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Abstract 

 

The ray tracing with diffraction on facets (RTDF) model is suitable for rapid computation of scattering 

on faceted dielectric objects such as ice crystals. It combines ray tracing with diffraction on flat facets. 

The model calculates diffraction using an approximation for the far field direction of the Poynting 

vector. In this paper an estimate based on an approximation by Prosser for the electric and magnetic 

fields describing diffraction at a slit is used to calculate energy flow lines and their far field deflection 

angle. Best-fit formulas describing the dependence of the far field deflection angle on the size 

parameter, angle of incidence, and the position of the flow line in the plane of the slit are derived and 

incorporated into the RTDF model. Phase functions for hexagonal columns are presented and 

compared with an analytic technique, the Separation of Variables Method, and Geometric Optics with 

projected area diffraction. 
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1. Introduction 

 

The importance of ice and mixed-phase clouds to the earth-atmosphere radiation 

balance and climate is well established. Though studied for many years, there is still a large 

uncertainty over the radiative properties of cirrus clouds. This is partly due to inadequate 

theoretical models of light scattering by the constituent ice crystals of realistic shapes and 

sizes.  

Computations of light scattering properties for non-spheroidal particles based on exact 

methods like the Separation of Variables (SVM) Method, e.g.[1,2], T-matrix [3,4], Discrete 

Dipole Approximation (DDA) [5] and Discretized Mie Formalism (DMF) [6] have upper size 

parameter limits of applicability, depending on the method and the complexity of particle 

shape. This leaves a size parameter range which is covered neither by exact methods nor by 

Geometric Optics (GO). A modified Kirchhoff approximation (MKA) method has been 

introduced [7] to calculate far fields from classical Geometric Optics (GO) results, which 

encouraged the development of the Improved GO model [8]. The latter is, however, 

computationally expensive. For moderate values of the size parameter the Finite Difference 

Time Domain (FDTD) method can be used [9] but it too, puts severe demands on 

computational resources. Thus, despite its limitations, Geometric Optics (GO) combined with 

projected-area diffraction, e.g. [10], is still the most widely used model for moderate to large 

size parameters. Recently, diffraction on facets was introduced into a ray tracing model 

(RTDF) [11]-[13]. This method maintains the flexibility and computational inexpensiveness 

of GO while producing much improved results. Given the rapid and flexible computation 

offered by ray-tracing based models, it is possible to create 2D light scattering patterns for 

even very complex nonspherical crystals. Such patterns provide much more information than 

azimuthally averaged scattering data such as a phase function. In contrast to standard GO, the 

RTDF model can produce such patterns for fixed as well as averaged random orientation. 2D 

scattering patterns have been correctly predicted by the RTDF model [13], and it is therefore 

expected to become a suitable tool for particle characterization.  

In this paper, an improvement of the ray deflection formula used in the RTDF model 

is presented. Resulting phase functions of hexagonal columns are compared with SVM [2], 

which is an analytical technique, and GO combined with projected area diffraction [10]. 

 

2. Computational methods 

2.1. The Ray-Tracing with Diffraction on Facets model 

 

Diffraction problems can be solved using Maxwell’s equations, taking into account the 

polarization of the incident light as well as the electrical properties of the diffraction screen. 

Because of the mathematical difficulties involved, exact solutions have only been obtained for 

specific geometries and not too large dimensions of the scatterer compared to the wavelength. 

Maxwell’s equations suggest an interpretation of diffraction and interference phenomena in 

terms of an undulation of the light path defined by the Poynting vector, which is 

complementary to the wavelet concept of Huygens [14-16]. This interpretation underlies the 

raytracing with diffraction on facets (RTDF) model [11-13]. During ray tracing each facet is 

treated as a slit (2D) or aperture (3D) at which each ray is bent according to the far field 

deflection angle, which an energy flow line through the slit would experience. In a 2D 

version, angular deflections of GO rays due to diffraction by a slit were calculated. In three 

dimensions, we assume that the deflection of a ray caused by diffraction by a facet can be 

modelled by two deflections each obeying the 2D rules. The formula for the calculation of the 

far field deflection angle used in [11-13] was based on calculations of energy flow lines 

passing a half plane [14,15] for perpendicular incidence. It was found that the far field 
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deflection angle of an energy flow line passing the half plane at a distance x could be 

approximated by  
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[11]. Furthermore, the application of Eq. (1) leads to a far field energy density identical to the 

asymptotic form of the rigorous theory for the case of an unpolarized incident wave. In order 

to describe diffraction by a slit, this equation was modified to  
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where s is the width of the slit. This equation gives zero deflection for x = s/2 (middle position 

in the slit), and for positions close to the edges (x0, xs) it reduces to the equation for a 

half-plane. A shortcoming of this formula is a singularity of the far field deflection angle at 

the centre of the slit, which results in an overestimation of the number of raypaths 

contributing at very low deflection angles. In this paper, energy flow lines passing a slit are 

calculated using an approximation obtained by Prosser [16], and formulae for the far field 

deflection are fitted to these results. The formulae are then implemented into the RTDF 

program and scattering by hexagonal columns is calculated as a test case.  

The present implementation of the model is based upon the GO code by Macke et al. 

[10]. External diffraction, which is represented in the raytracing code [10] by Fraunhofer 

diffraction on the equal cross section circular aperture, was retained. 

 

2.2. Diffraction by a slit approximated by superposition of solutions of Maxwell’s 

equations for two half-planes 

 

Prosser [16] stated that, if +a, and -b are the solutions of Maxwell’s equations for 

half planes which extend from x = a to x = + and from x = b to x = -, respectively, and f  

is the solution for free space, an approximate solution for the slit, slit , is given by  

fbaslit           (3)  

He showed that this equation approximately satisfies the electromagnetic boundary conditions 

for a slit in an infinite, perfectly conducting plane. Small deviations from the boundary 

condition Ex = 0 in the conducting plane occur close to the slit edges. The approximate 

solution should generally be satisfactory in cases where the slit widths are greater than one 

wavelength [16]. 

We consider a slit with edges in Cartesian coordinates at x = 0 and x = -s in an infinite 

plane at y = 0. This corresponds to indices a = +0 and b = -s in Eq. (3),  

  fsslit  0                   (3a) 

Born and Wolf [14] state Sommerfeld’s equations for the E- and H-fields for diffraction at a 

half-plane placed in Cartesian coordinates at y = 0, x ≥ 0. (In the following, index 1 is used for 

this half plane.) In the case of E-polarization the incident electric field vector is assumed to be 

parallel to the edges of the slit and its components can be specified as Ex1
(i)

=Ey1
(i)

=0 and  
)cos(

1
011)(  


ikr
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where r1 and 1 are polar coordinates related to x and y by the equations x = r1·cos(1), 

y = r1·sin(1), 0 is the angle between the positive x-axis and the direction of propagation 

(Fig.1), k and 0 are the wave number and vacuum permittivity, respectively. Eq. (4) is 

normalized to A = 1. (The Gaussian system of units as applied in [14] is used). 

The complete field Ez1 can be written in the form 
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where 


a

i deaF  2

][ is the complex Fresnel integral. The polar angle 1 has values 0   < 2. 

The following equations relate the polar and Cartesian coordinates: 
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The complete field Ez2 for a half-plane at x ≤ -s is given by: 
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with 
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The electric field term corresponding to the solution for free space Φf  in Eq.(3) is given by 

Eq. (4). With a time factor exp(-it) suppressed the 2
nd

 Maxwell’s equation is 
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where 0 is the vacuum permeability. Equating to zero all partial derivatives with respect to z, 

this may be split up into 
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The time-averaged Poynting vector is given by  
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The energy flow lines can be obtained by solving the differential equation: 
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2.2.1. Perpendicular incidence 

 

Energy flow lines for light incident perpendicularly to a conducting plane containing a 

long slit, i.e. 0 =/2, calculated using Eq. (11) for starting points at y = 0, are shown in Figs. 

2(a) and (b). The calculations are for E-polarized incident light, i.e. the incident electric field 

vector is assumed to be parallel to the long edges of the slit. The size parameter χ = ks/2 has a 

value of 50. The dash-dotted line at x/λ =-100/2π = -7.958 corresponds to the slit centre. In the 
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close-up (Fig. 2(b)) the strong undulations of the energy flow lines near the slit plane are 

clearly visible. In the far field, the energy flow lines are straight and include an angle with the 

direction of propagation of the incident light, which is called the far field deflection angle φ. It 

increases with decreasing distance of the starting point from the slit edge. Looking at the 

distribution in the far field of energy flow lines with equally spaced starting points at -x0 

/λ = -x/λ (y = 0) = 0.1, 0.2,…,1.0, we find two groups of densely spaced flow lines, -x0 

/λ = 0.5, 0.6 and 0.7, and -x0 /λ = 0.8, 0.9 and 1.0, and a gap between them. The far field 

deflection angles of the energy flow lines with -x0 /λ = 0.7 and 0.8 are 4.72˚ and 3.09˚, 

respectively. The gap between them is due to the flattening out of the last undulation of the 

energy flow lines with decreasing |x0 /λ| and corresponds to the first minimum of the 

Fraunhofer diffraction pattern at 3.60˚. The second minimum of the Fraunhofer diffraction 

pattern at 7.22˚ is positioned in the large gap between the energy flow lines with -x0 /λ = 0.5 

and 0.4, respectively, and so on. This is in agreement with Prosser’s statement [11] that the 

redistribution of energy due to the nonlinear trajectory is what is observed as a diffraction or 

interference pattern. Energy flow lines were calculated for size parameters 10, 25, 100 and 

200 as well.  

Fig. 3 shows a logarithmic plot of the far field deflection angle vs. X = -2x0 /s. The 

factor 2/s was used in order to allow easy comparison of graphs for different slit widths. It can 

be seen that for all size parameters the far field deflection angle decreases monotonically 

towards the middle of the slit. For X  0 or 1 it approaches /2 or 0, respectively. Close to 

X = 0 the graphs show a steep decrease, followed by a narrow shoulder in the region 

X = 0.07...0.15 and a slow decay towards the middle of the slit. In general, the angular density 

of energy flow lines in the far field is proportional to the angular intensity of the scattered 

light and inversely proportional to the modulus of the slope of the )/2( 0 sx curve, i.e. to 

|dφ/dx|. The steep slope to the right of the shoulder corresponds to the first minimum of the 

Fraunhofer diffraction pattern. The angular position of the first minimum in the corresponding 

Fraunhofer pattern is indicated by thin horizontal lines on the right hand side of the ordinate 

in Fig. 3. For χ =100 and 200 the second diffraction minimum is discernible, too.  

Next, we wish to find a suitable fit for ),,( 0  sx  in order to replace Eq. (2) in the 

RTDF model. The dotted line in Fig. 3 corresponds to Eq. (2) for s = χ = 200. This equation 

was conjectured from calculated values of )/( 0  x  for a half-plane. Eq. (2) and the 

calculated ),,( 0  sx  have the same limits for x0→0 and x0→s/2. However, Eq. (2) gives a 

steeper decay of the far field deflection angle with distance from the slit edge. The best fit for 

X larger then the values corresponding to the angular range around the first diffraction 

minimum to the equation 
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gives P1 = 1.5e-4 and P2=32184. The fits are shown in Fig. 3 as dashed lines. There is now 

good agreement with the calculated values ),,( 0  sx  for the largest fraction of the rays, i.e. 

those forming the central maximum of the diffraction pattern. Furthermore, it was found that 

the function 
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is a good fit to the envelope of the Fraunhofer diffraction pattern away from the first 

interference maximum. Eqs. (13) and / or (14) need to be modified in such a way, that the 

resulting function φ, consisting of φl for X<Xs and φr for X>Xs, is continuous and 
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approximates the calculated values around Xs, which is the X-coordinate of the intersection 

point of φl and φr. To achieve this, additional terms were introduced into Eq. (13): 
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The following fit results were obtained: P1 = 9.9e-6; P2 = 4.854e5; P3 =7.45; P4 = 1.113e-7. 

The intersection points of φr
*
 and φl are at Xs = 0.0883, i.e. Xs is size parameter independent 

within the investigated range of parameters. In Fig. 3 the resulting fit functions φr
*
 and φl are 

plotted as continuous and dash dotted lines, respectively. Fig. 4 shows the far field angular 

intensity distributions for diffraction at slits of size parameters 25 and 100 calculated using 

Eqs. (14) and (15) with the parameters given above. There is good agreement for the central 

peak of the Fraunhofer distribution as well as for the angular distribution averaged over local 

maxima and minima. The sharp edges around the first diffraction minimum are related to the 

corresponding step of the φ(X) curve. Overall, the modelling result is much improved 

compared to Eq. (2).  

 

2.2.2. Oblique incidence 

 

Calculated far field deflection angles of energy flow lines for oblique incidence onto a slit for 

different combinations [x0,s] and λ = π were calculated. Figs. 5(a) and (b) show logarithmic 

plots φ(X) for s = χ = 100 for a range of incident angles α0 < π/2 and α0 > π/2, respectively. 

For energy flow line calculations equal phase at both slit edges is required (Eqs. (5) and (7)). 

Therefore, the conditions 
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need to be fulfilled, which means that for each ratio λ/s calculations can only be carried out 

for a certain set of angles α0. As done in the discussion of Fig. 3, we consider different regions 

X which can be described by particular fit functions. The region of X larger then the values 

corresponding to the angular range around the first diffraction minimum can be described by a 

modified version of Eq. (13), keeping the values of P1 and P2. 
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In the following we introduce an equation analogous to Eq. (15), which covers the X region 

described by φr in Eq. (17) as well as the first diffraction minimum. 

min
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For α0 < π/2 the position X corresponding to the first Fraunhofer diffraction minimum 

depends strongly on the incident angle. This is covered by P1
*
. 

   

   

   

201

/01237.0

/30967.18

285.202/tan2/

*

2

/5964.2

/19685.0

00

*

1

13048.0

3904.0













eP

sB

sA

AP

s

s

B











                (20a) 



 7 

For α0 > π/2, the variation of the X-position of the first Fraunhofer diffraction minimum is 

negligible. Therefore P1
*
 and P2

*
 are set to be constant. 
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Eqs. (21a) and (21b) are suitable fits φ(X) for positions X close to the edges for α0 < π/2 or 

α0 > π/2, respectively. 
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Note that for α0 = π/2 Eq. (21) is identical to Eq. (14), and Eq. (20) gives results very similar 

to Eq. (15), as can be seen in Figs. 4.  

 

2.3. Implementation of the improved diffraction formula in the RTDF model 

 

Eqs. (17-21) were implemented in the RTDF model. The results are compared to 

computations using a generalization of SVM [2], which is an analytical technique, and GO 

combined with projected area diffraction [10]. Fig. 6 shows randomized phase functions for 

hexagonal columns, with refractive index n = 1.31 for size parameters χ = 2πa/λ equal to 12, 

30 and 50. The aspect ratio of the column L/2a is 10, where L is the column length and 2a its 

diameter. Due to the approximation involved in the SVM calculation, the orientations are 

restricted, so that the column axis is at least a certain angle away from the direction of the 

incident light. For the investigated size parameters, this angle is in the range of 6.2° to 13.0°. 

RTDF and GO calculations were carried out for the same angular restrictions. The RTDF 

results approximate those by SVM much better than GO over the whole angular range, and in 

particular in near direct forward and backscattering, in the halo region and in the 

backscattering region between 142° and 160°. Note that there is no halo for χ =12.  

 

3. Summary 

 

The RTDF model is suitable for rapid computation of scattering on faceted dielectric 

objects such as ice crystals. It combines ray tracing with diffraction on flat facets. The model 

calculates diffraction using an approximation for the far field direction of the Poynting vector. 

The angle of diffraction of an externally reflected or outward refracted ray is calculated from 

the ray’s proximity to the facet edges. In this paper, an estimate for the electric and magnetic 

fields describing diffraction at a slit based on an approximation by Prosser [16] was used to 

calculate energy flow lines and their far field deflection angle. The calculations show a 

distinct depletion of the angular density of energy flow lines in the far field around the 

angular position of the first minimum of the Fraunhofer diffraction pattern as well as weaker 

reductions at higher order diffraction minima. This is in agreement with Prosser’s statement 

[16], that the redistribution of energy due to the nonlinear trajectory is what is observed as a 

diffraction or interference pattern. Best-fit equations describing the dependence of the far field 
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deflection angle on the size parameter and the position of the flow line in the plane of the slit 

have been obtained. This method avoids the singularity at the centre of the slit that occurred 

in an earlier approach based on results of rigorous diffraction theory for diffraction of a plane 

wave by a half-plane. The new approach models the shape of the zero-order diffraction 

maximum accurately and fits the envelope of the Fraunhofer diffraction pattern. The new ray 

bending equations have been implemented in the RTDF program, increasing the 

computational overhead only slightly. Phase functions for near random orientation of 

hexagonal columns are presented and compared with SVM [2], which is an analytical method, 

and with GO with projected area diffraction [10]. The RTDF results approximate those by 

SVM much better than GO over the whole angular range, and in particular in near direct 

forward and backscattering, in the halo region and in the backscattering region between 142° 

and 160°. The method can be applied to arbitrary faceted objects and can be used to calculate 

2D scattering patterns for fixed and random orientation.  

 

 

Acknowledgement 

This research was supported by the Natural Environment Research Council of the UK. 

The author is grateful to A. Macke for providing the ray tracing code, to S. Havemann for the 

SVM data and to Z.J. Ulanowski and A.J. Baran for valuable discussions. 

 
 

References 

 

[1] Rother, T, Schmidt, K, Havemann, S. Light scattering on hexagonal ice columns. J Opt 

Soc Am A 2001;18:2512-2517. 

[2] Havemann S, Rother T, Schmidt K. Light scattering by hexagonal ice crystals. In: 

Mishchenko MI, Travis LD, Hovenier JW, editors. Conference on Light Scattering by 

Nonspherical Particles: Theory, Measurements and Applications, 29
th

 September-1
st
 

October 1998. New York: American Meteorological Society, p.253-6. 

[3] Mishchenko, MI, Videen, G., Babenko, VA, Khlebtsov, NG, Wriedt, T. T-matrix theory 

of electromagnetic scattering by particles and its applications: a comprehensive reference 

database. J Quantit Spectrosc Radiat Transf 2004;88:357-406. 

[4] Mishchenko, MI, Videen, G., Babenko, VA, Khlebtsov, NG, Wriedt, T. Comprehensive 

T-matrix reference database: A 2004-06 update. J Quantit Spectrosc Radiat Transf 

2007;106:304-324. 

[5] Yurkin, MA, Hoekstra, AG. The discrete dipole approximation: An overview and recent 

developments. J Quantit Spectrosc Radiat Transf 2007;106:558-589. 

[6] Rother, T, Schmidt, K. The discretized Mie-formalism for electromagnetic scattering – 

Summary. Journal of electromagnetic waves and applications 1997;11:1619-1625. 

[7] Muinonen K. Scattering of light by crystals: a modified Kirchhoff approximation. Appl 

Opt 1989; 28: 3044-3050. 

[8] Yang P, Liou KN. Geometric-optics-integral equation method for light scattering by 

nonspherical ice crystals. Appl Opt 1996; 35, 6568-6584. 

[9] Yang P, Liou KN. In: Mishchenko MI, Hovenier JW, Travis LD, editors. Light scattering 

by nonspherical particles, New York: Academic Press, 1999. p. 173-221. 

[10] Macke A, Mueller J, Raschke E. Single scattering properties of atmospheric ice crystals. 

J Atmos Sci 1996; 53: 2813-2825. 

[11] Hesse E, Ulanowski Z. Scattering from long prisms using ray tracing combined with 

diffraction on facets. 6
th

 Conference on Light Scattering by Nonspherical Particles, 



 9 

Theory, Measurements, and Applications, March 4-8, 2002, Gainesville, Florida, USA, J 

Quantit Spectrosc Radiat Transf 2003; 79-80C: 721-732 

[12] Hesse E, Ulanowski Z, Havemann S. Scattering from long prisms: A comparison 

between ray tracing combined with diffraction on facets and SVM. Proceedings 7
th

 

Conference on Electomagnetic and Light Scattering by Nonspherical Particles, Theory, 

Measurements, and Applications, Sept. 8-12, 2003, Bremen, Germany, p. 119-122. 

[13] Clarke AJM, Hesse E, Ulanowski Zand Kaye PH. A 3D implementation of ray-tracing 

with diffraction on facets: Verification and a potential application. J Quantit Spectrosc 

Radiat Transf 2006; 100: 103-114. 

[14] Born M, Wolf E. Principles of optics, 7
th

 ed. Cambridge: CUP, 1999. 

[15] Braunbek W, Laukien G. Einzelheiten zur Halbebenen-Beugung. Optik, 1952; 9: 174-

179.  

[16] Prosser RD. The interpretation of diffraction and interference in terms of energy flow. Int 

J Theoret Phys 1976; 15: 169-180.  

 

 

Captions of figures 

 

Fig. 1: E-polarized plane wave incident on perfectly conducting half-plane. 

 

Fig. 2: (a) Time-averaged energy flow lines for perpendicular incidence of E-polarized light 

on a slit of size parameter 50 at y = 0. The numbers inside the frame indicate the distance -x0/λ 

in the slit plane between the flow lines and the right slit edge (The slit centre corresponds to -

x0/λ =50/π). The arrow indicates the first minimum of the Fraunhofer diffraction pattern. (b) 

close-up. 

 

Fig. 3: Logarithmic plot of the far field deflection angle of the energy flow lines vs. X=-2x0/s, 

where -x0 is the distance from the edge at y = 0 at which the energy flow lines pass, and fit 

functions Eq.(2), Eqs.(13-15). 

 

Fig. 4: Far field angular intensity distributions for diffraction at a slit for size parameters 25 

(a) and 100 (b) calculated using Eqs. (14-15) and (17-21) respectively, and comparison with 

Eq. (2) and the Fraunhofer diffraction pattern. 

 

Fig. 5: (a) Logarithmic plots φ(X) for s = χ = 100 for a range of incident angles α0 < π/2 (a) 

and α0 > π/2 (b), and fits Eqs. (17-20) and Eq. (21). 

 

Fig. 6: Phase functions for hexagonal columns with refractive index n = 1.31, aspect ratio 

L/2a = 10, and size parameters χ =2a/λ of (a) χ = 12, (b) χ = 30 and (c) χ = 50, respectively, 

for near random orientation calculated using RTDF with ray deflection formulas Eqs. (17) to 

(21) in comparison with SVM [12] and GO with projected area diffraction [10] results.  
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Fig.3 

Fig.4a 

 Fig.4b 
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Fig5a 

Fig.5b 
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Fig6a 

Fig. 6b 

 Fig. 6c 


