinburgh, 1998.

[28] J. Kodjabachian and J. A. Meyer, "Evolution and Development of

Neural Controllers for Locomotion, Gradient-Following, and

Obstacle-Avoidance in Artificial Insects," IEEE transactions on

neural network, vol. 9, 1998.

[29] J. Kodjabachian and J. A. Meyer, "Evolution of a Robust Obstacle-

Avoidance Behavior in Khepera: A Comparison of Incremental and

Direct Strategies," IEEE transactions on neural network, vol. 9,

1997.

[30] J. Kodjabachian and J. A. Meyer, "Evolution and development of

modular control architectures for 1-d locomotion in six-legged

animats," 1997.

[31] K. O. Stanley and R. Miikkulainen, "Evolving neural networks

through augmenting topologies," Evolutionary Computation, vol. 10,

pp. 99-127, 2002.

[32] K. O. Stanley and R. Miikkulainen, "A Taxonomy for Artificial

Embryogeny," Artificial Life journal, vol. 9, pp. 93-130, 2003.

[33] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural

Science, 4th ed.: McGraw-Hill, 2000.

[34] N. Oros, V. Steuber, N. Davey, L. Cañamero, and R. G. Adams,

"Adaptive Olfactory Encoding in Agents Controlled by Spiking

Neural Networks," in Proceedings of The 10th international

conference on Simulation of Adaptive Behaviour, From Animals to

Animats (SAB), Osaka, Japan, 2008, pp. 148-158.

[35] N. Oros, V. Steuber, N. Davey, L. Cañamero, and R. G. Adams,

"Optimal noise in spiking neural networks for the detection of

chemicals by simulated agents," in Proceedings on the Eleventh

International Conference on Artificial Life, Winchester, UK, 2008.

[36] G. E. Uhlenbeck and L. S. Ornstein, "On the theory of Brownian

Motion," Physical Review, vol. 36, pp. 823-41, 1930.

[37] N. Oros, V. Steuber, N. Davey, L. Cañamero, and R. G. Adams,

"Optimal receptor response functions for the detection of

pheromones by agents driven by spiking neural networks," in 19th

European Meetings on Cybernetics and Systems Research, Vienna,

2008.

[38] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology: MIT

Press, Cambridge, MA., 1984.

[39] D. Floreano and C. Mattiussi, "Evolution of Spiking Neural

Controllers for Autonomous Vision-Based Robots," Proceedings of

the international Symposium on Evolutionary Robotics From

intelligent Robotics To Artificial Life, vol. 2217, T. Gomi, Ed.

Lecture Notes In Computer Science Springer-Verlag, London, 38-

61., 2001.

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on September 22, 2009 at 06:34 from IEEE Xplore. Restrictions apply.

