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Abstract: There has been a rapid increase in government efforts to expand electric vehicle markets
by deploying fast-charging stations, promoting uptake through greater investment, and by enacting
supportive policies. Government support and private investment have contributed to the expansion
of electric vehicles in many countries. The aim of this study is to highlight and analyze the most
critical aspects of the expansion of the electric vehicle market, regarding technologies, character-
istics, advantages and disadvantages, opportunities, and barriers in Europe. Our study analyzes
the progress of electric vehicles by reviewing recent literature based on technology, policy, and
government measurements. This study provides comprehensive information on electric vehicles and
perspectives that are critical to policymakers, car manufacturers, consumers, and the community.
To achieve favorable results, governments should invest in developing electric vehicles and battery
technologies, provide subsidies, and develop charging infrastructure. Furthermore, by analyzing
current EV sales in ten countries around the world, we assess the operating costs of electric vehicles.
Overall EV cost of ownership is influenced by grid electricity price, cost of financing, location, carbon
tax, wind speed, and solar insolation.

Keywords: electric vehicles (EVs); renewable energy; technology; charging stations

1. Introduction

The importance of the environment for future generations has led to a global push
to develop clean transportation options to mitigate climate change [1]. In recent years,
electric vehicle (EV) sales have increased [2], as EVs have grown in popularity worldwide
and provided new opportunities [3]. There is no doubt that EVs can play a key role
in the future energy system, which will further accelerate their development [4]. As
reported by International Energy Agency (IEA), global sales of EVs doubled to 6.6 million
in 2021 from the previous year. In this regard, the development of EVs and associated
technology, in particular fast-charging stations, has increased rapidly in previous years [5].
Moreover, significant government support, combined with private investment, has helped
with both the uptake of electric vehicles and the development of charging infrastructure
worldwide [6].
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Following a decade of rapid growth, the global EV market experienced a decline
in sales in 2019 due to the outbreak of the COVID-19 pandemic. There was, however, a
temporary reduction in EV sales. The US market for EVs is predicted to rise approximately
threefold between 2022 and 2028, compared to the world market, demonstrating the
importance of EV development for people and governments [7].

There have been several studies related to the development of EVs in recent years,
some of which are outlined as follows. For instance, Razmjoo et al. investigated the
development of EVs for smart cities. They showed that EVs are able to produce CO2
reductions, while simultaneously helping to improve transport options for smart cities in
the future [8]. Gnann et al. investigated the potential to reduce greenhouse gas emissions
using plug-in EVs in Germany in 2020. They showed that both energy prices and the cost of
batteries have a large impact on the evolution of the plug-in EV market. Therefore, plug-in
EVs were expected to account for between 0.4% and 3% of German passenger car stock by
2020 [9].

In order to deal with severe environmental problems, as well as managing energy
systems, Hu investigated the impact of policy on EV diffusion. Policies such as support
for infrastructure construction and production subsidies can increase the uptake of EVs
to 70% [10]. A long-term EV forecast and its potential impact on the electricity grid were
conducted by Kapustin and Grushevenko. It was shown that with heavy government
support, 11–28% of the global fleet can be converted to electric cars by 2040 [11]. Mo
et al. examined trends and emerging technologies for the development of EVs. There are a
number of emerging technologies in the EV development industry that are mentioned in this
paper, such as vehicle-to-grid (V2G) systems, smart power distribution, vehicle-to-vehicle
networking, wireless charging, and vehicle-to-home (V2H) [12]. They also evaluated
the commercialization of EVs in Hong Kong as a key case study. As a first step, they
discussed the challenges facing private EV owners, including inadequate access to charging
infrastructure and insufficient management of public facilities, as well as difficulties finding
suitable repair and maintenance services. Subsequently, they presented the challenges
for commercial EVs such as limited commercial models, charging infrastructure, long
charging times, and insufficient parking places. Eventually, the authors offered strategies
for promoting EVs, including promoting technological innovation, offering incentives for
commercial EVs, strengthening stakeholder relationships, creating fast-charging stations,
offering active development of commercial EVs, facilitating the installation of charging
infrastructure for private EVs, and encouraging the participation of the private sector in
promoting fee-based services [13].

Based on the analysis in [14], there were approximately 7.3 million EV chargers
worldwide at the end of 2019, of which 0.9 million were public. Additionally, the number
of EVs produced in Europe is expected to increase from about three-quarters of a million
in 2019 to more than four million in 2025. Another strand of studies focused on the areas
of EV adoption and purchase intentions by customers. For example, Wang et al. (2017)
classified policy measures into three categories—financial incentives, public education,
and convenience policies—and examined how each of these motivate consumers to adopt
EVs [15]. In another study conducted by Lou et al., consumers’ attitudes toward new
energy vehicles (NEVs) were analyzed statistically, and the effects of NEV policies were
identified with a structural equation model (SEM). It was found that consumers prefer
hybrid electric vehicles (HEVs) and plug-in electric vehicles (PEVs), however, they are not
sufficiently knowledgeable about NEVs and their policies [16]. Javid et al. applied the
Norm Activation Model (NAM) to identify travelers’ adoption behavior towards EVs in
the contexts of pro-social and pro-environmental behaviors in Pakistan. According to their
findings, travelers’ awareness regarding the social, economic, and environmental perks of
EVs contributes to the development of positive personal norms [17].
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Previous studies have focused only on specific aspects of EVs, leaving other aspects
untouched. This study, however, extends previous studies by examining the most criti-
cal aspects of the expansion of the EV market, including technologies, features, advan-
tages/disadvantages, opportunities, and barriers.

Following the previous studies, this research examines the expansion of EVs across
the world. A major focus of this study is to examine how well EV expansion relies on
proper planning, government strategies, and cooperation between governments in different
countries while addressing stakeholder needs. This study contributes to the understanding
of EV markets by specifying the key features of EV technologies, and examining the drivers
for the expansion of infrastructure, and applications. Moreover, this paper presents the
most important policies, strategies, and factors for supporting the development of EVs, by
simulating various renewables-based on-grid system scenarios using Homer software. The
findings provide critical information for decision-makers, investors, economic agents, and
stakeholders. Another novel aspect of this research is that previous studies have typically
focused on one key aspect of EV development, while this work simultaneously covers and
integrates four important subjects for analysis of EVs: political, economic, environmental,
and technological analysis. Finally, the obtained results pinpoint details for each specific
area, pinpointing the main problems and suggesting effective solutions.

2. Methodology

The expansion of EVs is not easy for governments and policymakers in different coun-
tries, but appropriate policies and strategies can overcome existing problems. The purpose
of this paper is to find problems and present proper solutions for expanding the use of EVs.
The objectives of the literature review are as follows: (1) present a comprehensive overview
of EVs and their technologies; (2) identify their characteristics and classify them accord-
ingly; and, (3) determine challenges, advantages/disadvantages, obstacles, opportunities,
policies, and solutions. The first step is providing an overview of previous studies and
identifying the relative literature. A systematic search was conducted using peer-review
papers from scientific databases, books, and Ph.D. dissertations. We considered keywords
including electric vehicles (EVs), energy storage, batteries, environment, renewable energy,
and policy. We have conducted an exhaustive review of more than 350 publications relevant
to EVs using keywords such as expansion, policies, existing problems, and solutions. In
this regard, we searched using established scientific databases, such as scientific journals’
websites, Web of Science, Scopus, and Google Scholar. In addition, to better understand
the concepts of EVs, we examined more than 200 peer-reviewed journals and 150 technical
papers. Review articles helped us understand the development of EVs and their new
technologies that have come under the spotlight within a short period of time. Moreover,
technical articles provided a deeper understanding of applications, effective policies in the
development of EVs, opportunities, and barriers in the field. In the next stage, we catego-
rized articles based on their scope, aims, and methodology, and then selected 102 papers
with the most relevant concept to EVs. Finally, we identified several significant factors
concerning EVs, including their technologies, characteristics, barriers, advantages, and
drawbacks. The methodology of this paper is depicted in Figure 1. Following the collection
of all relevant papers, the papers were categorized into two groups: technical and review
papers, and the methodology used was based on these papers.
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Figure 1. Research Methodology.

3. The Importance of Developing Electric Vehicles

Vehicles powered by electric motors have significant benefits, including less con-
sumption of fossil fuels, lower greenhouse gas emissions, lower fuel costs, and lower
maintenance costs. The purpose of this section is to show the importance of EVs in the
world. This section contains the following subsections:

# Section 3.1. Participation of EVs in global markets
# Section 3.2. Importance of batteries and battery prices to develop EVs
# Section 3.3. The remarkable role of the infrastructure of EVs

3.1. Participation of Electric Vehicles in the Global Markets

The rapid growth of vehicle ownership resulted in some critical issues such as en-
ergy security risk [18], environmental pollution [19], and rising greenhouse gases (GHG)
emissions [20]. As a solution to the above challenges, EVs are becoming more popular [21].
Fortunately, these years, with regard to both governments’ and people’s positive attitudes,
financial incentives, and fossil fuel problems especially for the future, EVs have found an
essential role in the world markets [22]. In this regard, governments have offered vari-
ous incentives in many countries to promote the diffusion of EVs [23]. Consequently, EV
manufacturing and charging infrastructure is expanding every day. Different countries
around the world, such as the US [24], China [25], India [26], Norway [27], the UK [28],
Australia [29], and Germany [30], are implementing plans to develop EVs, and EV markets,
to improve transportation and reduce CO2 emissions. Despite the COVID-19 pandemic,
EV ownership has increased impressively worldwide over the last three years. In 2020,
global EV sales reached three million, which accounted for 4.1% of global automobile
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sales. In 2021, global EV sales had a remarkable growth rate of 108%. Over 6.6 million
EVs were sold, roughly 9% of the global automobile market, tripling from two years prior
to that [31]. This illustrates that EV sales are increasing year by year [32]. According to
research, with 3.4 million registrations and around 53% of global EV sales, China is the
world’s largest market for EVs. As reported by Canalys, in 2021, over 3.2 million EVs were
sold in Mainland China—half of all EVs sold worldwide [33]. Europe has the second-largest
stock of electric cars in the world after China. The European Union registered 2.3 million
cars in 2021, which accounted for 34% of the worldwide stock. The growth rate of EV sales
in Europe was 64.3% in 2021, which is an impressive increase. Additionally, the United
States has the third-largest market for electric cars. Figure 2 [34], displays the passenger
electric vehicle sales from 2015 to 2022. According to a report by Bloomberg NEF, global
sales of electric passenger vehicles in 2022 will reach 10.5 million, about four million above
2021 levels.
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3.2. Importance of Battery and Battery Prices to Develop EVs

In order to develop EVs that provide efficiency and energy savings, the battery is
the most important component. Indeed, there are no EVs without batteries. It is obvious
that investors and customers are interested in the energy-saving features of EVs. The
development of batteries for EVs is, therefore, crucial [35]. There are different types of
battery chemistries used in EVs, such as Lithium-ion (most popular), Lead-Acid, Nickel-
Cadmium, Nickel-metal hydride, and Nickel-iron. Also, the use of several other types
of batteries is being investigated, such as the Iron-air battery, Aluminium-air battery, or
Vanadium redox flow battery [36–41]. EVs are often still unable to meet all of their energy
and power needs for all required conditions, despite advancements in battery technology.
EVs regularly operate with non-monotonic consumption of energy, which is accompanied
by frequent changes during the battery discharging process, which can be harmful to the
electrochemistry of the battery. In this regard, coupling the battery with a supercapacitor
may be a practical solution. The supercapacitor in this design can provide the required
energy excess. Electrical engineering is also very important when designing the architecture
of the corresponding hybrid system [42]. In addition, the development of commercialized
lithium-ion batteries with benefits such as safety, lifetime, energy density power, and cost
requirements of the EV economy has allowed for greater development of EVs [43,44].
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3.3. The Critical Role of Infrastructure in Supporting Deployment of EVs

Without a doubt, the lack of adequate and suitable charging infrastructure is one
of the main challenges to the development of EVs in different countries [45]. A robust
network of charging stations is essential for electric car drivers. Fortunately, the charging
infrastructure of EVs is currently being developed in many countries. Considerable efforts
towards the development of EV charging infrastructure have been carried out to implement
effective indicators in the community, such as energy demand management from EVs,
managing energy intensity, and considering environmental impacts such as charger’s
intensity distribution and carbon intensity [46,47]. Therefore, the development of residential
charging, electrified public transportation through electric buses, and public charging in
electrified highways can be useful for every country, and in densely populated areas
will also play a key role over the next decades to reduce air pollutants [48]. However,
Williams et al. [49] analyzed the infrastructure and technology requirements in California,
and concluded that simply using the most technologically advanced types of energy
supply now available will not be enough. They demonstrated that transportation and
other sectors will need to be converted largely to electrical systems, which would make
decarbonized electricity the dominant form of energy supply. It means transformation
will require technologies that are not yet commercialized, and intensive public-private and
interindustry coordination at every stage of the process. Figure 3 [50] shows the number
of public chargers, and the number of EVs in European countries between 2018 to 2021.
As can see in this figure, there has been a remarkable increase in both public chargers and
number of EVs in these countries, despite all European countries dealing with the COVID
pandemic during these years.
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4. Result and Discussion

In this section, the development of EVs based on PEST (Political, environmental, social,
and technological) analysis is investigated. This section contains the following subsections:

# Section 4.1. Expansion of EVs based on government policy
# Section 4.2. Economic analysis of EV development
# Section 4.3. Expansion of EVs based on environmental considerations
# Section 4.4. Technological analysis of EV development
# Section 4.5. Findings and recommendations
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4.1. Expansion of EVs Based on Government Policy

The EV market is an increasingly important aspect of the automotive industry. Glob-
ally, EVs will replace fossil fuel vehicles in the future. Therefore, having proper policies
for their development is critical and fruitful. Policies such as government subsidies, in-
vestment in research especially for batteries, utilization of new technology, congestion
charge exemptions, incentives to purchase and use EVs, improvement of charging infras-
tructure (and innovation in charging infrastructure such as rapid charging stations) will be
required [51,52]. In order to increase the popularity of EVs, governments are implementing
policies that support their use. Despite this, there are still issues to be resolved. From a polit-
ical perspective, the expansion of EVs is easy due to their environmental friendliness (when
EV batteries and electricity are sustainably sourced) and public support. Therefore, it only
requires investments, attention to consumer preferences, a few cultural changes, and the
expansion of road infrastructure (the availability of charging points is an important factor
in expanding electric vehicles). Through appropriate policies and strategies, governments
should emphasize the development of EVs and the reduction of fossil fuel vehicles [53,54].
In addition, Ryan and LaMonaca believe public charging infrastructure is an important
enabler of the deployment of EVs, and has a better effect on national EV market share than
financial incentives. Their findings show that additional charging stations resulted in a
better impact on EV market share compared with consumer incentives, according to their
research [55].

4.2. Economic Analysis of EV Development

EV development faces a number of challenges, one of which is demonstrating the
economic benefits of EVs. Indeed, economic analysis of EVs for both investors and buyers
is essential and should be taken into account. As long as they believe that EVs do not
provide economic benefits, they will never develop them, own them, or recommend them
to anyone else [56]. Manufacturers believe and prove that EVs reduce fuel consumption
and provide economic benefits in the form of additional disposable income that creates
jobs and improves the economy. The economic benefits of EVs are greater than those of
conventional gas or diesel cars. Electric automobiles can help improve fuel economy, en-
hance energy security, reduce fuel costs, create jobs, and mitigate greenhouse gas emissions.
Also, EVs can play a crucial role in the green economic transition that is necessary for
economic development. With their contribution to improving air quality in cities, we can
reach a zero-emission world. Another economic advantage of electric cars is their lower
maintenance costs. Compared to traditional fuel cars, they have fewer parts that result in
less damage so you can save more on operating costs. Over the life of the vehicle, an EV
will cost significantly less than a diesel or petrol car [57]. EVs also have significantly better
performance than conventional fuel-powered cars because their acceleration is very high.
Due to the decreased use of fossil fuels, EVs receive government grants and tax incentives
to improve efficiency, reduce production costs, and decrease electricity costs, which results
in lower prices for EVs [58]. In 2021, a study was conducted in Ethiopia about the economic
feasibility of EV charging including PV/Wind/Diesel/Battery Hybrid Energy. The find-
ings of this research indicate that the feasible configuration of Solar Photovoltaic/Diesel
Generator/ZnBr battery systems has the lowest net present cost with values of $2.97 M,
$2.72 M, and $2.85 M and that the cost of energy (COE) in Addis Ababa, Jijiga and Bahir
Dar is $0.196, $0.18 and $0.188. It shows that electric vehicles can be developed, with due
consideration of all calculations [59].

4.3. Expansion of EVs Based on Environmental Considerations

The emissions from fossil fuels that cause climate change harm our planet as well
as our health. A great solution is to reduce fossil fuel consumption by introducing new
modes of transportation, such as EVs [60]. EVs are generally regarded as a promising and
effective solution to reduce air pollution in cities, as they help optimize environmental
management more efficiently [61]. Therefore, governments’ investment in the expansion of
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EVs, zero-emissions technologies (renewable energy), and hydrogen as a sustainable fuel
is a viable alternative due to EVs’ long-term environmental benefits. Thereby, countries
are looking for innovations in EVs [62]. Although electric vehicles have many advantages,
such as reducing fossil fuel consumption, their large lithium-ion batteries require a lot
of materials and energy to manufacture, meaning that they can still contribute to global
warming, as do gasoline cars. This suggests that we need sustainable materials to have
a healthy environment [63,64]. South Korea has appropriate policies in the clean energy
movement such as EVs. For example, this country in 2017, when they purchase an electric
car, offered tax reductions and government subsidies to their citizens. A total of 133 electric
cars were registered in 2017, in Suwon city, composed of 20 city government vehicles and
113 privately owned vehicles. This was almost 0.03% of the total registered cars in this city
and 44.3% of the city policymakers’ goal [65]. Also, it can be added that in the interest of
the Indian government solving issues of energy security, air pollution, and climate changes,
special attention has been paid to plug-in electric vehicle (PEV) deployment; however, there
are some problems, such as high land rent prices and the lack of land availability in Indian
cities for the establishment of charging infrastructure [66].

4.4. Technological Analysis of EV Development

There are four main types of EVs, including plug-in hybrid electric vehicles (PHEV),
hybrid electric vehicles (HEV), fuel cell electric vehicles (FCEV), and battery electric vehicles
(BEV) [67]. In each of them, the role of technology and innovation is not hidden. Therefore,
the utilization of new technology and innovation results in higher uptake by consumers [68].
Figure 4 which is drawn based on the results of reference [67,68], shows four main types
of EVs.
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Figure 4. Type of Electric Vehicles [67,68].
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Therefore, key technologies regarding charging of batteries, and electric motors to
improve EVs’ efficiency, reliability, and safety are important [69]. Mercedes, Volkswagen,
and Ford are all attempting to further develop the technology of EVs [70–72]. Moreover,
the statistics of EV patents in the last 30 years show that the number of patents increased
rapidly and reached its historical peak in 2012 was more than 20,000 patents [73]. In
addition, many countries have introduced new energy vehicles (NEVs) as an alternative
to conventional cars in order to reduce their dependence on oil. For example, as the
world’s largest automotive market, China has reduced the consumption and import of oil
to promote NEVs. Additionally, European countries, the US, and Japan have a remarkable
plan for developing technologies for NEVs [74,75]. In this regard, developing advanced
technologies related to EVs such as vehicle-to-grid (V2G), vehicle-to-infrastructure (V2I),
batteries, vehicle-to-vehicle (V2V), integration of artificial intelligence (AI) and V2X, vehicle-
to-pedestrian (V2P), and mechanisms, and communication technologies to face different
users are increasing [73].

4.5. EV Charging Stations

Table 1 lists the top ten countries in Europe in terms of electric car sales in 2020 [76].
Grid electricity price [77], interest rate [78], selected station in the country, geographical
coordinates, altitude from sea level, carbon tax [79–89], average annual wind speed, and
average annual solar radiation are other parameters presented in Table 1. The station
under study was selected as the capital of each country. The data in Table 1 are input to
HOMER software for technical-economic-environmental-energy simulation over 25 years.
The methodology of the performed simulations as well as the schematic of the studied
systems (wind and solar) are given in Figures 5 and 6. As can be seen, the systems under
study are connected to the national electricity grid and also use batteries as a backup [90].

Table 1. European countries with the highest EV sales in 2020.

Country Capital
Grid Price

($/kWh)
[77]

Interest Rate (%)
[78] GMT Coordinates Elevation

(m)

Carbon Tax
($/Tonnes)

[79–89]

Annual
Average

Wind Speed
(m/s)

Annual Average
Solar Radiation
(kWh/m2-Day)

Norway Oslo 0.141 0.75 +2 59◦54′ N
10◦44′ E 17 57.52 2.5 2.75

Iceland Reykjavik 0.140 3.75 0 64◦08′ N
21◦56′ W 61 32.16 6 2.10

Sweden Stockholm 0.176 0.25 +2 59◦19′ N
18◦47′ E 44 122.21 3.6 2.87

Netherlands Amsterdam 0.199 0 +2 52◦22′ N
4◦45′ E −4 96.48 5 3.03

Finland Helsinki 0.179 0 +3 60◦10′ N
24◦56′ E 56 82.55 3.9 2.73

Denmark Copenhagen 0.344 −0.6 +2 55◦40′ N
12◦34′ E 28 164.21 3.8 2.91

Switzerland Bern 0.206 −0.75 +2 46◦56′ N
7◦26′ E 540 130 4.3 3.52

Portugal Lisbon 0.239 0 +1 38◦43′ N
9◦9′ W 95 25.5 3.7 4.86

Germany Berlin 0.331 0 +2 52◦31′ N
13◦24′ E 47 64.31 3.9 2.74

Luxembourg Luxembourg 0.221 0 +2 49◦36′ N
6◦7′ E 376 21.44 3.5 3.01

Table 2 shows equations governing the different parts of wind-grid and solar-grid
systems. The information on pollutants produced by the national electricity grid is given in
Table 3.
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Table 2. Governing equations.

Parameter Equation Reference

Wind turbine output power PWTG = ρ
ρ0
× PWTG , STP [91]

PV cell output power PPV = YPV × fPV × HT
HT.STC

[92]

Battery maximum power Pbatt.cmax =
Min (Pbatt.cmax.kbm,Pbatt.cmax.mcr,Pbatt.cmax.mcc)

ηbatt.c
[93]

Electricity exchange with grid Cgrid,energy =
rates
∑
i

12
∑
j

{
Enet grid purchases,i, j·cpower.i if Enet grid purchases,i, j ≥ 0

Enet grid purchases,i, j·csellback.i if Enet grid purchases,i, j < 0
[94]

Total net present cost (NPC) Total NPC =
Cann,total
i (1+i)N

(1+i)N−1

[95]

Levelized cost of electricity LCOE =
Cann,total

ELoad served
[96]

Table 3. Information on production pollutants.

Item Properties

Grid [97] Carbon dioxide: 632 g/kWh, Sulfur dioxide:
2.74 g/kWh, Nitrogen oxide: 1.34 g/kWh

Figure 6a shows the daily electrical charge for fast DC charging, and Figure 6b depicts
the daily electrical charge for fast AC charging. Moreover, Figure 6c illustrates the daily
electrical charge for slow AC charging. HOMER V2.81 software uses daily or hourly
variability in synthesizing artificial data. The “Random Variability” inputs for the “electric
load” allow the user to add randomness to the load data to make it more realistic. HOMER
V2.81 software assembles the year-long series of load data from the daily profiles. Then, in
each time step, it multiplies the value in that time step by a perturbation factor α:

α = 1 + δd + δts (1)

HOMER V2.81 software randomly draws the time-step perturbation value every time
step from a normal distribution with a mean of zero and a standard deviation equal to the
time-step-to-time-step variability (Timestep) input [98].

Table 4 also provides information on the capital price, replacement, and operating and
maintenance (O&M) of equipment used, their size, and other functional specifications.

The results of the simulations performed using HOMER 2.81 software, are provided
in Table 5. According to the results, the lowest and highest prices per kWh of electricity
generated by the PV-grid scenario are $0.164 (Norway) and $0.386 (Denmark), respectively.
For electricity generation by wind turbine-grid scenario, these prices are $0.093 (Iceland)
and $0.422 (Denmark), respectively. As a general conclusion, Denmark has the highest
cost for the construction of EV charging stations by wind and solar energies. The reason
for this can be related to the high penalty of pollutants for electricity on the grid. The
average prices per kWh of electricity generated for PV-grid and wind turbine-grid scenarios
for the countries under study are $0.236 and $0.246, respectively. Furthermore, the wind
turbine-grid scenario is economically preferable to the PV-grid scenario only in Iceland and
the Netherlands. Conversely, in other countries, the PV-grid scenario is more cost-effective
than the wind turbine-grid scenario. This is due to the appropriate wind speed situation in
these two countries. Also, the use of wind and solar energies is economically necessary for
other countries and scenarios, except in Norway, where the only-grid system is a priority.
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Table 4. Wind-solar-electricity grid system equipment data studied in the present work.

Equipment
Cost ($)

Size (kW) Other Information
Capital Replacement O&M

Converter [99] 200 200 10 0–100

Lifetime: 10 years

Inverter Efficiency: 90%

Rectifier Efficiency: 85%

Battery Trojan T-105 [100] 174 174 5 0–25
Lifetime: 845 kWh

Nominal specs: 6 V, 225 Ah

Generic 10 kW DC [101] 6118 6118 35 0–10
Lifetime: 19 years

Hub height: 25 m

Solar PV [102] 1000 1000 5 0–100
Lifetime: 25 years

Derating factor: 80%

Table 5. Simulation results for renewable-based on-grid scenarios for 10 European countries.

Country Component LCOE
($/kWh)

Renewable
Fraction (%)

PV/Wind
Production
(kWh/Year)

Net Purchases
from Grid

(kWh/Year)

Emission
(kg/Year)

Norway PV (100 kW), Converter (80 kW) 0.164 20 101,254 412,158 260,484

Norway * Wind turbine (10 kW), 10 Battery, Converter
(80 kW) 0.197 1 1262 525,158 331,900

Iceland PV (100 kW), Converter (80 kW) 0.165 14 71,768 445,280 281,417

Iceland Wind turbine (100 kW), Converter (80 kW) 0.093 43 250,653 271,584 171,641

Sweden PV (100 kW), Converter (80 kW) 0.226 20 104,481 408,299 258,045

Sweden Wind turbine (100 kW), 5 Battery, Converter
(80 kW) 0.250 11 56,753 465,976 294,497

The Netherlands PV (100 kW), Converter (80 kW) 0.231 20 103,380 409,913 259,065

The Netherlands Wind turbine (100 kW), Converter (80 kW) 0.191 29 162,766 358,020 226,269

Finland PV (100 kW), Converter (80 kW) 0.209 19 100,069 413,630 261,414

Finland Wind turbine (100 kW), 5 Battery, Converter
(80 kW) 0.218 14 76,155 445,832 281,766

Denmark PV (100 kW), Converter (80 kW) 0.386 20 105,365 407,318 257,425

Denmark Wind turbine (100 kW), 5 Battery, Converter
(80 kW) 0.422 13 67,431 454,520 287,257

Switzerland PV (100 kW), Converter (80 kW) 0.242 24 122,280 388,704 245,661

Switzerland Wind turbine (100 kW), Converter (80 kW) 0.255 18 95,934 424,954 268,571

Portugal PV (100 kW), 10 Batteries, Converter (70 kW) 0.194 32 162,976 344,761 217,889

Portugal Wind turbine (100 kW), 5 Battery, Converter
(80 kW) 0.247 12 63,852 458,717 289,909

Germany PV (100 kW), Converter (80 kW) 0.332 18 95,144 418,479 264,479

Germany Wind turbine (100 kW), 5 Battery, Converter
(80 kW) 0.347 14 73,389 448,270 283,306

Luxembourg PV (100 kW), Converter (80 kW) 0.211 20 101,857 411,329 259,960

Luxembourg Wind turbine (100 kW), 5 Battery, Converter
(80 kW) 0.236 10 50,665 472,302 298,495

* This is not the top economic scenario.
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According to the results of Table 5, the highest percentage of renewable electricity
production, at 43%, is related to Iceland and the wind turbine-grid scenario, which produces
250,653 kWh of wind power annually. The lowest rate of 1% (1262 kWh of annual electricity)
corresponds to Norway and the wind turbine-grid scenario. High wind speeds in Iceland
and low wind speeds in Norway are the reasons for this. Also, the lowest and highest
annual CO2 emissions are about 172 tons (wind turbine-grid scenario in Iceland) and
332 tons (wind turbine-grid scenario in Norway), respectively.

5. Conclusions

The importance of emission reductions and energy savings, together with various
related issues, has largely driven the development of the EV market to date. Actually,
expanding the use of EVs is a logical and practical action that can be taken by governments.
Worldwide, EV popularity has increased, resulting in different opportunities, while EVs will
play an increasingly important role in the future power grid. In 2019 the global EV market
experienced a decline in sales due to the economic impact of the COVID-19 pandemic.
However, this was a temporary phenomenon. There is no doubt that as the number of EV
models available increases and become available on the market, the production volume
will rise as well. On the other hand, famous companies such as Tesla, Nissan, Ford, Honda,
Fiat, Tata, and Toyota have many plans to overcome current hurdles and become leading
manufacturers in the EV industry. Governments and investors will need a positive view
of regulatory policies and competition in this field, while paying attention to consumer
sentiment. Currently, EV manufacturers are working to provide a high level of customer
satisfaction by paying attention to their financial concerns and emphasizing the energy and
running cost savings that EVs can offer.

The aim of this study is to shed light on the most important aspects of EV technologies,
opportunities, characteristics, advantages/disadvantages, and barriers in Europe. We
comprehensively discussed EVs and the perspectives of different countries in relation to
expanding them. Based on the results, it can be concluded that there are different drivers
for policymakers and car manufacturers in the development of EVs. For example, the
expansion of EVs needs new technology, especially for batteries, fast-charging stations,
suitable investments, government support for EV manufacturers, affordable prices for con-
sumers, government subsidies, funding for battery research, congestion charge exemptions,
incentives to purchase EVs, and improvement of charging infrastructure. Innovations in
charging technology and increased charging stations are necessary in the near term in order
to attract drivers. EVs have been developed and promoted by countries such as China,
the U.S., the UK, France, Germany, India, Italy, Sweden, Hong Kong, Australia, and Japan
despite all the problems mentioned. In these countries, companies such as Tesla, Mercedes,
Volkswagen, and Ford are producing new technologies to mitigate these problems, de-
veloping advanced technologies related to EVs, including vehicle-to-infrastructure (V2I),
vehicle-to-grid (V2G), integrating artificial intelligence (AI), batteries, vehicle-to-vehicle
(V2V), vehicle-to-pedestrian (V2P), mechanisms, and communication technologies to han-
dle a wide range of users. Although, the batteries available now, being one of the main
components of electric vehicles, cannot always meet the possible energy requirements
of future EV needs, remarkable progress has been achieved regarding different types of
batteries in electric vehicles, such as Lithium-ion (most popular), Acid batteries, Nickel–
Cadmium batteries, Nickel-metal hydride batteries, and Nickel-iron batteries. On the other
hand, research on new types of batteries such as Aluminium-air, Vanadium redox, iron-air
battery are continuing. Governments must pay close attention to providing the EV charging
infrastructure required for the widespread use of EVs by private citizens, and commercial
and industrial users. Our future is closely linked to the development of EVs, and we
must be looking forward to new types of EVs, as they surely will have positive effects on
our lives. However, converting the vehicle fleet to electric cars is complicated and needs
suitable policies. The successful development of EVs is critically dependent on factors
such as consumer adoption of EVs, charging price and time, and charging infrastructures.



Appl. Sci. 2022, 12, 11656 14 of 18

Additionally, consumers’ preference for affordable vehicles with large driving ranges and
high operating efficiency signals to manufacturers that battery technology must continue to
be improved. This combination of government policy, consumer demand and preferences,
ongoing technological developments, and environmental concerns will undoubtedly be
the main drivers for the rapid expansion of EV markets in every country over the coming
decades. In addition, regarding limitations of this study and possible future works, it can be
stated that financial support for EVs development is one of the most important factors that
governments can be involved with. Most governments are concerned about investing in
EVs, but it is still not clear which policies will be most effective in which locations, nor how
much investment in EV development will be required. Future studies could investigate the
effectiveness of a wide range of policies after they have been implemented and in place
for longer periods of time, could review the ongoing development of batteries made from
non-rare metals and the associated price trajectory of batteries and EVs, could examine the
mass-market appeal of EVs as more EV models become available, and could investigate
the optimal co-development of networks of EV chargers as EV driving ranges evolve.
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