Show simple item record

dc.contributor.authorSaajasto, Mika
dc.contributor.authorHarju, Jorma
dc.contributor.authorJuvela, Mika
dc.contributor.authorTie, Liu
dc.contributor.authorZhang, Qizhou
dc.contributor.authorLiu, Sheng-Yuan
dc.contributor.authorHirano, Naomi
dc.contributor.authorWu, Yuefang
dc.contributor.authorKim, Kee-Tae
dc.contributor.authorTatematsu, Ken'ichi
dc.contributor.authorWang, Ke
dc.contributor.authorThompson, Mark
dc.date.accessioned2020-03-25T01:11:12Z
dc.date.available2020-03-25T01:11:12Z
dc.date.issued2019-10-01
dc.identifier.citationSaajasto , M , Harju , J , Juvela , M , Tie , L , Zhang , Q , Liu , S-Y , Hirano , N , Wu , Y , Kim , K-T , Tatematsu , K , Wang , K & Thompson , M 2019 , ' Cloud G074.11+00.11: a stellar cluster in formation ' , Astronomy and Astrophysics , vol. 630 , A69 . https://doi.org/10.1051/0004-6361/201834991
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 18925338
dc.identifier.otherPURE UUID: 54a93de6-ab80-45e0-a905-f2438850b81d
dc.identifier.otherArXiv: http://arxiv.org/abs/1907.08452v1
dc.identifier.otherORCID: /0000-0001-5392-909X/work/71186130
dc.identifier.otherScopus: 85103741700
dc.identifier.urihttp://hdl.handle.net/2299/22481
dc.description© ESO 2019.
dc.description.abstractWe present molecular line and dust continuum observations of a Planck-detected cold cloud, G074.11+00.11. The cloud consists of a system of curved filaments and a central star-forming clump. The clump is associated with several infrared sources and H2O maser emission. We aim to determine the mass distribution and gas dynamics within the clump, to investigate if the filamentary structure seen around the clump repeats itself on a smaller scale, and to estimate the fractions of mass contained in dense cores and filaments. The velocity distribution of pristine dense gas can be used to investigate the global dynamical state of the clump, the role of filamentary inflows, filament fragmentation and core accretion. We use molecular line and continuum observations from single dish observatories and interferometric facilities to study the kinematics of the region. The molecular line observations show that the central clump may have formed as a result of a large-scale filament collision. The central clump contains three compact cores. Assuming a distance of 2.3 kpc, based on Gaia observations and a three-dimensional extinction method of background stars, the mass of the central clump exceeds 700 solar masses, which is roughly 25% of the total mass of the cloud. Our virial analysis suggests that the central clump and all identified substructures are collapsing. We find no evidence for small-scale filaments associated with the cores. Our observations indicate that the clump is fragmented into three cores with masses in the range [10,50] solar masses and that all three are collapsing. The presence of an H2O maser emission suggests active star formation. However, the CO lines show only weak signs of outflows. We suggest that the region is young and any processes leading to star formation have just recently begun.en
dc.format.extent17
dc.language.isoeng
dc.relation.ispartofAstronomy and Astrophysics
dc.subjectastro-ph.GA
dc.titleCloud G074.11+00.11: a stellar cluster in formationen
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionVoR
rioxxterms.versionofrecordhttps://doi.org/10.1051/0004-6361/201834991
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record