University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Magnetic field decay in neutron stars : from soft gamma repeaters to weak-field magnetars'

        View/Open
        Final Accepted Version (PDF, 959Kb)
        Author
        Dall'Osso, S.
        Granot, J.
        Piran, T.
        Attention
        2299/8821
        Abstract
        The recent discovery of the weak-field, old magnetar soft gamma repeater (SGR) J0418+5729, whose dipole magnetic field, Bdip, is less than 7.5 x 10(12) G, has raised perplexing questions: how can the neutron star produce SGR-like bursts with such a low magnetic field? What powers the observed X-ray emission when neither the rotational energy nor the magnetic dipole energy is sufficient? These observations, which suggest either a much larger energy reservoir or a much younger true age (or both), have renewed the interest in the evolutionary sequence of magnetars. We examine here a phenomenological model for the magnetic field decay: and compare its predictions with the observed period, P, the period derivative, , and the X-ray luminosity, LX, of magnetar candidates. We find a strong evidence for a dipole field decay on a time-scale of similar to 10(3) yr for the strongest (Bdip similar to 10(15) G) field objects, with a decay index within the range 1 =a < 2 and more likely within 1.5 less than or similar to alpha a less than or similar to 1.8. The decaying field implies a younger age than what is implied by . Surprisingly, even with the younger age, the energy released in the dipole field decay is insufficient to power the X-ray emission, suggesting the existence of a stronger internal field, Bint. Examining several models for the internal magnetic field decay, we find that it must have a very large (greater than or similar to 10(16) G) initial value. Our findings suggest two clear distinct evolutionary tracks the SGR/anomalous X-ray pulsar branch and the transient branch, with a possible third branch involving high-field radio pulsars that age into low-luminosity X-ray dim isolated neutron stars.
        Publication date
        2012-06
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1111/j.1365-2966.2012.20612.x
        Other links
        http://hdl.handle.net/2299/8821
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan