Show simple item record

dc.contributor.authorToffe, Gilles
dc.contributor.authorIsmail, S. O.
dc.contributor.authorMontalvao, Diogo
dc.contributor.authorKnight, Jason
dc.contributor.authorRen, Guogang
dc.date.accessioned2019-11-05T01:03:43Z
dc.date.available2019-11-05T01:03:43Z
dc.date.issued2019-11-01
dc.identifier.citationToffe , G , Ismail , S O , Montalvao , D , Knight , J & Ren , G 2019 , ' A scale-up of energy-cycle analysis on processing non-woven Flax/PLA tape and triaxial glass fibre fabric for composites ' Journal of Manufacturing and Materials Processing (JMMP) , vol. 3 , no. 92 , pp. 1-20 . https://doi.org/10.3390/jmmp3040092
dc.identifier.otherORCID: /0000-0001-8865-1526/work/64327689
dc.identifier.otherORCID: /0000-0003-1451-1736/work/64327934
dc.identifier.urihttp://hdl.handle.net/2299/21840
dc.description© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
dc.description.abstractIn the drive towards a sustainable economy, a growing interest exists in the development of composite materials using renewable natural resources. This paper explores the life cycle assessment of processing of Flax fibre reinforced polylactic acid (PLA), with a comparison of glass fibre triaxial fabric in the production process. The use of hydrocarbon fossil resources and synthetic fibres such as glass and carbon have caused severe environmental impacts in their entire life cycles whereas, Flax/PLA is one of the cornerstones for the sustainable economic growth of natural fibre composites. In this study, the manufacturing processes of Flax/PLA tape and triaxial glass fibre were evaluated through a gate-to-gate life cycle assessment (LCA). The assessment was based on an input-output model to estimate energy demand and environmental impacts. The quality of the natural hybrid composite produced and cost-effectiveness of their LCA was dependent on their roving processing speeds and temperature applied to both the Flax/PLA tape and triaxial glass fabrics during processing. The optimum processing condition was found to be at a maximum of 4 m/min at a constant temperature of 170 oC. In contrast, the optimum for normal triaxial glass fibre production was at a slower speed of 1 m/min using a roving glass fibre laminating machine. The results showed that when the Flax and PLA were combined to produce new composite material in the form of a flax/PLA tape, energy consumption was 0.25 MJ/kg, which is lower than the 0.8 MJ/kg used for glass fibre fabric process. Flax/PLA tape and glass fibre fabric composites have a carbon footprint equivalent to 0.036 kg CO2 and 0.11kg CO2, respectively, under the same manufacturing conditions. These are within the technical requirements in the composites industry. The manufacturing process adopted to transform Flax/PLA into a similar tape composite was considerably quicker than that of woven glass fibre fabric for composite tape. This work elucidated the relationship of the energy consumptions of the two materials processes by using a standard LCA analytical methodology. The outcomes supported an alternative option for replacement of some conventional composite materials for the automotive industry. Most importantly, the natural fibre composite production is shown to result in an economic benefit and reduced environmental impact.en
dc.format.extent20
dc.format.extent5589909
dc.language.isoeng
dc.publisherMDPI Multidisciplinary Digital Publishing Institute
dc.relation.ispartofJournal of Manufacturing and Materials Processing (JMMP)
dc.titleA scale-up of energy-cycle analysis on processing non-woven Flax/PLA tape and triaxial glass fibre fabric for compositesen
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionMaterials and Structures
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionBioEngineering
rioxxterms.versionofrecord10.3390/jmmp3040092
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record