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a b s t r a c t 

Neural underpinnings of addiction have been widely investigated using traditional neuroimaging techniques 

and paradigms. However, certain mechanisms are still underexplored, and existing studies often do not adopt 

an ecological assessment. Functional near-infrared spectroscopy (fNIRS) emerges as a potential elective tool to 

assess real-time neural activity with high ecological validity, as well as a good spatial and temporal resolution. So 

far, fNIRS has been rarely used as an instrument to study the neural underpinnings of substance and behavioral 

dependence. Starting from the available scientific literature, we aim to present the various applications of fNIRS 

in the research field of addiction, leading to unprecedented advancements in research and clinical practice. 
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. Introduction 

Addiction is defined as a state in which a person is unable to self-

egulate the consumption of a substance or a behavior [36,51] . In the

ubstances use continuum , people with addiction represent the most ex-

reme group. In fact, these individuals display moderate to high severity

f substance use disorder (i.e., the diagnostic label in the fifth edition of

he Diagnostic and Statistical Manual of Mental Health Disorders; DSM-

) [36] . 

Although people can develop an addiction to a multitude of both le-

al and illegal substances (e.g., alcohol and drugs) and behaviors (e.g.,

ambling, gaming, sex, exercise). Nevertheless, the inability to regu-

ate the consumption of a specific substance/behavior is regarded as a

nique manifestation of the same underlying addiction syndrome [74] .

n particular, all types of addiction appear to have a dysregulation in

he reward system of the brain (i.e., the mesolimbic and mesocorti-

al pathways and the related dopamine levels) [28] . Together with the

raditional biological basis, addiction has also been shown to depend

n psychological and social components [35,51,58] . For instance, Zil-

erman et al. [87] documented higher impulsivity and neuroticism (a

ersonality trait associated with the tendency to respond with negative

motions to threat, frustration, or loss [19,50] ) across all individuals

ith an addiction compared to the control group. Additionally, authors
Abbreviations: DSM, Diagnostic and Statistical Manual of Mental Health Disorders;

NIRS, Functional Near-Infrared Spectroscopy; HbO, Oxygenated Hemoglobin; HbR, 

mission Tomography; THC, Δ9-Tetrahydrocannabinol. 
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bserved addiction-specific patterns of personality traits. For instance,

ower traits of extraversion, agreeableness, and openness to experience

ere particularly frequent in participants with alcohol use disorders.

ence, the bio-psycho-social model proposed by Engel [24] is useful to

rame and understand the underlying mechanisms of addiction [12,75] .

In the past decades, the advent of neuroimaging techniques,

ainly in terms of positron emission tomography (PET), structural

agnetic resonance imaging (MRI), functional magnetic resonance

maging (fMRI), and electroencephalography (EEG), has provided

aluable insight into the neurophysiological substrates of addiction

27,29,33,62,83] . For instance, the meta-analysis of fMRI studies by

lugah-Brown et al. [48] highlights the existence of a shared pattern of

eural abnormalities across substances in people with addiction. Specif-

cally, alterations in the dorsal striatal and frontal circuits, which are

ypically involved in reward and salience processing, habit creation, and

xecutive control, are commonly observed across substances and experi-

ental paradigms [36,48] . Despite the valuable set of evidence collected

ith the traditional neuroimaging techniques on the substrates of ad-

iction, these techniques still have some drawbacks. For instance, while

ET and fMRI both provide high spatial resolution to investigate brain

ctivity, they are also expensive to use and not portable. Furthermore,

oth PET and fMRI require participants to stay stationary in artificial

canners and they do not provide good temporal resolution for the study
 EEG, Electroencephalography; fMRI, Functional Magnetic Resonance Imaging; 

Deoxygenated Hemoglobin; MRI, Magnetic Resonance Imaging; PET, Positron 
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Fig. 1. Schematic representation of a typical func- 

tional near-infrared spectroscopy (fNIRS) system. The 

main components of the system are: A ) Acquisition lap- 

top; B ) fNIRS unit; C ) fNIRS cables; D ) fNIRS cap with 

optodes; E ) Monitor to present stimuli (i.e. sounds, pic- 

tures, videos, etc.). 
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f neural activity. In addition, PET is invasive as it relies on the injection

f radioactive components to measure brain activity. Conversely, EEG

rovides an optimal temporal resolution to investigate brain activity, is

oderately portable, and also cost-effective. Nevertheless, EEG has poor

patial resolution [57,66] . 

Functional near-infrared spectroscopy (fNIRS) is a recently intro-

uced neuroimaging technique. fNIRS is a non-invasive optical neu-

oimaging technique that estimates brain activity from variations in

erebral blood oxygenation levels in terms of oxygenated (HbO) and

eoxygenated hemoglobin (HbR; see Fig. 1 for a representation of the

NIRS system). To do so, near-infrared (NIR) light (wavelength 650–

50 nm) is shone from light sources to light detectors and forms a photon

athway. The NIR light in the photon pathway travels through several

iological layers of the head (e.g., skin, skull, cerebrospinal fluid) to

each the light detector. This is due to the relative transparency of hu-

an skin and bones to NIR light (i.e., the NIR optical window) [45,64] .

There are a number of advantages that enable fNIRS to be a valid

olution to overcome some of the limitations of traditional neuroimaging

ethods [82] . For example, fNIRS is less sensitive to motion artifacts

s compared to EEG, PET, and fMRI [9,26] . Moreover, unlike PET and

MRI, it has the advantage of being cost effective, small, and portable

46,53] . As a whole, these features have encouraged the use of fNIRS

o investigate brain activity in ecological settings and during real-life

ocial interactions [7,23,43] . For these reasons, fNIRS has been recently

dopted as an elective device in hyperscanning studies, where the brain

ctivity of two or more individuals is recorded simultaneously during

ocial interactions [4,5,11] . 

. Methods 

The current narrative review aims to analyze the emerging contri-

ution of fNIRS in the study of addiction from a qualitative perspec-

ive. The literature search was conducted using PubMed Central, Scopus,

nd Google Scholar. The string of keywords used to drive the literature

earch in all platforms was “fNIRS and addiction ”. Only studies in which

NIRS was adopted to investigate specific components of addiction in the

io-psycho-social framework were considered for analysis. 

We included original investigations published in peer-reviewed jour-

als. All the included studies used fNIRS to investigate ( i ) biological, ( ii )

sychological, or ( iii ) social components of addiction. Both longitudinal

nd cross-sectional research, together with retrospective and prospec-

ive studies, were included. The search was limited to articles written

n English to ensure the inclusion of studies representing the rigorous

nd standardized international scientific literature on the field [10,14] .

tudies published in a different language than English, or unrelated to

he topic of interest, were excluded from the discussion. As done in

ataldo et al. [13] , we also excluded case reports or series, opinion pa-

ers such as editorials, letters to the editor with no data, hypotheses,

eta-analyses, or reviews. 
2 
In the following sections, we provide an overview of the fNIRS-based

tudies on addiction under the light of the bio-psycho-social model pro-

osed by Engel [24] . To reflect the components of the bio-psycho-social

odel, we have clustered the eligible contributions in the following

ain groups: ( i ) fNIRS and the biological signature of addiction; ( ii )

NIRS and the psychological component of addiction; and ( iii ) fNIRS and

he social environment of addiction. Furthermore, we have also included

he section ( iv ) fNIRS in addiction treatment to highlight the potentially

eading role of fNIRS in driving translational research on addiction. Fi-

ally, ( v ) we provide a short overview of the limitations that might have

ontributed to hindering the usage of fNIRS in addiction research. 

. Results 

.1. fNIRS and the biological signature of addiction 

Several studies have recently taken advantage of the spatial proper-

ies of fNIRS to investigate the functioning of the brain in individuals

ith addiction. Studies have mainly focused on examining the prefrontal

ortex of individuals with addiction to substances and behaviors, such

s cannabis, psilocybin, tobacco, ecstasy, opiates, and gaming [34,73] .

or instance, Keles et al. [47] explored the feasibility of fNIRS to as-

ess the impact of Δ9-Tetrahydrocannabinol (THC), the primary psy-

hoactive compound in cannabis, on the prefrontal cortex functioning.

he rationale for the study is that the prefrontal cortex contains a large

umber of cannabinoid receptors CB1 to which THC binds [31] . In the

xperiment, fNIRS was used to assess brain activity in two time points:

efore and approximately two hours after THC administration. During

he fNIRS assessment, participants took part in a letter n -back working

emory task, divided into two conditions: one with low working mem-

ry load and one with high working memory load. In the condition with

ow working memory load, participants were asked to press a response

utton whenever the letter “X ” appeared on the screen. In the condition

ith high working memory load, participants were instructed to press

he button when the presented letter corresponded to the one presented

wo trials before. Conditions were presented in a blockwise fashion and

ach condition was repeated six times. In the study, after THC admin-

stration, the authors observed a significant increase in HbO concentra-

ion in the participants’ prefrontal cortex during both conditions of the

orking memory task. Accordingly, Gilman et al. [31] suggested that

he increased brain activity in the prefrontal cortex might be a potential

iomarker for cannabis intoxication. Similarly, fNIRS has proved useful

o investigate prefrontal functioning in individuals using tobacco [54] ,

cstasy [60,71] , and opiates [39,43,44] . With regards to opiate addic-

ion, Ieong et al. [42] used machine learning to combine fNIRS and EEG

nformation to shed light on the neuroadaptation of the prefrontal cortex

uring heroin abstinence. Results showed that individuals with heroin

ddiction demonstrated desynchronized lower alpha rhythms and de-

reased connectivity in prefrontal cortex networks. 
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Table 1 

Table with the list of reviewed publications on functional near-infrared spec- 

troscopy (fNIRS) and the biological signature of addiction. A brief overview of 

their common contribution is provided. 

fNIRS and the biological signature of addiction 

Reference Cluster summary 

Cho et al. [16] In this cluster of publications, researchers used 

fNIRS to investigate the neural underpinnings 

of addiction to substances and behaviors, with 

a focus on the prefrontal cortex function. 

Cuesta et al. [20] 

Keles et al. [47] 

Kornev et al. [49] 

George and Koob [30] 

Gilman et al. [31] 

Gu et al. [34] 

Huhn et al. [39] 

Ieong and Yuan [43] 

Ieong and Yuan [44] 

Ieong et al. [42] 

Liu et al. [54] 

Montgomery and Roberts [60] 

O’Doherty et al. [61] 

Qi et al. [67] 

Roberts et al. [71] 

Scholkmann et al. [73] 

 

t  

p  

o  

c  

r  

e  

a  

a  

p  

F  

i  

e  

n  

c  

a  

c  

w  

t  

w  

c  

c  

i  

t  

s  

[  

d  

C  

d  

p  

c

3

 

s  

e  

a  

d  

i  

g  

a  

i  

Table 2 

Table with the list of reviewed publications on functional near-infrared spec- 

troscopy (fNIRS) and the psychological component of addiction. A brief 

overview of their common contribution is provided. 

fNIRS and the psychological component of addiction 

Reference Cluster summary 

Alizadehgoradel et al. [1] This cluster of publications includes articles in 

which fNIRS was used to investigate some of 

the psychological factors that are crucial for 

the maintenance of substance use behavior. 

Asaoka et al. [2] 

Asaoka et al. [3] 

Balconi et al. [6] 

Chen et al. [15] 

Colledge et al. [18] 

Ernst et al. [26] 

Ernst et al. [25] 

Huhn et al. [40] 

Maier et al. [55] 

Monroe et al. [59] 

Qi et al. [67] 

Roberts and Montgomery [70] 

Witte et al. [84] 
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In the literature, the investigation of the biological basis of addiction

hrough fNIRS was extended beyond pharmacological substances. Some

reliminary studies used fNIRS to explore the underlying mechanisms

f behavioral addictions (i.e., gaming behavior, internet use, and porn

onsumption) [20,49] . For example, Cho et al. [16] investigated the neu-

al basis of internet gaming disorder through fNIRS while participants

ngaged in real-time gaming sessions. Specifically, participants were

sked to play League of Legends, a popular multiplayer online battle

rena game. fNIRS was used to assess neural activity while participants

layed one game round, which typically lasts between 20 to 50 min.

or each participant, their gameplay was video recorded and evaluated

n terms of positive and negative events by experienced League of Leg-

nds players. By retrieving the timestamps of the identified positive and

egative game events, the authors were able to investigate changes in

erebral blood oxygenation levels with an event-related approach. The

uthors observed stronger neural activity in the dorsolateral prefrontal

ortex during positive game events (e.g., opposing team is defeated) and

eaker neural activity in the lateral orbitofrontal cortex during nega-

ive game events (e.g., participant’s team is defeated) for individuals

ith internet gaming disorder as compared to the control group. Typi-

ally, the dorsolateral prefrontal cortex is activated by substance-related

ues and its activation positively correlates with the feelings of crav-

ng [30,67] . Conversely, existing literature suggests that the activity of

he lateral orbitofrontal cortex seems to be associated with unpleasant

timuli and punishment [61] . Hence, based on their results, Cho et al.

16] posited that when people with internet gaming disorder experience

esired game events, they crave to engage in more internet gaming.

onversely, during negative game events, people with internet gaming

isorder show less sensitivity to negative in-game experiences as com-

ared to people without the disorder. See Table 1 for an overview of the

urrent section. 

.2. fNIRS and the psychological component of addiction 

In the literature on addiction, fNIRS has been used to investigate

ome psychological factors such as self-control, cognitive functioning,

motion regulation, and approach-avoidance reactions. These factors

re known to play a role in the maintenance of substance use and ad-

iction [2,3,6,25,26,40,55,70,84] . In particular, the fNIRS-based stud-

es by Chen et al. [15] , Colledge et al. [18] , Qi et al. [67] sug-

ested that physical exercise might be beneficial for individuals with

ddiction, as it seems to enhance people’s self-control over the cue-

nduced substance cravings. For instance, in individuals with addiction
3 
o methamphetamine, the exposure to substance-related cues typically

licits higher neural activity in prefrontal regions (i.e., dorsolateral pre-

rontal cortex and orbitofrontal cortex) and this heightened neural activ-

ty is associated with increased substance cravings. To study the benefi-

ial role of physical exercise in addiction, Qi et al. [67] combined fNIRS

ith a block design behavioral paradigm (i.e., drug-cue reactivity task)

nd virtual reality. In particular, the experiment consisted of two ses-

ions of a drug-cue reactivity task separated by a 10-min session of a

ycling competition in a virtual reality environment and about 600 min

f rest. During the drug-cue reactivity task, participants were shown 4

rug-related or neutral images in a randomized order while their neu-

al activity was assessed with fNIRS. After a session of acute exercise in

 virtual reality environment, the authors observed decreased hemody-

amic responses in the dorsolateral prefrontal cortex and orbitofrontal

ortex during the exposure to substance-related cues. This finding sug-

ests that a session of physical exercise was followed by higher self-

ontrol over cue-induced cravings. Similarly, in smokers, physical ex-

rcise can reduce mood disturbances (i.e., tension-anxiety, depression,

atigue, and confusion). This is relevant as mood disturbances typically

unction as negative reinforcement for the smoking behavior itself [59] .

s substances like methamphetamine, nicotine, or heroin are known to

nduce frequent relapses triggered by substance-related cues, a better

nderstanding of the modulators of individuals’ self-control and sub-

tance craving is of great translational importance [1,15,67] . See Table 2

or an overview of the current section. 

.3. fNIRS and the social environment in addiction 

fNIRS has been used to investigate specific aspects of the individ-

al’s social life (e.g., social cognition, perceived occupational stress,

ommunication of emotion) in typical and psychiatric populations

17,63,65,72,86] . When considering its properties, fNIRS appears as an

lective tool to study the person in their social environment. Further-

ore, its portability makes fNIRS an ideal device with high ecological

alidity as it allows recording brain activity in naturalistic settings [7] .

or these reasons, fNIRS is now commonly adopted in hyperscanning

tudies to better understand the neural mechanisms of real-life social

nteractions [4,5] . For example, Azhari et al. [4] used fNIRS to assess

he neural activity of two participants (i.e., a mother and their biological

hild) during a passive exposure to visual stimuli (i.e., one-minute video

lips) in a tandem experimental session. Despite the properties of fNIRS

nd despite the fact that many factors associated with the individual’s

ocial world (e.g., affiliation with deviant peers, popularity, bullying)

ppear to contribute to the onset and maintenance of addiction [81] , no
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Table 3 

Table with the list of reviewed publications on functional near-infrared spec- 

troscopy (fNIRS) and the social environment in addiction. A brief overview of 

their common contribution is provided. 

fNIRS and the social environment in addiction 

Reference Cluster summary 

Azhari et al. [4] This cluster of publications examined the 

benefits of using fNIRS in social neuroscience. 

It emerged that no study has yet used fNIRS to 

investigate the contribution of social 

environment in addiction. 

Azhari et al. [5] 

Bizzego et al. [7] 

Chou et al. [17] 

Pinti et al. [63] 

Pu et al. [65] 

Rojiani et al. [72] 

Whitesell et al. [81] 

Zhang et al. [86] 
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Table 4 

Table with the list of reviewed publications on functional near-infrared spec- 

troscopy (fNIRS) in addiction. A brief overview of their common contribution is 

provided. 

fNIRS in addiction treatment 

Reference Cluster summary 

Bunce et al. [9] This cluster of publications foster the adoption 

fNIRS as a diagnostic and prognostic device to 

evaluate substance use severity and its related 

psychological symptoms. Moreover, the use 

fNIRS for treatment purposes also emerged. 

Dempsey et al. [21] 

Ehlis et al. [23] 

Huhn et al. [41] 

Huhn et al. [38] 

Rahman et al. [69] 

Stewart et al. [76] 

Veit et al. [79] 

Walia et al. [80] 
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tudy has used fNIRS to investigate the role played by social factors in

ddiction yet. See Table 3 for a summary of the current section. 

.4. fNIRS in addiction treatment 

Evidence of selective functional changes in the brain of people with

ddiction has fostered the adoption of fNIRS as a diagnostic and prog-

ostic biomarker of addiction severity [23,69] . In fact, fNIRS represents

 valid alternative to fMRI in translational settings, given its safety, cost

ffectiveness, and patient-friendliness [9] . fNIRS-based studies have pri-

arily been conducted to monitor recovery in people with addiction

ndergoing a phase of substance abstinence [21,41,76] . In particular,

he study by Dempsey et al. [21] used fNIRS to measure brain activ-

ty in a sample of individuals with addiction to alcohol across various

egrees of abstinence (i.e., abstinence duration range: from 1 month

o 10 years) when exposed to alcohol-related images. In the study, the

uthors reported a negative association between days of substance ab-

tinence and prefrontal reactivity to substance-related cues in people

ith an alcohol addiction. In these participants, a longer abstinence was

ssociated with lower activity in the dorsolateral and dorsomedial pre-

rontal cortices in response to substance-related cues. Similarly, Huhn

t al. [41] used fNIRS during a drug-cue reactivity paradigm to mon-

tor relapses of opioid use in methadone-maintained patients. Results

f the study showed that the activity in the left lateral prefrontal cortex

licited by substance cues was significantly associated with participants’

ercent opioid-negative urine screens. In particular, the neural activity

n the left lateral prefrontal cortex was a strong predictor of current

pioid use with a classification accuracy of 86%. A strong predictive

odel for opioid use was subsequently built by combining fNIRS data,

aseline craving scores, and self-reported depressive symptoms. fNIRS

as also been recently used for treatment purposes. For instance, in the

tudy by Walia et al. [80] , evidence on cue-reactivity was used to de-

elop a neuroimaging-guided noninvasive brain stimulation approach

o ameliorate the maladaptive learnt neural responses in people with

ddiction. 

Finally, fNIRS has also been used in translational research to mon-

tor the evolution of the psychological symptoms (i.e., anhedonia and

emoralization) and personality traits (i.e., impulsivity) that determine

he successful recovery from addiction [38,79] . For instance, Huhn

t al. [38] ’s study consisted of a sample of participants maintained on

ethadone. Participants’ depressive symptoms, anhedonia, and demor-

lization were assessed directly after methadone dosing. Two hours after

ethadone dosing, participants took part in a natural reward cue re-

ctivity task while their brain activity was assessed with fNIRS. Visual

timuli consisted of natural reward cues (i.e., highly palatable food, pos-

tive social interactions, and emotional intimacy) or emotionally neutral

mages. Positive reward stimuli were displayed by type in a blockwise

ashion for 250 s (5 images displayed for 50 s each). Results of the study

howed that participants reporting higher levels of anhedonia tend to
4 
isplay reduced brain activity in the right prefrontal cortex when ex-

osed to natural reward cues. Moreover, with regard to positive social

ues, higher anhedonia was significantly associated with lower neural

ctivity in the right ventromedial prefrontal cortex. Similarly, higher

emoralization was significantly associated with reduced brain activity

n an region including the right lateral ventromedial prefrontal cortex

nd the dorsolateral prefrontal cortex. See Table 4 for a summary of the

luster. 

.5. Limitations in the uptake of fNIRS in addiction research 

Despite the growing number of fNIRS-based research, some limita-

ions in the device and in its usage might have prevented its adoption

n neuroscience and, particularly, in addiction research. For instance,

NIRS has a scarce penetration depth and thus cannot be used to measure

rain activity in subcortical areas crucial for addiction research [68] . In

act, the penetration depth of fNIRS results as a compromise between

patial/depth sensitivity and signal-to-noise ratio, both of which tend to

ncrease accordingly to the source-detector separation [64,77] . A bal-

nce between sensitivity and signal-to-noise ratio is commonly reached

ith the ideal source-detector separation of 30–35 mm in adults [64] .

ogether with its scarce penetration depth, fNIRS also poses the issue

f not providing structural information of the brain for anatomical ref-

rence, making the co-registration to standard brain atlases challenging

56,68] . 

The adoption of fNIRS is also characterized by a technical and com-

utational heterogeneity across research groups and across studies. For

nstance, different studies might adopt different fNIRS devices. These

evices may vary in terms of hardware operations and overall method-

logy to measure cerebral blood oxygenation levels. Additionally, differ-

nt studies may also adopt different design of the source–detector matrix

e.g., optodes location, source–detector distance, source–detector array

ensity) [85] . This diversity in research practises poses a serious chal-

enge for the interpretation, reproducibility, and cross-comparability of

ndings and thus marks the infancy of the technique in neuroscience

85] . For these aforementioned reasons, recent works are focusing on

he definition of best practices and standardized computational ap-

roaches for fNIRS studies [8,85] . 

. Conclusion 

The current narrative review explored the emerging contributions

n the use of fNIRS in addiction research and clinical practice. Thanks

o its advantages over traditional neuroimaging techniques, fNIRS has

hown to be a resourceful instrument to shed new light on the biological

nd psychological mechanisms in substance-based and behavioral ad-

ictions. In particular, scholars have focused on investigating the func-

ioning of the prefrontal cortex, which is crucial for the top-down con-

rol in addiction [32,67] . From the literature, it also emerged that the



A. Carollo, I. Cataldo, S. Fong et al. Addiction Neuroscience 4 (2022) 100048 

i  

d  

p

 

t  

s  

c  

g  

r  

a  

p  

i  

o  

n  

t

A

 

A  

W  

a  

D

D

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

[  

 

 

[  

 

 

[  

[  

[  

[  

 

 

[  

 

 

[  

 

 

[  

[  

 

[  

[  

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

 

ntegration of neuroimaging and behavioral evidence has inspired the

evelopment of new fNIRS-based approaches to better predict patients’

rognosis and recovery from addiction in clinical practice. 

Despite the insights provided by fNIRS in the neuroscience of addic-

ion, there is room for future lines of research. For instance, no existing

tudy has used fNIRS to investigate the role played by social factors in

linical trajectories of substance use and addiction. In fact, fNIRS is re-

arded as an elective tool in social neuroscience as it allows recording of

eal-time social interactions with high ecological validity [22] . Taking

dvantage of these properties of fNIRS to investigate the social com-

onent of addiction would provide a more comprehensive understand-

ng of the bio-psycho-social basis of the disorder. Further consideration

f the clinical trajectories of addiction might also inspire fNIRS-based

eurofeedback clinical interventions to ameliorate patients’ maladap-

ive learnt neural responses [37,52,78] . 
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