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Abstract

Survival in the animal realm often depends on the ability to elucidate the potentialities for action
offered by every situation. This paper argues that affordance learning is a powerful ability for adaptive,
embodied, situated agents, and presents a motivation-driven method for their learning. The method
proposed considers the agent and its environment as a single unit, thus intrinsically relating agent’s
interactions to fluctuations of the agent’s internal motivation. Being that the motivational state is
an expression of the agent’s physiology, the existing causality of interactions and their effect on the
motivational state is exploited as a principle to learn object affordances. The hypothesis is tested in a
Webots 4.0 simulator with a Khepera robot.

1 Introduction

One of the most vital abilities for situated, embedded,
autonomous agents in a dynamic scenario is making
the right decisions when interacting with their envi-
ronment. This is the so-called behaviour or action
selection problem, deciding “what to do next” (what
behaviour to execute in a particular situation) to in-
crease the likelihood of maintaining life. Being able
to make the right decisions partly depends on the
knowledge of the effect of an action to compensate
internal needs. Furthermore, it depends on the abil-
ity to discriminate objects to befit every interaction.
This was confirmed experimentally by Guazzelli et al.
(1998), who proposed a behaviour selection model to
simulate the behaviour of rats navigating a T-maze,
integrating drives and affordances. No perception-
related learning was however involved, being that this
was solely aimed at interpreting the possibility of
moving in one or another direction.

The use of motivational states to make decisions
has been proposed in several architectures (Avila-
Garcı́a and Cañamero, 2002; Cañamero, 1997),
which mention the necessity not only of maintaining
life, but also of meeting the criterion of internal phys-
iological stability (Ashby, 1965). Nevertheless, these
architectures neglect the apprehension of the appro-
priate functionalities of objects. Information about
the objects’ potential for action has therefore usually

been hard-wired. It is argued that knowing the func-
tionality of an object is also part of the adaptation
problem.

Related to this, Gibson introduced the notion of
affordance (Gibson, 1966), defined as the function-
ality an object offers to an agent. Hence, a set of
affordances is only defined in the context of a par-
ticular agent-environment pair. Furthermore, affor-
dances are held to be directly available from the envi-
ronment, without the integration of perceived features
into object representations (Cooper and Glasspool,
2002). Based on this, Cooper and Glasspool (2002)
introduced a symbolic model of affordance learning
by relating object features to action schemas. In their
approach, object features are symbolically integrated
into objects to bias one action or another.

Conversely, the architecture introduced in this pa-
per aims at endowing the agent with the capability
of building its own functional perception via an ap-
propriate neural representation of the objects in its
environment, related to the agent’s behaviour reper-
toire1. This aims at bypassing the feature-based step,
and should therefore be a more faithful implementa-
tion of gibsonian affordances. Importantly, to per-
form an action the perception of certain regularities
of each object is fundamental to decide the right be-

1Unlike Gibson’s studies of the optical flow, we have to deal
with other perceptual modalities (the agent’s senses).
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haviour. However, this does not relate to physical re-
semblance only (among different objects of the same
sort), but also to a functional similarity (being able to
perform the same actions).

The next section introduces the affordance learn-
ing and behaviour selection model, and precedes the
experimental section. The paper concludes with a dis-
cussion of results and of future research issues.

2 Motivational Model for Learn-
ing Affordances

The model comprises three parts: a neural structure, a
behaviour arbitration mechanism and a learning mod-
ule.

2.1 Neural Structure

The first challenge is to build a neural representation
of the objects of the environment. To this end, the use
of a Growing When Required (GWR) network (Mars-
land et al., 2002) has been selected. This is a topolog-
ical network that adapts to the level of entropy of the
environment according to a set of parameters, unlike
Kohonen (1982). The growing process is described
in the following steps:

1. The network is trained with 64-D image patterns
representing objects in the scenario. The algo-
rithm chooses the first and second most similar
nodes.

2. If the Euclidean distance between the closest
node and the current interaction pattern is larger
than the pre-set accuracy, a new node is inserted
between the two closest nodes, which are then
connected by new synapses. Conversely, the
closest and its adjacent nodes are dragged to-
wards the input pattern.

3. Nodes rarely close to the patterns are deleted.

4. The growing process is hindered when the eu-
clidean distance between the sensory-patterns
and their closest node is smaller than the pre-set
level of accuracy.

In a very simple manner, the GWR provides a simple
representation of similar objects. The next subsection
explains how to relate these patterns to the behaviour
repertoire.

2.2 Motivations for Behaviour Selection
The combination of extenal and internal stimuli gives
rise to the motivational state. This section describes
the necessary elements to build an internal physiol-
ogy.

The controlled homeostatic variables are abstrac-
tions representing an agents’ resources. Nutrition,
stamina and restlessness are the chosen variables.
Their values must be kept within the viability zone
for the agent to remain alive; if their values over-
flow/underflow the upper/lower boundaries that de-
fine the variable’s viability, the robot dies.

The drives are also abstractions denoting urges for
action. The drives monitor the levels of the homeo-
static variables and initiate a process of compensation
whenever they are in a deficit state. In our case, the
mechanism of compensation is the selection and ex-
ecution of a behaviour, which requires an appropri-
ate object nearby for successful execution. We have
used three different drives: hunger (which controls
nutrition), fatigue (controlling stamina), and curios-
ity (controlling restlessness). At each time step, each
drive is assigned an intensity proportional to the mag-
nitude of the error of its controlled variable.

The behaviours are to grasp, to shelter and to in-
teract. The execution of a behaviour results in an in-
teraction with an object in the environment that may
cause a compensation of the deficit for the most crit-
ical internal variable, contributing therefore to com-
pensate the drives. In the general case, different be-
haviours can contribute to compensate a drive, but in
our simplified model each drive can be satisfied by
one behaviour only, “eat” (grasping an object) satis-
fies hunger, “shelter” satisfies fatigue, and “interact”
satisfies curiosity.

The arbitration mechanism for behaviour selection
follows a winner-take-all policy, using the drive that
exhibits the highest urgency (the one with the highest
level) to choose the behaviour to execute next. In our
simplified model this is very straighforward because
there is a single behaviour that can satisfy each drive.

The model also has two Hormones: Frustration and
Satisfaction, which are respectively triggered when
the outcome of an interaction succeeds or fails. The
values of the hormones are 1, if they are active, and 0
otherwise.

2.3 The Learning Mechanism
The learning process adds a novel dimension to the
topological network, by growing functional synapses
between every node in the aforementioned neural
structure and each behaviour of the agent. The pro-
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cedure for growing these synapses is driven by the
agent’s drives in a hebbian manner. The process is as
follows:

• Every time the agent detects an object, the clos-
est node in the state space is identified. Figure
1 shows the 2D projections of topologies rep-
resenting the objects contained in the Khepera
world used for simulation.

• The interaction succeeds, the hormone Satisfac-
tion is released, otherwise, the hormone Frustra-
tion is released.

• Satisfaction and Frustration, strengthen or
weaken, respectively, the synapse relating the
active node and the behaviour executed (∆ωij =

αbj). Weights are normalised between -1.0 and
1.0.

The final values quantify the affordances relating
those particular objects, encoded by the neural struc-
ture, to the agent’s behaviours.

3 Experiments and Results
The goal of these experiments is to test this learning
hypothesis with an artificial agent in an engineered
scenario. The affordances of the objects in that sce-
nario are such that little objects afford grasping, large
objects afford shelter, and all objects afford interact-
ing. Relative sizes vary between 0.08 and 0.01, the
size of the Kephera’s gripper is 0.04 and the arena
measures 0.5× 0.5 units.

3.1 Experimental Procedure
The robot wanders in the aforementioned environ-
ment, interacting with objects encountered at random.
Everytime an object is encountered, the object is cen-
tred, and a snapshot of the object is taken always at
the same distance. The single top horizontal line of
the object is selected, and reduced to a 64-D illumina-
tion vector. This vector is used for building the neural
structure2. Two 2D-PCA of final structures with 16
and 42 nodes each are shown in figure 1.

Concurrently, the agent’s homeostatic variables are
initialised to their optimal value, and decay accord-
ing to equation ∆hvi = τ , with τ = 10

−5. Their
optimal values are 0.8 for nutrition and stamina, and
0.2 for restlessness. Their related drives measure the

2With parameters energy = 0.5, epsilonb = 0.5,
epsilonn = 0.006, amax=50, as described in Marsland et al.
(2002).
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Figure 1: 2D-PCA with GWR overlapping with 16
and 42 nodes, left and right, respectively.

difference from those optimal values, and define the
agent’s motivational state. Whenever an object is
encountered, the behaviour whose attached drive ex-
hibits the highest value is selected and executed. The
affordance learning method, as introduced in section
2.3, is then executed.

3.2 Results
Four series of five simulations each have been run
with networks of sizes between 4 and 42 nodes for
testing the aformentined learning algorithm. Results
for topological networks of 4, 8, 16 and 42 nodes are
presented in histograms 2 and 3. The three individ-
ual histograms, address the affordance values for each
behaviour: grasp, shelter and interact. Values in the
X-axis represent the node id in the topological struc-
ture, and values in the Y-axis the affordance values
learnt (ranged between -1.0 and 1.0), averaged over
five simulations.
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Figure 2: Learnt affordance values for behaviours
grasp, shelter and touch (top-down) for GWR with
4 and 8 nodes, left and right, respectively.

It can be observed that affordance values in topolo-
gies with a low number of nodes exhibit a large stan-
dard deviation. This is due to the low accuracy of
those topologies, and is confirmed by observing the
difference with affordance values in topologies with
a larger number of nodes (16 and 42), which are de-
fined more precisely. In the former case, the low
level of accuracy provokes an incorrect selection of
the node closest to the visual pattern. In other words,
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Figure 3: Learnt affordance values for behaviours
grasp, shelter and touch (top-down) for GWR with
16 and 32 nodes, left and right, respectively.

nodes in topologies with a low level of accuracy rep-
resent a range of objects whose features cannot be
causally related to the same effect. This also high-
lights that for representations of high accuracy, the
growing algorithm could be improved via pruning
nodes exhibiting affordance values with a high vari-
ance. This would not diminish the overall perfor-
mance, since the resting nodes already represent the
sensory-space accurately enough. This would im-
prove the overall performance, since the selection of
one node or another would be more accurate, thus its
affordance values would be better defined.

Lastly, it is important to highlight that there are
implementation and execution issues, e.g., inaccurate
object manipulation, which means the execution of
some behaviours fail despite the object affording that
behaviour to be executed.

4 Conclusions and Future Work
The learning method is based on internal observation
of causal fluctuations in the motivational state due to
behaviour execution. This provokes a hormonal re-
sponse, which reinforces the functional synapses re-
lating the behaviour executed to the node in the GWR
closest to the perceived sensory pattern. The results
suggest that affordances can be learnt according to
the experimental procedure proposed.

It is fundamental to stress that affordances are
context-related. Hence, to be able to learn and use
affordances, it is necessary to define a context: the
agent’s morphology, its set of internal goals and be-
haviours, the environment. However, sensory percep-
tion is independent from the motivational state.

The principles of the model highlight that motiva-
tion and learning are two inter-related processes. If
there is motivation to drive the agent to perform an
action, the effect of the performance biases learning.
Conversely, learning has a reinforcing role on the mo-
tivational (physiological) system. This is grounded
in neuroscience by Bindra’s suggestion: “The effects

on behaviour produced by reinforcement and motiva-
tion arise from a common set of neuro-psychological
mechanisms, and the principle of reinforcement is a
special case of the more fundamental principle of mo-
tivation” (Bindra, 1969).

Finally, it is relevant to stress that learning affor-
dances is related to building a representation of the
environment; however, a functional representation.
In fact, as the model shows, neural encoding and re-
inforcement are processes affecting one another.

Future endeavours will perform ethological analy-
sis of behaviour (in terms of physiological stability
and cycles of behaviour execution), to assess the ef-
fect and reach of this learning process in a variety of
environments.
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