University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Deterministic equivalent performance analysis of time-varying massive MIMO systems

        View/Open
        Accepted_Manuscript.pdf (PDF, 1002Kb)
        Author
        Papazafeiropoulos, Anastasios K.
        Ratnarajah, Tharmalingam
        Attention
        2299/19872
        Abstract
        Delayed channel state information at the transmitter (CSIT) due to time variation of the channel, coming from the users' relative movement with regard to the BS antennas, is an inevitable degrading performance factor in practical systems. Despite its importance, little attention has been paid to the literature of multi-cellular multiple-input massive multiple-output (MIMO) system by investigating only the maximal ratio combining (MRC) receiver and the maximum ratio transmission (MRT) precoder. Hence, the contribution of this work is designated by the performance analysis/comparison of/with more sophisticated linear techniques, i.e., a minimum-mean-square-error (MMSE) detector for the uplink and a regularized zero-forcing (RZF) precoder for the downlink are assessed. In particular, we derive the deterministic equivalents of the signal-to-interference-plus-noise ratios (SINRs), which capture the effect of delayed CSIT, and make the use of lengthy Monte Carlo simulations unnecessary. Furthermore, prediction of the current CSIT after applying a Wiener filter allows to evaluate the mitigation capabilities of MMSE and RZF. Numerical results depict that the proposed achievable SINRs (MMSE/RZF) are more efficient than simpler solutions (MRC/MRT) in delayed CSIT conditions, and yield a higher prediction at no special computational cost due to their deterministic nature. Nevertheless, it is shown that massive MIMO are preferable even in time-varying channel conditions.
        Publication date
        2015-10-01
        Published in
        IEEE Transactions on Wireless Communications
        Published version
        https://doi.org/10.1109/TWC.2015.2443040
        Other links
        http://hdl.handle.net/2299/19872
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan