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Abstract 

We created a spiking neural controller for an agent that could 
use two different types of information encoding strategies 
depending on the level of chemical concentration present in the 
environment. The first goal of this research was to create a 
simulated agent that could react and stay within a region where 
there were two different overlapping chemicals having uniform 
concentrations. The agent was controlled by a spiking neural 
network that encoded sensory information using temporal 
coincidence of incoming spikes when the level of chemical 
concentration was low, and as firing rates at high level of 
concentration. With this architecture, we could study 
synchronization of firing in a simple manner and see its effect 
on the agent’s behaviour. The next experiment we did was to 
use a more realistic model by having an environment composed 
of concentration gradients and by adding input current noise to 
all neurons. We used a realistic model of diffusive noise and 
showed that it could improve the agent’s behaviour if used 
within a certain range. Therefore, an agent with neuronal noise 
was better able to stay within the chemical concentration than 
an agent without. 

Introduction 

Animals are able to detect and react to chemicals (odours, 

pheromones…) present in the environment. The key sense to 

detect these chemical cues is smell rather than taste (Wyatt, 

2003). Almost all animals have a similar olfactory system 

including olfactory sensory neurons (OSN) that are exposed to 

the outside world and linked directly to the brain. Pheromones 

and other odour molecules present in the environment are 

converted into signals in the brain by first binding to the 

olfactory receptor protein situated in the cell membrane of the 

OSN. Spikes are then sent down the axon of the OSN (Kandel 

et al., 2000). A chemical blend is composed of many 

molecules that can be detected with tuned odour receptors and 

therefore, activates a large range of olfactory sensory neurons. 

Odours are coded by which neurons emit spikes and also by 

the firing patterns of those neurons sending spikes to others 

during and after the stimulus. In many vertebrates and insects, 

oscillations of the neural activity have been recorded in the 

olfactory systems (Wyatt, 2003). Therefore, the 

synchronization of firing between different sensory neurons 

seems to be very important for odour perception and 

interpretation. The firing rate and the number of sensory 

neurons are also important in odour recognition when stronger 

stimuli increase the frequency of firing of individual sensory 

neurons but also stimulate a larger number of them. 

Different studies have been done on the perception of 

simulated chemicals using artificial neural networks where 

neural synchronization occurs (Brody & Hopfield, 2003; 

Hopfield, 1999; Hoshino et al., 1998) and also using robots 

(Kanzaki et al., 2005; Kuwana & Shimoyama, 1998; Payton et 

al., 2001; Pyk et al., 2006; Webb, 1998). We were interested 

in studying the perception and the behaviour of an agent in 

response to changes of its environment. The primary research 

question is how two encoding strategies can be used to 

integrate sensory information in order to control a simulated 

agent. To the best of our knowledge, no neural architecture, 

controlling a simulated agent, has been created that encodes 

the sensory information onto both the firing rate and the 

synchronization of firing (temporal coincidence of incoming 

spikes) depending on the environment. As the interaction 

between the two encoding strategies is complex, we decided 

to create a simple architecture using a spiking neural network. 

This model could encode the sensory information onto both 

the firing rate and the synchronization of firing depending on 

the environment. The neural network controlled the agent by 

encoding the sensory information onto temporal coincidences 

in a low concentration environment, and firing rates at high 

concentration. 

It is well known that real neuronal systems contain noise 

(Kandel et al., 2000) which may  improve the brain’s ability to 

process information, a phenomenon also called stochastic 

resonance (Hänggi, 2002; Mori & Kai, 2002; Moss et al., 

2004; Wiesenfeld & Moss, 1995). Researchers in robotics and 

artificial life have already implemented simple models of 

neural noise (Di Paolo, 2003; Florian, 2006; Jacobi et al., 

1995). Here we study the effect of a more realistic noise 

model based on a diffusive OU (Ornstein-Uhlenbeck) process 

(Uhlenbeck & Ornstein, 1930). We added this noise in the 

neural network and studied its effect on the behaviour of the 

agent. Our results suggest a potential function for noise in real 



biological systems, and highlight that features of biological 

systems can be used to construct better agents. 

Environment 

We created a simulation of a continuous world including an 

agent and a maximum of two chemicals. We decided to use a 

simple model of chemicals that are not diffused and 

evaporated but with concentrations that can be calculated 

directly at any given point. Our agent was equipped with two 

antennae and a differential steering system using two wheels. 

The two antennae were separated widely enough to detect the 

presence of the chemical concentration (Fig. 1). The left and 

right wheels were situated on the sides of the agents. To 

control the agent, we had to decide which neurons’ model to 

use in order to study firing synchronization of the sensors. 

  

 

 

 

 

 

 

 

Figure 1. An agent equipped with two wheels and two 

antennae used to detect chemicals.   

Neural Network 

There are three main ways to encode the intensity of sensory 

information into spiking neurons based on biological 

evidences (Floreano & Mattiussi, 2001; Florian, 2003; 

Gerstner & Kistler, 2002; Izhikevich, 2003, 2004; Koch, 

1999) . The most commonly used method consists of mapping 

the stimulus intensity to the firing rate of the neuron (firing 

rate encoding). Another method encodes the intensity of the 

stimulation into the number of spikes sent by different 

neurons arriving at a pre-synaptic neuron at the same time 

(firing synchronization or temporal coincidence encoding). 

The last main encoding scheme maps the strength of the 

stimulation in the firing delay of the neuron (delay encoding). 

As we saw earlier, spatial configuration is an important 

feature in odour recognition of neurons as is the 

synchronization of firing between neurons (Kandel et al., 

2000; Laurent et al., 1996; Wyatt, 2003). J. Hopfield and C. 

Brody (Brody & Hopfield, 2003; Hopfield, 1999) created 

simple neural networks using spiking neurons to simulate an 

olfactory process. In their system, the recognition of an odour 

was signalled by spike synchronization in artificial glomeruli. 

In our system, the neural network was supposed to detect the 

blend of two different chemicals and modify the agent’s 

behaviour. We used a model of neural network that allowed us 

to study synchronization of firing in a simple manner. The 

neural network could control the agent by encoding the 

sensory information onto temporal coincidences in a low 

concentration environment, and firing rates at high 

concentration. 

Models of Spiking Neurons 

It is well known that compared to the complex and 

computationally slow Hodgkin and Huxley model, simple 

spiking models like integrate-and-fire neurons can run quickly 

enough and have a more realistic behaviour than firing rate 

ones (Floreano & Mattiussi, 2001; Florian, 2003; Gerstner & 

Kistler, 2002; Izhikevich, 2003, 2004; Koch, 1999). This is 

why more and more researchers are implementing spiking 

neurons in robots and simulated agents. Therefore, we decided 

to use a simple model of a spiking neuron. Our model is based 

on a leaky-integrator model which includes synaptic 

integration and conduction delays. The idea is that a spike sent 

by a neuron will take some time to arrive at another neuron. 

This time delay depends on the distance between the sender 

and the receiver. All the spikes arriving at a neuron are 

summed to calculate the neuron’s input current density (in 

Amperes per Farad) and membrane potential (in Volts) after 

every time step (�� � �����). Once the membrane potential 

reaches a certain threshold θ, the neuron will fire and then will 

be set to 0 for a certain time (refractory period). During this 

time, the neuron cannot fire another spike even if it is highly 

stimulated. 
Many real neurons’ membrane potential is around -70mV 

during resting state. When a neuron fires, its membrane 
potential will increase rapidly to about 30mV, so the height of 
a typical spike is approximately 100mV (Kandel et al., 2000). 
We set the resting potential to 0 and the potential of a spike to 
100mV. It is reasonable to set the neuron’s threshold at 
20mV, the refractory period to 3ms and the membrane time 
constant 	
�to 50ms (Kandel et al., 2000). We also decided to 
set a synaptic time constant 	� to 2ms: a spike that arrives at a 
synapse triggers a current given by: 
 

       ����� � ���������������� 
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"      (1) 
 
where ���� is the synaptic input current, ��'()� corresponds to 
the time a spike has been sent to the neuron,�*#+,-�is the time 
delay in seconds before the spike arrives to the neuron (delay 
= coeff_delay * distance) with coeff_delay = .� ���/. 
 
The change of membrane potential is given by: 
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where 6 is the membrane potential, 	
 is the membrane 

time constant and 5�the synaptic weight. 

Sensory Neurons 

We created a model of a spiking sensory neuron in which the 

chemical concentration is processed so that a quasi-linear 

relationship between the concentration and the firing rate of 

the sensor is produced (Oros et al., 2008). Such relationships 

exist in biological systems. For example in humans, the 

relationship between the frequency of firing and pressure on 

the skin is linear (Kandel et al., 2000). We used a two step 

process where two biologically realistic non-linear mappings 

between sensory information and input current and between 

Chemical 
concentration Agent 



input current and firing rate results in a linear relationship. 

Researchers in robotics and artificial life use a linear direct 

mapping between the sensory information and the firing rate 

(Di Paolo, 2002, 2003; Florian, 2006). The sensory neurons 

used in our model are able to encode the stimulus intensity, 

measured at the tip of the antenna, into sensory input current 

using a biologically plausible sigmoid function (Oros et al., 

2008). This current is injected to the sensor’s membrane 

potential that increases, making the sensor fire into 

appropriate firing rates. Therefore, the sensory neurons 

encode the concentration value onto the appropriate firing 

rate. The sensors were configured in order to distinguish a 

large range of concentrations between 1 and 300. Over 300, 

they were saturating. 

Motor Neurons 

We decided that, in order to move, the agent should be driven 

by two wheels each controlled by two motor neurons: one to 

go forward, one to go backward. We created sensors able to 

detect a chemical gradient. But an agent equipped with such 

sensors will not move without any stimulus. So we decided 

for simplicity that an agent should always move forward in 

the absence of any external input. We performed this by 

adding a small baseline input current (0.5 A/F) in the motor 

neurons responsible to go forward. The final velocity of the 

wheels was calculated by subtracting the firing rate of the 

motor neurons, responsible for moving the agent forward and 

backward, running over a certain period of time. The agent 

was moved by calculating the velocity every 10ms. 

Temporal Coincidence 

We used the agent and world described above. The 

environment contained either one or two chemicals denoted 

by A or B. In this experiment, each chemical source had a 

circular shape and the same fixed value all over its surface. 

One agent, placed in the world, was controlled by a simple 

spiking neural network implementing the neurons described in 

the previous section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The neural controller was based on a Braitenberg vehicle 

(anger behaviour) (Braitenberg, 1984) where an agent moves 

faster toward a stimulus when it detects it (Fig. 2). 

Our hypothesis was that by using this architecture, the 

sensory neurons needed to encode the sensory information 

onto the firing rates, and also onto temporal coincidences 

between spikes sent by sensors. To verify this hypothesis, we 

performed three series of tests to study the effect of the 

starting positions, the sensory delays and the value of the 

concentrations on the agent’s behaviour. 

Experiment I 

The first test was to study the effect of the agent’s starting 

position on its behaviour. Both concentration values for the 

chemicals A and B were set to be low. In all the experiments 

described in this paper, the concentration range was from 1 to 

300. In this instance, A and B concentrations were set to 1 or 

2. We tried ten different starting positions and five different 

settings for the environment: with one chemical A, one 

chemical B, and finally one concentration of the chemical A 

overlapping with one concentration of the chemical B. Each 

run lasted 600 seconds and the neural network was updated 

every 0.1ms (so the run lasted 6,000,000 time steps). Every 

10ms, the agent was moved and the sensory inputs updated. 

In these experiments, the agent could detect double 

concentrations of one chemical (A or B) but did not react to it. 

However, the agent was able to react only to the blend of both 

chemicals A and B, where it stayed inside the overlapping 

concentrations. We recorded the current density and 

membrane potential of the neuron N0 during a small interval 

of time when the agent was inside the blend of chemicals A 

and B (Fig. 3, top). The input current of the neuron N0 was 

increasing when spikes coming from both S2 and S3 arrived 

at the same time. Then, the membrane potential also increased 

and reached the threshold θ (0.0046 Volts) making the neuron 

N0 fire. The potential was then set to 0 during the refractory 

period. As the sensors were synchronized and the delay 

between them and the neurons were the same, the spikes 

arrived at the same time to the neuron allowing it to detect 

them and fire. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Agent’s neural controller. The sensors S0 and S3 detect the chemical A and the sensors S1 and S2 detect the chemical 

B. The sensory axons’ lengths are all similar (delays = 2.5ms). The motor neurons M1 and M3 are responsible to move the agent 

forward. The threshold of the neurons (N0 and N1) was set to 4.6 mV. W is the synaptic weight. 
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Experiment II 

The second experiment was to test our hypothesis by 

modifying the sensory response delays to verify that our 

architecture necessarily needed to encode the sensory 

information onto temporal coincidence. We changed the 

delays by modifying the position of the sensors therefore 

modifying the length of their axons linked to the neurons. We 

only changed the delays of the sensors detecting the chemical 

B (S1 and S2).  

We used one of the Experiment I ’s setups where the agent 

was staying in the chemical blend of the chemicals A and B 

having a concentration of 1 each. We tried different values of 

delays (from 1ms to 50ms) and we noticed that a small change 

(up to 7.5ms) did not modify the agent’s behaviour. But a 

further change in the delays (from 7.5ms) made the agent 

unable to react to the blend of chemicals A and B so it could 

not stay inside the concentrations. 

As in the Experiment I, we recorded the current density and 

membrane potential of the neuron N0 during 0.5s when the 

agent was inside the chemical blend. 

 

 

 

 
 

 
 

 

 

 

 

 

In Figure 3 (bottom), we can see that the current of the 

neuron N0 increases when a spike coming from both S2 and 

S3 arrive but as the delay has been changed, the spikes do not 

arrive at the same time so the current is lower than in 

Experiment I. Therefore, the neuron’s potential increases but 

never reaches the threshold so the neuron does not fire (Fig. 3, 

bottom). 

Experiment III 

In order to investigate the use of firing rate encoding, we used 

only one concentration of either A or B and increased it. 

When the concentration was augmented from 1 to above 50, 

the agent was then able to react to it. Therefore, the neural 

network showed much more sensitivity to two chemicals than 

to one. We also realized when using two overlapping 

chemicals A and B, as the concentration value increased, 

modifying the delays had a minor effect and the agent was 

still able to react to the chemicals. The firing rates were 

increasing too so the agent was moving faster. In these 

experiments, the temporal coincidence encoding was not 

necessary. The sensory information was encoded onto the 

firing rates of the sensors. 
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Figure 3. Current density (in Amperes per Farad) and membrane potential (in Volts) of the neuron N0 recorded between 100s 

and 100.5s. On the top panel (Experiment I), the spikes sent by the sensors arrived at the same time increasing the current 

density to 1 A/F. The membrane potential was then increased and reached the threshold making the neuron N0 fire. On the 

bottom panel (Experiment II), the spikes sent by the sensors were not coincident as the delays between the sensors (S1 and S2) 

and the neurons (N0 and N1) were changed (to 50ms in this case). Therefore the current was never above 0.5 A/F so the 

membrane potential could not reach the threshold to make the neuron N0 fire. 
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Diffusive noise 

In the previous experiments, we presented a simple neural 

architecture where temporal coincidence and firing rate 

encoding strategies were both important mechanisms used in 

different environmental settings. In a low concentration 

setting, synchronization of spikes sent by the sensors was 

essential to allow the agent to detect the blend of two 
chemicals. We changed the sensory delays and noticed that 

the agent was then not able to react to the chemicals anymore. 

In a high concentration setting, the temporal coincidence 

between the firing of the sensors was not a necessary 

condition and the agent was able to stay inside the chemical 

concentration using just a firing rate encoding strategy. 

Interestingly, the model showed much more sensitivity to the 

presence of two chemicals than a single chemical. To this 

point, we have used uniform concentrations to simplify the 

study of the different encoding strategies. However, this 

model of chemical concentration was not realistic, so we 

decided to use an environment comprising two non uniform 

chemical concentration gradients. We tested our architecture 

in the new environment and noticed that the agent moved 

outside the concentration when its trajectory was along the 

direction of the gradient since both of its antennae where 

instantaneously outside the chemical concentrations. For this 

reason, we decided to add noise to the neural network.  

 

We used a realistic model of noise in the form of an 

diffusive OU current (Uhlenbeck & Ornstein, 1930). This 

form of colored noise characterizes the subthreshold voltage 

fluctuations in real neuronal membranes (Rudolph & 

Destexhe, 2003). We added this noise to the total current 

calculated in Equation (2) in each neuron. The noise is 

described by: 

                     ( )
( )( ) ( )tItI

dt

tdI

II

ξ
τ

σ

τ

2

0

21
+−−=                     (3) 

where  Iτ denotes the current noise time constant (2ms in our 

case), 
0I is the mean synaptic current (0 in our case), σ is the 

noise diffusion coefficient and ( )tξ  is a white Gaussian noise 

(with mean = 0 and standard deviation = 1). 

We performed different series of tests to find appropriate 

level of noise, by modifying σ , in order to have an agent that 

stays in the gradient chemical blend. We placed the agent at 

three different positions (Fig. 6) and tried eight different 

levels of noise (Fig. 4 and 5). For each level, we performed 

100 runs per position. Each run lasted 300s and we recorded 

the fitness of an agent during the last 100s. The fitness 

function was very simple and consisted of the sum of the 

distance between the agent and the centre of the 

concentrations measured every time the agent moved. The 

maximum value of both concentrations was set to 25. 
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Figure 4. Mean fitness values recorded during 100s for an agent starting at the positions P1, P2 and P3 using different levels of 
noise (σ 4

10× ). The error bars represent standard errors. 
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By looking at Figures 4 and 5, we can see that when the agent 

was starting from P2 or P3, an appropriate level of noise 

allowed it to stay within the concentration having a higher 

fitness than an agent without neural noise. We also note that 

the level of noise needed to be within a certain range as a low 

value did not improve the agent’s behaviour and a high value 

disturbed it. We noticed as well that the agent was more 

sensitive to noise in low concentration areas than in high 

concentration areas. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Conclusion 

We first presented in this paper a simple neural architecture 

where temporal coincidence and firing rate encoding 

strategies were both important mechanisms used in different 

environmental settings. In a low concentration setting, 

synchronization of spikes sent by the sensors was essential to 

allow the agent to detect the blend of two chemicals. We 

changed the sensory delays and noticed that the agent was 

then not able to react to the chemicals anymore. In a high 

concentration setting, the temporal coincidence between 

sensors firing was not a necessary condition and the agent was 

able to stay inside the chemical concentration using just the 

firing rate encoding strategy. Interestingly, the model showed 

much more sensitivity to the presence of two chemicals than a 

single chemical. Our results showed that a spiking neural 

network could be used to control an agent and could encode 

external stimuli in more than one way. The second study was 

on the effect of noise on the agent’s behaviour using the same 

neural architecture. We used a more complex environment 

using chemical gradients and a realistic model of neural noise. 

We found that the overall fitness of the agent was better when 

a certain amount of noise was added in the neural network. 

Our results suggest that a realistic model of noise can improve 

an agent’s behaviour. This is further evidence that adding 

biologically realistic features can be beneficial for certain 

engineering tasks, and suggests a potential function of noise in 

real biological systems. The effect of biologically realistic 

noise should be an interesting topic of research in other 

artificial life scenarios. 

Our future work will be to see if we can evolve such 

architecture using a developmental model (evolving the 

number of neurons and their connections, the synaptic 

weights, and delays of the neural network).  
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Figure 6. Left panel: path of an agent moving across the blend of chemicals A and B. The agent’s neural controller 
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