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Abstract
Background  BASHTI is an implant-less anterior cruciate ligament (ACL) reconstruction technique, which resolves 
the problems caused by implants such as interference screws. This study aims to investigate the effect of the drill bit 
and tendon’s diameter on the Core Bone Engaged Length (CBEL) and the fixation strength. CBEL is the length of core 
bone which has a full engagement with both tunnel and graft at the same time.

Methods  60 in-vitro tests were conducted for 6, 7, 8, and 9 mm tendon sizes with a 10 mm bone tunnel. In this study 
bovine tendons and dummy bone blocks were used to model the fixation. Drill bits were used to extract the core 
bone for securing the auto-graft. A three-stage tensile test including a force-controlled cyclical preloading of 10–50 N 
with a frequency of 0.1 Hz for 10 cycles, followed by the main force-controlled cyclical loading of 50–200 N with a 
frequency of 0.5 Hz for 150 cycles, and immediately a displacement-controlled single cycle pull-out load with a rate of 
20 mm/min were carried out to discover the fixation strength of each sample.

Results  The 6 mm group had the greatest CBEL. However, all cases in this group failed in loadings below 200 N, 
which is the minimum required strength after ACL reconstruction. The fixation strength of cases with more than 
200 N fixation strength for 7, 8, and 9 mm tendon diameters were 275 ± 42, 330 ± 110, and 348 ± 93 N, respectively, 
showing insignificant difference between groups (P-value = 0.45). Nevertheless, CBELs for these groups were 16.6 ± 3.4, 
9.6 ± 2.4, and 11.7 ± 3.8 mm, respectively, implying a significant increase in CBEL in the 7 mm group than that for 8 and 
9 mm groups (P-value = 0.002 and 0.049, respectively).

Conclusion  Results showed that CBEL could assess the quality of BASHTI technique. However, CBEL was an inverse 
function of tendon compression, so it was not an independent parameter to determine BASHTI strength. Also, the 
CBEL of 7 mm group which fulfilled the 200 N threshold was higher than that of 8 and 9 mm groups, so its healing 
process speed may be higher, which is recommended for a future study in this field.
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Background
The anterior cruciate ligament (ACL) has an essential 
role in stabilizing the rotational movements of the knee 
[1]. ACL injuries, including partial or complete ligament 
tear, might occur under extreme sports activities, mostly 
as a result of a non-contact injury [2]. In a complete ACL 
tear, due to a lack of self-healing process, surgical recon-
struction is required [3]. Using an interference screw is 
the most frequent fixation method in these surgeries [4, 
5]. Nevertheless, this fixation method can be criticized 
for requiring expensive equipment and problems such 
as bone tunnel enlargement [6], inflammatory responses 
[7], and tendon rotation [8]. Consequently, implant-free 
techniques have been presented as a substitute for con-
ventional techniques to reconstruct the ACL. The best-
known implant-free technique is the press-fit method 
which uses bone plugs at the two ends of the patellar 
graft tissue for fixation [9]. This technique, however, is 
criticized due to problems such as the constrained length 
of the auto-graft [10].

BASHTI technique is an implant-free fixation method 
that uses a hamstring tendon and a core bone harvested 
during bone tunneling. The fixation strength of BASHTI 
and interference screw techniques is compared in both 
artificial bone and bovine models, indicating no signifi-
cant differences between these two methods [11, 12]. 
Also, it is shown that increasing the geometric param-
eters (e.g., tendon and core bone diameter) to a critical 
value would increase BASHTI fixation strength [13–15]. 
In addition, the sheathed core bone can be inserted into 
the tunnel with less hammer impact force and reduce 
the risk of cracking on the core bone during the inser-
tion process and increase the fixation strength [16, 17]. 
Moreover, it is shown that BASHTI fixation strength is 
significantly affected by the bone density and core bone 
insertion frequency (i.e., hammer strike rate during the 
insertion process) [18–20].

In the insertion process of a core bone into a bony tun-
nel using a hammer, only a portion of its length would 
be inserted into the tunnel. This is mainly because of 
the local fracture of the core bone due to the hammer 
impacts. The inserted length of the core bone is called 
the core bone engaged length (CBEL). It is believed that 
as the contact area between the core bone and the bone 
tunnel increases, the healing process speed, as well as 
friction and impact forces, would increase [21]. So, it is 
important to investigate the effect of involved param-
eters on the amount of CBEL. This study aims to examine 
the effect of CBEL on the BASHTI fixation strength and 

discusses its relationship with the cannulated drill bit and 
tendon diameter.

Methods
This experimental in-vitro study uses digital tendons 
harvested freshly from bovine hoofs. These hoofs were 
bought freshly from a licensed butchery. For consistency 
of the results, the hoofs were selected from the same 
breed and close age bovines. It has been already con-
firmed that the property of the grafts made from bovine 
digital extensor tendons is similar to human hamstring 
tendon [22]. These tendons were precisely trimmed to 6, 
7, 8, and 9 mm diameters using laboratory sizing equip-
ment (Fig. 1). Tendon trimming was done using a preci-
sion cutter by laboratory operator. The tendon was placed 
on a cutting board and then trimmed to the desired size. 
To verify the tendon size, the tendon is passed through 
the related gauge’s hole (Fig. 1). If the tendon is perfectly 
fitted through the hole, the corresponding bore size 
is considered as the size of the tendon; otherwise, the 
sample is failed and a new one must be prepared. The 
gauge had a range of 6–12 mm diameter bore sizes with 
a 0.5  mm interval. Accordingly, the measurement accu-
racy would be 0.5  mm. Tendons were stored at -20  °C 
for less than 48  h so their mechanical properties did 
not change [23]. Moreover, the Sawbones artificial bone 
blocks (Pacific Research Laboratories, Malmo, Sweden) 
with the same size and the same density of 320 kg/m3 – 
which is proofed to have similar mechanical properties 
with femoral/tibial cancellous bones - were used as an 
alternative for the cancellous bone of a young human [20, 
24]. In addition, BASHTI’s cannulated drill bit was used 
to extract a ~ 30 mm core bone safely from the Sawbones 
(Fig.  2). These drill bits are used to extract the desired 
cylindrical core bones from the cancellous bone site 
while drilling the fixation bone tunnel. The outer diam-
eter of the drill bits is set to 10 mm, which is appropriate 
for ACL reconstruction surgeries [25]. The inner diam-
eter was made in different sizes to be suitable for the fixa-
tion of 6, 7, 8, and 9 mm tendon grafts [26]. Table 1 shows 
the drill bits and tendon diameters used in this study.

To secure the tendon graft into the tunnel, the tendon 
was doubled and passed through the tunnel, maintaining 
a gauge length of 30 mm tendon graft left free outside of 
the tunnel (Fig.  3a). This gauge length corresponded to 
the length of natural intact ACL [23]. Following the ten-
don insertion, the core bone was inserted into the tunnel. 
The insertion process was conducted using a hand-pow-
ered hammer by applying a frequency lower than 300 
beats per minute on the top of the core bone in line with 
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its central axis (Fig. 3b) [19]. The tendon was kept moist 
during the insertion process. The results of a power anal-
ysis (considering alpha = 0.05 and effect size = 0.5) indi-
cated that the minimum number of repetitions required 

for this study was five (statistical power > 0.99). To check 
the repeatability of the results, therefore, five of each 
sample was built. Finaly, 60 different in-vitro BASHTI 
ACL fixation samples (4 different tendon diameters × 3 
different dore bone diameters for each tendon diameter × 
5 test repeats) were built for this study.

Shortly after the insertion process, the specimen 
was mounted into a servo-hydraulic machine (Amsler 
HCT 25–400; Zwick/Roell AG, Germany) to assess the 
mechanical properties of the fixation. The Sawbones 
block was mounted on the testing machine using a cus-
tom-made rig (Fig. 4a). Also, a custom-made hanger was 
used to hold the specimen (Fig.  4b). Initially, a cyclical 
preconditioning load of 10–50  N with a frequency of 
0.1  Hz for 10 cycles was applied to the specimen. The 
preconditioning load was applied to eliminate the tendon 
graft’s loose length and prepare it for the next loading 
steps [27]. Immediately after that, the main force-con-
trolled cyclical loading was applied to the specimen. This 
was set to 50–200 N with a frequency of 0.5 Hz for 150 
cycles. This step was planned to simulate the ACL pas-
sive flexion-extension loading forces applied to the knee 
during the early rehabilitation process of a reconstructed 
graft [28, 29]. Following the main cyclical test, a displace-
ment-controlled single cycle pull-out load with a rate of 
20  mm/min was applied to the specimens to measure 
the failure strength of the fixation [30]. Moreover, after 
the failure of each sample, the CBEL was measured for 
each sample by measuring the size of the final pulled-out 
core bone (Fig.  5). The fixation failure was monitored, 
either considering an elongation of more than 10  mm 

Table 1  Dimensions of the tendon, core bones, and inner size of 
drill bits
Tunnel
(mm)

Tendon
(mm)

Core bone
(mm)

Drill bit inner
diameter (mm)

10 6 9.5* 9.9

9 9.4

8.5 8.9

7 9.5* 9.9

9 9.4

8.5 8.9

8 9* 9.4

8.5 8.9

8 8.4

9 8.5* 8.9

8 8.4

7.5 7.9
* Maximum core bone sizes respect to each tendon diameter

Fig. 2  A BASHTI’s cannulated drill bit (A) and its extracted core bone (B)

 

Fig. 1  A typical double-strand tendon prepared for the test (A), tendon trimming equipment including surgical blade, gauge, and forceps (B)
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Fig. 4  a. Testing setup: Sawbones block (A) fixed using a custom-made holder (B) on the servo-hydraulic machine platform (C), b. The double-strand 
portion of the tendon was hung on the gripper

 

Fig. 3  (a) The 30 mm gauge length of the tendon graft left free outside of the tunnel, (b) Core bone insertion process: securing the tendon (A) into the 
tunnel with a core bone (B) using a hand-powered (manual) hammer (C)
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or a visible tendon rupture [14]. To simplify the fixation 
geometrical parameters (i.e. tendon, core bone, and tun-
nel diameters), the tendon compression (TC) was defined 
using Eq. (1) [13].

	
TC =

Stendon + Score − Stunnel

Stendon
� (1)

Where TC is a dimensionless parameter representing 
the tendon compression. Stendon, Score, and Stunnel are the 
cross-section areas of the tendon, core bone, and tunnel, 
respectively (Fig. 5).

A Student’s t distribution was used to calculate the 
95% Confidence Interval (CI) of the results. The ANOVA 
method was used to analyze if the difference between 

Fig. 5  Two parameters of tendon compression and CBEL

 



Page 6 of 9Moeinnia et al. BMC Musculoskeletal Disorders          (2023) 24:226 

the results of different tendon groups were significant. A 
P-value less than 0.05 was considered to be statistically 
significant.

Results
According to the outcome obtained in current study, the 
tendon size had a significant effect on the CBEL, but it 
did not affect the fixation strength of the samples signifi-
cantly. The average CBELs of the 6, 7, 8, and 9 mm ten-
don diameter groups were 31.7 ± 7.2, 21.1 ± 8.4, 14.7 ± 7.8, 
and 14.6 ± 5.9  mm (95% CI) respectively (Fig.  6). Previ-
ous studies on postoperative ACL reconstruction have 
shown that a load with a magnitude of at least 200  N 
would be applied to the fixation during a rehabilitation 
process [31]. Therefore, the value of 200  N was defined 
as the threshold to quantify CBEL. With the 6 mm ten-
don group, none of the samples could endure more than 
200  N loadings. As a result, the 6  mm tendon was not 
considered for further development. The average fixa-
tion strength of samples enduring more than 200 N fail-
ure load with tendon diameters of 7, 8, and 9 mm were 
275 ± 42 N, 330 ± 110 N, and 348 ± 93 N (95% CI), respec-
tively (Fig. 7a). So, no significant difference was observed 
between fixation strengths (P-value = 0.45). On the other 
hand, the CBELs of these samples were 16.6 ± 3.4  mm, 
9.6 ± 2.4  mm, and 11.7 ± 3.8  mm, respectively. Thus, the 
CBEL of the 7 mm tendon group was significantly more 
than that of 8 and 9 mm tendon groups (P-value = 0.002 
and 0.049, respectively) (Fig. 7b).

Also, it was observed that the CBEL does not affect 
the fixation strength independently. The measurement 
results of CBELs for each tendon diameter group demon-
strated an inverse relation between TC and CBEL (Fig. 8). 
Previous studies introduced TC as an effective parame-
ter for the fixation strength of ACL reconstruction [13]. 
Given this inverse relationship between TC and CBEL, 
the latter is not an independent parameter affecting the 
fixation strength.

Discussion
Primary aim of this study was to investigate the effect 
of the CBEL on the BASHTI fixation strength and its 
relationship with the cannulated drill bit and tendon 
diameters. Current study testified that the geometrical 
parameters changed the amount of the CBEL signifi-
cantly. Although, the CBEL had an inverse relation with 
the TC, but it was not an independent parameter to con-
sider its effect on the fixation strength. Significant dif-
ferences in fixation strength were observed between TC 
values in each tendon diameter group (P-value = 0.01, 
0.00006, 0.0003, and 0.012 for 6, 7, 8, and 9  mm diam-
eters, respectively). This was in agreement with the 
obtained results in previous studies [13]. In this study, the 
effect of TC on BASHTI fixation strength was not investi-
gated. Therefore, in each diameter group, only cases with 
a strength of more than 200 N were considered. Accord-
ing to the obtained results, the 7 mm tendon group was 
suggested. The higher the CBEL, the more contact area 
between the core bone and the tunnel surface. This might 
improve the healing process. Almost all of the other 
reconstruction methods are non-organic and there is not 
any bone-to-bone contact in their fixations. Due to the 
existence of this contact in BASHTI fixation technique, 
investigating the effect of geometrical parameters was a 
great novelty in this study.

As it was observed, during a conventional BASHTI fix-
ation process using a hand-powered hammer with a spe-
cific insertion frequency (less than 300 beats per minute 
[19]), CBEL was an inverse function of TC, so it was not 
an independent parameter to determine the BASHTI fix-
ation strength. Previous studies reported that the inser-
tion frequency affects the fixation strength of BASHTI 
fixation [19]. This insertion frequency may change this 
relationship between CBEL and TC and make the CBEL 
an effective parameter in fixation strength. An auto-ham-
mer with an adjustable impact frequency might improve 
the CBEL and TC combination, resulting in a higher fixa-
tion strength and healing process speed.

Due to the limitation of providing human cadaver bone 
and tendon samples in a large number (i.e., more than 60 
samples), digital bovine tendon samples and Sawbones 
blocks were used to mimic the human bone and tendon 
fixation. Although the tendons used in this study were 
stiffer than human models, the tendon sizes were accord-
ing to the sizes used in actual reconstructive ACL sur-
gery. However, the use of the human cadaveric specimens 
is suggested for future study. Finally, future works should 
investigate the effect of insertion frequency on the CBEL 
and its relationship with TC and fixation strength. The 
core bone density was kept constant, as it was assumed 
that the core bone will be extracted from the same 
recipient source during its surgical procedure. Obtain-
ing the core bone from other sources e.g. femoral or 

Fig. 6  Relation between CBEL and Tendon diameter. Error bars shown at 
95% CI
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Fig. 7  (a) Fixations strength and (b) CBEF of samples with failure loads of more than 200 N as a function of core bone diameter for different tendon size 
groups. Error bars shown at ± 95% CI. Groups without any bars didn’t have any samples with more than 200 N failure loads
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Fig. 8  An inverse relation between CBEL and TC for each tendon’s diameter group. Error bars shown at 95% CI
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tibial sites with various densities may requires a further 
investigation to ensure the effectiveness of the described 
technique.

Conclusion
The CBEL was proved to be a quality indicator influenced 
by the geometrical parameters, but not an independent 
factor on fixation strength of the BASHTI technique. The 
6 mm tendons did not satisfy the 200 N fixation strength 
threshold. Besides, there was no significant difference in 
the strength of the cases that satisfied the threshold (7, 
8, and 9 mm tendon groups). However, the CBEL of the 
7 mm group was considerably higher than the other two 
groups, indicating a better healing speed for the recon-
structed ACL. Consequently, the 7 mm tendon group is 
suggested for clinical purpose and future application of 
BASHTI technique.
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