Show simple item record

dc.contributor.authorPujari, Amit
dc.date.accessioned2019-08-06T23:47:48Z
dc.date.available2019-08-06T23:47:48Z
dc.date.issued2019-02-07
dc.identifier.citationPujari , A 2019 , ' Effects of different vibration frequencies, amplitudes and contraction levels on lower limb muscles during graded isometric contractions superimposed on whole body vibration stimulation ' , Journal of Rehabilitation and Assistive Technologies Engineering , vol. 6 , 2055668319827466 . https://doi.org/10.1177/2055668319827466
dc.identifier.issn2055-6683
dc.identifier.otherORCID: /0000-0003-1688-4448/work/62752109
dc.identifier.urihttp://hdl.handle.net/2299/21542
dc.description.abstractBackground: Indirect vibration stimulation, i.e., whole body vibration or upper limb vibration, has been investigated increasingly as an exercise intervention for rehabilitation applications. However, there is a lack of evidence regarding the effects of graded isometric contractions superimposed on whole body vibration stimulation. Hence, the objective of this study was to quantify and analyse the effects of variations in the vibration parameters and contraction levels on the neuromuscular responses to isometric exercise superimposed on whole body vibration stimulation. Methods: In this study, we assessed the 'neuromuscular effects' of graded isometric contractions, of 20%, 40%, 60%, 80% and 100% of maximum voluntary contraction, superimposed on whole body vibration stimulation (V) and control (C), i.e., no-vibration in 12 healthy volunteers. Vibration stimuli tested were 30 Hz and 50 Hz frequencies and 0.5 mm and 1.5 mm amplitude. Surface electromyographic activity of the vastus lateralis, vastus medialis and biceps femoris were measured during V and C conditions with electromyographic root mean square and electromyographic mean frequency values used to quantify muscle activity and their fatigue levels, respectively. Results: Both the prime mover (vastus lateralis) and the antagonist (biceps femoris) displayed significantly higher (P < 0.05) electromyographic activity with the V than the C condition with varying percentage increases in EMG root-mean-square (EMGrms) values ranging from 20% to 200%. For both the vastus lateralis and biceps femoris, the increase in mean EMGrms values depended on the frequency, amplitude and muscle contraction level with 50 Hz-0.5 mm stimulation inducing the largest neuromuscular activity. Conclusions: These results show that the isometric contraction superimposed on vibration stimulation leads to higher neuromuscular activity compared to isometric contraction alone in the lower limbs. The combination of the vibration frequency with the amplitude and the muscle tension together grades the final neuromuscular output.en
dc.format.extent2359522
dc.language.isoeng
dc.relation.ispartofJournal of Rehabilitation and Assistive Technologies Engineering
dc.titleEffects of different vibration frequencies, amplitudes and contraction levels on lower limb muscles during graded isometric contractions superimposed on whole body vibration stimulationen
dc.contributor.institutionSchool of Engineering and Technology
dc.contributor.institutionBioEngineering
dc.contributor.institutionCentre for Engineering Research
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1177/2055668319827466
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record