Show simple item record

dc.contributor.authorLi, Letian
dc.contributor.authorGlackin, Cornelius
dc.contributor.authorCannings, Nigel
dc.contributor.authorVeneziano, Vito
dc.contributor.authorBarker, Jack
dc.contributor.authorOduola, Olakunle
dc.contributor.authorWoodruff, Chris
dc.contributor.authorLaird, Thea
dc.contributor.authorLaird, James
dc.contributor.authorSun, Yi
dc.date.accessioned2024-09-23T16:45:01Z
dc.date.available2024-09-23T16:45:01Z
dc.date.issued2024-06-20
dc.identifier.citationLi , L , Glackin , C , Cannings , N , Veneziano , V , Barker , J , Oduola , O , Woodruff , C , Laird , T , Laird , J & Sun , Y 2024 , ' Investigating HuBERT-based Speech Emotion Recognition Generalisation Capability ' , Paper presented at The 23rd International Conference on Artificial Intelligence and Soft Computing 2024 , Zakopane , Poland , 16/06/24 - 20/06/24 .
dc.identifier.citationconference
dc.identifier.urihttp://hdl.handle.net/2299/28234
dc.description.abstractTransformer-based architectures have made significant progress in speech emotion recognition (SER). However, most published SER research trained and tested models on data from the same corpus, resulting in poor generalisation ability to unseen data collected from different corpora. To address this, we applied the HuBERT model to a combined training set consisting of five publicly available datasets (IEMOCAP, RAVDESS, TESS, CREMA-D, and 80% CMU-MOSEI) and conducted cross-corpus testing on the Strong Emotion (StrEmo) Dataset (a natural dataset collected by the authors) and two publicly available datasets (SAVEE and 20% CMU-MOSEI). Our best result achieved an F1 score of 0.78 over the three test sets, with an F1 score of 0.86 for StrEmo specifically. Additionally, we are pleased to release the spreadsheet of key information on the StrEmo dataset as supplementary material to the conference.en
dc.format.extent255530
dc.language.isoeng
dc.titleInvestigating HuBERT-based Speech Emotion Recognition Generalisation Capabilityen
dc.contributor.institutionCentre for Computer Science and Informatics Research
dc.contributor.institutionDepartment of Computer Science
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionCybersecurity and Computing Systems
dc.contributor.institutionBiocomputation Research Group
dc.description.statusPeer reviewed
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record