University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Kepler-1649b: : An Exo-Venus in the Solar Neighborhood

        View/Open
        Final Published version (PDF, 1Mb)
        Author
        Angelo, Isabel
        Rowe, Jason F.
        Howell, Steve B.
        Quintana, Elisa V.
        Still, Martin
        Mann, Andrew W.
        Burningham, Ben
        Barclay, Thomas
        Ciardi, David R.
        Huber, Daniel
        Attention
        2299/18262
        Abstract
        The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star's habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergence of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of PSF photometry, ground-based spectroscopy and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.
        Publication date
        2017-03-17
        Published in
        The Astronomical Journal
        Published version
        https://doi.org/10.3847/1538-3881/aa615f
        Other links
        http://hdl.handle.net/2299/18262
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan