University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Neutral Hydrogen (21 Centimeter) Absorption in Seyfert Galaxies: Evidence for Free-Free Absorption and Subkiloparsec Gaseous Disks

        View/Open
        901054.pdf (PDF, 669Kb)
        Author
        Gallimore, J.F.
        Baum, S.A.
        O'Dea, C.P.
        Pedlar, A.
        Brinks, E.
        Attention
        2299/969
        Abstract
        Active galaxies are thought to be both fueled and obscured by neutral gas removed from the host galaxy and funneled into a central accretion disk. We performed a VLA imaging survey of 21 cm absorption in Seyfert and starburst nuclei to study the neutral gas in the near-nuclear environment. With the exception of NGC 4151, the absorbing gas traces 100 pcÈscale, rotating disks aligned with the outer galaxy disk. These disks appear to be rich in atomic gas relative to nuclear disks in nonactive spirals. We Ðnd no strong evidence for rapid infall or outÑow of neutral hydrogen, but our limits on the mass infall rates are compatible with that required to feed a Seyfert nucleus. Among the galaxies surveyed here, neutral hydrogen absorption traces parsec-scale gas only in NGC 4151. Based on the kinematics of the absorption line, the disk symmetry axis appears to align with the radio jet axis rather than the outer galaxy axis. The most surprising result is that we detect no 21 cm absorption toward the central radio sources of the hidden Seyfert 1 nuclei Mrk 3, Mrk 348, and NGC 1068. Moreover, 21 cm absorption is commonly observed toward extended radio jet structure but appears to avoid central, compact radio sources in Seyfert nuclei. To explain these results, we propose that 21 cm absorption toward the nucleus is suppressed by either free-free absorption, excitation e ects (i.e., enhanced spin temperature), or rapid motion in the obscuring gas. Ironically, the implications of these e ects is that the obscuring disks must be small, typically not larger than a few tens of parsecs.
        Publication date
        1999
        Published in
        The Astrophysical journal
        Other links
        http://hdl.handle.net/2299/969
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan