University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        An explicitly declared delayed-branch mechanism for a superscalar architecture

        View/Open
        CSTR 197.pdf (PDF, 1021Kb)
        Author
        Collins, R.
        Steven, G.B.
        Attention
        2299/4876
        Abstract
        One of the main obstacles to exploiting the fine-grained parallelism that is available in general-purpose code is the frequency of branches that cause unpredictable changes in the control flow of a program at run-time. Whenever a branch is taken, a performance penalty may be incurred as the processor waits for instructions to be fetched from the branch target stream. RISC processors introduce a delayed-branch mechanism which defines branch delay slots into which code can be scheduled. This strategy allows the processor to be kept busy executing useful instructions while the change of control flow takes place. While the concept of delayed-branches can be readily extended to VLIW architectures, it is less clear how it should be incorporated in a superscalar architecture. This paper proposes a general branch-delay mechanism which is suitable for a range of code-compatible superscalar processors and which completely avoids the need to introduce NOPs into the code. This technique was developed as an integral part of the HSP superscalar project. HSP is a superscalar architecture currently being developed at the University of Hertfordshire with the aim of using compile-time instruction scheduling to achieve an order of magnitude speed-up over traditional RISC architectures for a suite of non-numeric benchmark programs.
        Publication date
        1994
        Other links
        http://hdl.handle.net/2299/4876
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan